A conceptual tool for assessing client performance in the construction project coalition

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This article was published in the journal Civil Engineering Dimension and is available here with the kind permission of the publisher. The definitive version is available at: http://ced.petra.ac.id/index.php/civ/article/view/15554

Version: Accepted for publication

Publisher: © Universitas Kristen Petra

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
A conceptual tool for assessing client performance in the construction project coalition

ROBBY SOETANTO1, DAVID G. PROVERBS and GARY D. HOLT

School of Engineering and the Built Environment, University of Wolverhampton, West Midlands WV1 1SB, U.K.

ABSTRACT

Due to the significant impact of client performance on overall project performance and the interdependence of participant’s performance in the construction project coalition (i.e. clients, designers and constructors), there is a need to establish client performance measures. Based on data collected from in-depth interviews with nineteen UK architects and nine UK contractors, a generic tool for the on-going formal assessment of client performance is presented. It was found that this approach to performance assessment (i.e. from the view point of other, non-client coalition participants) should lead to improved project relationships. Data analysis showed that in addition to ‘harder’ measures such as understanding of project requirements and finance, other, ‘softer’ measures of client performance (e.g. attitude) were worthy of consideration since they determine the quality of participant relationships. It is recommended that the tool be used to promote more effective client performance and thus enhance coalition relationships, enabling continuous improvement. The ultimate aim is to develop similar tools for the assessment of all coalition participants based on a culture of openness and trust.

Keywords: assessment tool, coalition participants, client performance, perceptions, performance measures, satisfaction.

1 Corresponding author, address:
School of Engineering and the Built Environment, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, United Kingdom
Introduction

The organisation of a construction project is unique in nature because of its temporariness and, because it contains many participants with differing backgrounds and interests [1-5]. Traditionally, the main participants of a project coalition (PC) are the client (as an owner of the project and the one that needs the constructed facility), the architect (commonly engaged as lead designer), and the contractor (who constructs the facility normally under the guidance of the architect). The interactions and interrelationships between these participants largely determines the overall performance of a construction project [6, 7]. Focusing on individual participants’ performance in the PC is worthy of investigation, since overall project performance is dependent on each participant’s contribution [8]. These participants’ performance is also interdependent [2, 9]. Hence, to achieve a certain level of performance, one participant requires another(s) to perform to a certain level and vice versa.

It has been shown, that client performance has significant impact on successful project implementation [10-13]. In a study of construction time performance, Walker [14] discovered that client related factors are more significant than procurement route adopted. It was recommended that clients should possess a positive attitude and good team interaction skills. A survey by the Construction Clients Forum found that fifty-eight percent of clients reported that their projects were late, thirty-two percent said that the work was over-budget and ninety percent reported construction defects [15]. However, it has also been suggested that clients should take some responsibility for these shortcomings [16]. Many problems that arise on site, are attributable to clients. These include problems caused by poor communication, late design
changes, late payment and so on. It has been well argued that to improve the performance of the industry, all parties should work together harmoniously, and this includes clients.

In principle, the satisfactory performance of clients is essential if contractors and professionals are to exercise their duties effectively. To get the best service from the industry, clients should also help themselves by adequately performing their crucial tasks during the construction process. It is argued that clients who adequately perform and become involved in the process, are more likely to be satisfied by the performance of their contractors and architects. Moreover, clients are also expected to lead the strive for performance improvement in the industry [17] and therefore, there is a need to set performance standards for them [18].

A good starting point in this objective is to scrutinise the roles and responsibilities of clients in the context of the PC, especially from the viewpoint of the other participants (i.e. architects and contractors). The views of both architects and contractors must be considered since their assessment criteria (explicit or otherwise) are likely to be different. Properly identified key performance criteria will enable clients to develop an awareness and understanding of the criteria which most enable their architects and contractors to effectively perform, and on which they can subsequently focus their attention. This will encourage more effective levels of client performance, leading to greater satisfaction levels and reduced adversarialism. Ultimately, such an approach should lead to an increase in the number of successful projects and overall improvements in PC working relationships. The concomitant benefits of this are easily appreciated.
This paper describes the development of a client performance assessment tool (CPAT) based on architects’ and contractors’ criteria within the context of the PC. CPAT is derived from the first stage of a research programme aimed at optimising the relationships among coalition participants [19]. The tool was developed from survey of samples of UK architects and contractors. Some may question these sample sizes, but the social sciences literature, particularly with respect to qualitative methods, suggests that for research of this nature, small samples are methodologically adequate to reveal feelings of satisfaction/dissatisfaction (i.e. inherent within the construction project coalition) [20]. The assessment tool presented gives due consideration to vital performance criteria, i.e. those which influence other coalition participants’ performance and project success as a whole. At the time of writing this paper, the tool has not been fully applied in an industrial context. Future research will perform this follow-on stage in taking the tool to definitive conclusion.

Data acquisition

Interviews were considered the most appropriate way to gain thorough understanding of architects’ and contractors’ client performance criteria. Interviews allow the exploration of feeling and other subjective / intuitive factors [21], essential in the evaluation of client performance. Interviews also provide sufficient depth to explore personal values and beliefs.

In-depth, semi-structured interviews with architects and contractors were conducted. These involved asking the respondents two specific questions regarding this subject. These questions were:
1. Do you assess client performance, if so, what criteria do you normally use?

2. In the context of the PC, what level of performance do you require from the client in order to allow you to perform optimally?

Additionally and as was considered necessary, supplementary questions were used to probe and obtain further details and to pursue aspects as recommended by Fellows and Liu [22] (e.g. what do you mean by attitude towards advice?). During interviews, interviewees were also asked whether they conducted a formal assessment of client performance. In such cases, a copy of the assessment form was also obtained, hence providing further data. All interviews were recorded and subsequently transcribed for analysis purposes.

Interviewees

Nineteen architects were chosen from the list of top UK architects [23], and subsequently interviewed. The majority were currently handling major UK and overseas building projects, and were qualified architects at project and top management levels. Their opinions represent the views of a small sample of very experienced UK architects.

Nine contractors were identified from the listing of Key British Enterprises [24] representing top UK contractors, and subsequently interviewed. Views expressed can be considered as those of a small sample of very experienced UK contractors.
Data analysis

Data were analysed using the content analysis technique. Neuman [25] described content analysis as a technique for gathering and analysing the content of text. Here, content refers to words, meanings, pictures, symbols, ideas, themes, or any other message that can be communicated and logically interpreted. Content analysis extracts and categorizes information from text [26]. The analysis captured the content of the transcribed interviews mainly in terms of words and ideas, on what criteria were considered most important to architects and contractors in terms of their feelings of satisfaction and dissatisfaction. These words and ideas were subsequently categorised into phrases or words representing an appropriate measure of performance. Such a technique was successfully used by Holt and Fraser [27] in assessing views of the UK public sector regarding procurement. The analysis was conducted manually.

Neuman [25] also argued that content analysis is nonreactive because the process of placing words, messages, or symbols in text to communicate to a reader or receiver, occurs without influence from the researcher. That is, when interviews are conducted, the interviewees have no prior knowledge of the subsequent content analysis. Moreover, if the interviews are conducted with care, it allows interviewees to express unbiased feelings. Notwithstanding this, it is acknowledged that the interviewees might introduce bias in their opinions since the research sought to include subjective, as well as objective, measures. Any ambiguity in responses was addressed through further questioning, thereby addressing confusion as and if it arose. This also minimised the problems of reliability and validity.
Reliability refers to the degree of consistency with which instances are assigned to the same category by different observers or by the same observer on different occasions [20]. Validity refers to the extent that a variable measures or represents what the researcher intends it to measure [28]. That is, in content analysis, reliability and validity problems stem from the ambiguity of word meanings, category definitions, or other coding rules [28]. Weber [28] advocated that the best content analysis research should combine both qualitative and quantitative analysis of the text. In qualitative analysis, such as applied in this research, Silverman [20] argued that authenticity rather than reliability (which is a central methodological issue for quantitative researchers) is often the more applicable issue. The emphasis of authenticity is to gather a thorough understanding of people’s experiences. Here, the ultimate aim was to understand practitioners’ experience in terms of their satisfaction / dissatisfaction feelings, and then to identify criteria in relations to those feelings. The issue of authenticity is also the reason that qualitative studies are often conducted with small samples [20].

Weber [28] contended that there is no simple right way to conduct content analysis. Instead, researchers must judge what methods are most appropriate to the prevalent setting. Therefore, content analysis should be tailored to the research aim. In content analysis, there are four characteristics of text content, i.e. frequency, direction, intensity and space [25]. Here, the coding system adopted was frequency, i.e. counting the occurrence of the same words / ideas in all interviews. Since the primary purpose of the analysis was to identify performance measures related to satisfaction / dissatisfaction feelings, other characteristics were considered irrelevant and subsequently ignored. The unit of analysis used is interview or interviewee. That is, for a particular criterion, the analysis counts how many interviewees deem that criterion important in
contributing to their feelings of satisfaction or dissatisfaction. Clients’ opinions were not sought because, for the purposes of this particular research, performance assessment was based on the opinions of other participants, i.e. architects and contractors.

Architects’ and contractors’ perceptions of key client performance criteria

Tables 1 and 2 show extracts of the key client performance criteria according to architects and contractors respectively. The second column of the tables displays the client performance criteria and the following columns represent the responses of architects and contractors during interviews. Most of the criteria are subjective in nature and considered ‘people issues’ such as spirit of co-operation, honesty, responsiveness to problems, etc. The first column exhibits the ranks of these criteria according to the frequencies (i.e. number of interviewees who deemed these criteria important). However, the emphasis here is on how architects and contractors consider client performance. A description of the criteria categorised under several main headings is given below.

Understanding of project requirements

Architects and contractors agree that this is the most important criterion. It includes criteria related to the project brief, understanding of the building process, and ability to communicate requirements.

The client brief should be clear, adequate / appropriate, and specific / definite in order to ensure successful project delivery and client satisfaction. However, evidence suggests that inadequacy of a client brief still continues to cause problems during construction [29, 30]. The poor
performance of architects and contractors is often partly attributable to a poor client brief. In informal terms, clients should know what they want from an early stage without the propensity for changing their mind in the latter stages of a project. Furthermore, clients are expected to be able to communicate (i.e. convey) what they want to architects and contractors effectively.

Often, clients change their mind during both design and construction stages. This causes tremendous problems to architects and contractors and negatively impacts both project and participant performance. Clients may claim that changes are inevitable and that architects and contractors should be capable of processing such, with little or no disruption. However, all participants can suffer because of the knock-on effect of such changes.

Understanding of the building process depends very much on the experience of the client. There was a conflict of opinion regarding this by interviewees. One may infer that because clients are not ‘construction professionals’ then architects and contractors should be able to advise them. Alternatively, a client’s level of experience and sophistication influences the construction process. The views of architects and contractors expressed in this research suggested a preference to work with experienced and knowledgeable clients. Clients are obliged to have a minimum knowledge of construction.

Criteria related to finance

It is central that clients (as project owners) have adequate funds for their intended projects. This importance was supported by Kometa *et al.* [13] who found that project finance was the most important responsibility of clients to project consultants. Several aspects related to finance were
identified during the interviews, including adequacy of funding, timeliness of payment and ease of financial approval (e.g. associated with variations). Moreover, a number of architects suggested that a willingness to agree a fee in advance was crucial to the survival of their companies.

Criteria related to decision making

Cherns and Bryant [1] contended that client organisations are complex and not unitary. This often causes problems in the decision making process within client organisations. However, the decisions that clients must make, are often in the crucial period of project execution and may significantly affect architect and contractor performance. Therefore, clients are expected to be able to make high quality and rapid, as well as single voice, decisions.

Criteria related to management skills

Traditionally, architects are often appointed as lead designers and are expected to communicate the client’s requirements to the contractor. Lead designers are expected to make important decisions on behalf of their clients in order to keep to budget and schedule. If this authority is not properly delegated and communicated by clients, delay can result and less than optimal project performance results. The authority of designers should be clearly defined and delegated by clients at the outset.

One interviewed architect contended that clients should organise their project team (i.e. client representatives) in order to ensure that the project is well administered. Moreover, pre-planning
by clients is also extremely important if their architects and contractors are expected to perform effectively.

Criteria related to support to contractor/architect

It is not surprising that both architects and contractors indicated the need for support and involvement from their clients. Foremost, is information support, particularly in terms of quality and timeliness. Clients should also set adequate / realistic timeframes for design and construction. This criterion seems to be of significance to architects, because six of the nineteen (i.e. one third) interviewed indicated this. One architect suggested that the client’s role in monitoring contractor performance also contributes to successful project implementation. A caveat to this was the need to strike a balance between an adequate level of involvement and what could be construed as interference. It has become widely accepted that successful project performance requires client involvement, however, if clients become too involved, then this soon becomes interference which hampers the performance of their professionals and contractors alike [31].

Criteria related to attitude

While such criteria are considered subjective and ‘softer’ in nature, nearly all architects and contractors suggested that ‘attitude’ has a significant influence on the satisfaction / dissatisfaction of the PC. These criteria support and sustain the quality of working relationships between participants. Such criteria identified from interviews include: integrity and honesty, team work/spirit of co-operation, responsiveness to problems, understanding architect / contractor difficulties, attitude to variations caused by client changes, allowing architect / contractor to
‘enjoy’ projects, appreciation of architecture, ability to encourage pro-activeness among parties, attitude towards advice, and client personality (e.g. general feeling on the pleasantness of the client).

Formal assessment of client performance

None of the interviewees were currently implementing any formal assessment of client performance, but all undertook a perceptive assessment of some kind. Some found the very idea of implementing a formal assessment to be a rather strange concept. As one architect stated:

> “Some clients think they know best and we [architects] never even consider whether they are performing properly… what right do we have to tell them that they are not performing?”

Generic formal assessment of client performance

Based on the interviews and analysis, a conceptual tool for the generic formal assessment of client performance was developed. The assessment is designed to be undertaken by architects and/or contractors. A completed assessment form is displayed in the Appendix. Here, performance is defined under the following headings:

- Understanding of project requirements;
- Finance;
- Decision making;
- Management skills;
- Support to contractor / architect; and
• Attitude.

The main purpose of this assessment tool is to raise clients’ awareness of their need for adequate performance in striving for good project out turn. Clients could regularly ask their architects and/or contractors to assess their performance, which may be done monthly or bi-monthly. This would allow clients to focus on improving those criteria, which have caused the most dissatisfaction to their architects and contractors whilst engendering a harmonious commercial relationship among the PC. Clients could then subsequently adopt appropriate strategies to improve their performance. Better client performance will facilitate better architect and contractor performance, leading towards greater client satisfaction. To implement this assessment, openness, trust and a willingness to be criticised are essential from all participants. One reason why PC participants do not openly talk to each other is that they can rarely expect to receive honest and sincere feedback [32]. The implementation of performance measurement is a pre-requisite for continuous improvement. The intention would be to develop similar formal assessment tools for the two other coalition participants, i.e. architects and contractors. Thus, continuous improvement would be a mutual process involving all participants in order to secure project success and improve working relationships.

The performance assessment

In assessing client performance, the architect and/or contractor would first need to determine the weighting of each criterion, i.e. Importance (I). These weightings are assumed to be constant throughout the whole project life so as to allow the client to form a suitable strategy aimed at satisfying the most important criteria. This level of importance (I) indicates the value or weight
of the criterion, based on the assessor’s feeling of satisfaction or dissatisfaction. The level of importance (I) ranges between 0 to 10, indicating a continuum between no importance and extremely important respectively. Hence, zero (0) Importance indicates the criterion to have no impact on the level of satisfaction attained and therefore effort expended on this criterion can be considered wasteful. Conversely, an importance value of ten (10) indicates a criterion to have a very significant impact on the level of satisfaction and so attempt should be made to satisfy it to its fullest. Adequate performance under important criteria will derive a high level of satisfaction. At any time during the project, the client may request the architect and / or the contractor to make an assessment. Although this process slightly adds an administrative burden, the overall benefit due to harmonious relationships outweighs this. The architect and / or contractor will indicate their level of satisfaction (S) for each criterion on a scale of 0 to 10, representing a continuum between extremely poor and excellent respectively. Thus, the value of S illustrates how well the client is performing in a certain task according to the assessors’ opinion.

On completing the assessment, the architect / contractor would then return the form to the client, who would then analyse the response. For each criterion the Satisfaction Weighted Scale (SWS) and Performance Improvement Potential Scale (PIPS) is calculated by the client, representing a ‘micro’ evaluation of performance. Then under each heading, SWS and PIPS are calculated, representing a ‘macro’ evaluation of performance, e.g. for Decision Making. Finally, the overall values for SWS and PIPS represent a generic assessment, indicating overall satisfaction levels and the need for improvement. The SWS and PIPS are now explained in more detail.

The Satisfaction Weighted Scale (SWS)
The SWS (valued between 0-10) represents a weighted level of (client performance) satisfaction, as calculated by the following formula:

$$\sqrt{IxS}$$

That is, the square root of the product of the level of satisfaction (S) and the corresponding level of importance (I), as indicated by the assessors, i.e. architects and contractors. The utilization of the square root is simply to provide convenient values of SWS between 0-10 which may be readily interpreted by the user. Hence, a high score represents a high feeling of satisfaction and vice versa.

Locke [33] reported that emotional responses (i.e. feelings of satisfaction and dissatisfaction) are also dependent on value importance; that is how an individual deems a certain aspect of the task in their value hierarchy. The implication for participants of the PC is how one participant values a certain task undertaken by another participant and how this impacts their own performance and levels of satisfaction. The extent to which the performance of other coalition participants impacts upon the performance of another will determine that participant’s perceived importance of the other’s performance. This is simply because the satisfactory performance of other coalition participants enables another participant to achieve their own goals and to perform better. Locke [33] also suggested that failing to perform a more important task will produce more dissatisfaction, and vice-versa. Liu and Walker [8] stated that the more important the value, the wider the possible range of satisfaction or dissatisfaction feelings associated with it. In evaluating levels of satisfaction / dissatisfaction, importance represents a key determinant, hence its inclusion in the assessment tool.
In this process, two criteria may have the same SWS but different values for Importance and Satisfaction. For instance, in the hypothetical example given in the Appendix, according to the contractor, *Responsiveness to problems (queries) that arise* has scores of 10 for Importance and 1 for Satisfaction, and *Appreciation of architecture* has the exact opposite. Both criteria have the same SWS, that is 3.16, but do they generate the same level of satisfaction for the assessor? The answer is yes because *Responsiveness to problems (queries) that arise*, which has very high Importance but very low Satisfaction, produces a low feeling of satisfaction, *Appreciation of architecture*, which has very low Importance but very high Satisfaction also produces a low feeling of satisfaction. That is, in the case of *Appreciation of architecture*, while the level of satisfaction (S) is high, because the criterion is not considered vitally important by the assessor, the ultimate satisfaction feeling is lower.

The SWS for each heading, (e.g. *Understanding of project requirements*) is the mean SWS for that heading based on the number of relevant criteria derived from:

\[
\text{Generic SWS} = \frac{\sum_{i=1}^{n} \sqrt{I_i \times S_i}}{n}
\]

where \(n \) = number of criteria attributable to given generic heading.

Hence, for *Understanding of project requirements* the overall SWS (ranging between 0-10) is 7.13, suggesting a reasonable level of satisfaction by the assessor. Note, where the assessor does not consider certain criteria to be relevant (e.g. *Monitoring progress/performance* and *Allowing architect/contractor to enjoy project*) an importance rating of 0 is allocated and the criterion subsequently removed from the calculation.
Finally, overall SWS gives an indication of the overall mean total of SWS for the assessment based on the six headings, which in the example is 6.88 representing an above average feeling of satisfaction (in this context ‘average’ is taken as the median value of 5). Where assessment is undertaken at times which exclude certain criteria (e.g. prior to work on site commencing), these are simply ignored and form no part of the calculation. Additionally, the overall SWS can be used for inter-project comparison, thereby providing a useful basis on which participants can (longitudinally) compare the performance of their clients overtime. Also, clients can (cross-sectionally) monitor their own performance against a number of projects, allowing them to focus their attention in the strive for continuous improvement.

The Performance Improvement Potential Scale (PIPS)

The PIPS for each criterion is derived simply by subtracting the value for Importance from the value for Satisfaction (i.e. S - I). Hence, PIPS (with a range between –10 to 10) is defined as the difference between Satisfaction and Importance for a particular criterion. The PIPS indicates the need for improvement in any particular criterion, and hence lower values should receive greater attention by clients. In the example given, a contractor has allocated for Responsiveness to problems (queries) that arise, scores of 10 and 1 for Importance and Satisfaction respectively, the PIPS produced is a value of –9. In the case of Appreciation of architecture, where values of 1 and 10 have been allocated to Importance and Satisfaction, the corresponding PIPS value would be 9. Here, the contractor is all but completely satisfied with the client’s performance for this criterion and it does not therefore require significant corrective action.
In summary, criteria that are allocated negative PIPS values require improvement, while positive values indicate those criteria that have been, to some extent satisfied. Ideally, the value of Importance and Satisfaction should be the same in order to produce zero PIPS values indicating an optimum level of client performance. Here, clients are satisfying their assessors, but are not wasting their efforts. Hence, in reality, optimum client performance might be extremely difficult to achieve. In the performance assessment, attention should be focused on aspects of client performance, i.e. criteria, which need most improvement. Clients should therefore focus on improving their performance under the criteria with negative PIPS values.

Adopting the same principles as described for the SWS, PIPS values for each heading (e.g. *Understanding of project requirements*) and overall, can be calculated. The overall PIPS values can then be used for similar purposes as described for the overall SWS value (i.e. inter-project comparison and performance monitoring).

Priority Rank (PR)

The Priority Rank (PR) represents the ranking of PIPS values (with lower PIPS values assigned higher rankings). Criteria with the same PIPS are assigned the same rank. Criteria with zero Importance are not ranked. Although, it may be argued that two criteria with the same rank may need different approaches and certainly different solutions for addressing the problems, the same rank indicates that the criteria have the same potential for improvement in order to attain higher satisfaction levels. The PR for each heading indicates the comparative ranking of these.
Practical application

Serving as a tool to develop harmonious interrelationships between coalition participants, implementation of the assessment could commence on appointment of the service providers, i.e. architect and/or contractor. The coalition participants can discuss the assessment(s) at regular monthly meetings. In the first instance, the assessors (architect and contractor) would need to establish values of importance, independently for each criterion. As these importance values indicated by the two assessors are unlikely to be the same, their independent assessments should be considered complementary, i.e. in unison by the client. The client would then be able to focus on criteria with relatively higher levels of importance. After an agreed period of time, the client would invite an assessment to be made. In receipt of the assessment, the client can subsequently adopt appropriate strategies to address weaknesses, i.e. causes of dissatisfaction. This can be considered both at a micro level (i.e. in respect of particular criterion) and/or at a macro level (to be compared with other projects or with a preceding assessment).

In the example provided in the Appendix, the overall SWS attained is 6.88, indicating a reasonable level of satisfaction. The overall PIPS is -1.7 indicating the need for some improvement, if the assessor (architect or contractor) is to be fully satisfied. The PRs provide guidance to the client as to which criteria require most attention. The most important criterion is Responsiveness to problems (queries) that arise, and hence, the client should seek to improve this aspect of performance as it is causing high levels of dissatisfaction. The criteria ranked second are Clarity of thinking (not changing mind), Information support (quality, timely, etc.) and Integrity and honesty, and should be considered next. The PR for each heading provides a cross-comparison of priority for all headings. Here, Understanding of project requirements,
which has 4.5 PR, followed by Decision making (5.0 PR) are the most important, followed by the Support to contractor / architect (5.8 PR) and Finance (6.0 PR). Attitude and Management skills, with a PR of 6.9 and 8.8 respectively, reflect a reasonably high level of satisfaction for such aspects.

The client can then compare current results with previous assessments conducted on the project. The assessment requires a team effort including all coalition participants to pursue continuous improvement and satisfactory performance. In this regard, the intention is to develop similar tools for assessing the performance of architects and contractors, by the appropriate coalition participants. Hence, assessment would be a mutual process in a real sense, supporting the development of long-term relationships and high satisfaction levels.

Conclusion

The impact of client performance on the success of construction projects is unquestionable. This is because of the interdependence found to exist between the coalition participants and of their contribution to overall project performance. Moreover, the achievement of client satisfaction is also dependent on how well clients fulfill their own role (i.e. perform). Therefore, there is a need to establish a set of client performance criteria, which can then be used as a measure of client performance.

In this regard, data were collected through a series of semi-structured interviews with nineteen architects and nine contractors. Views expressed were considered those of highly experienced architects and contractors. The interviews were recorded, transcribed and then analysed.
Data analysis showed that, in addition to ‘harder’ measures, such as understanding of project requirements and finance, other ‘softer’ measures (i.e. attitude) of client performance were found to be worthy of consideration since they ultimately determine the quality of relationships between participants. Therefore, to enhance overall project performance, each participant should be aware of, and be willing to, adopt those criteria when assessing client performance.

The criteria were compiled and grouped under several main headings, i.e. Understanding of Project Requirements, Finance, Decision Making, Management Skills, Support to Contractor / Architect, and Attitude. A tool for the generic formal assessment of client performance was presented. It is suggested that clients could request architects and/or contractors to assess their performance, enabling weaknesses or aspects in need of improvement to be identified. Based on the importance (I) and satisfaction (S) of each criterion, a Satisfaction Weighted Scale (SWS), Performance Improvement Potential Scale (PIPS) and Priority Rank (PR) are then calculated. These values represent current levels of satisfaction and pinpoint which criteria are in need of most improvement, and also which show the most potential for improvement. Clients can then focus on those criteria which are causing greatest dissatisfaction for their service providers. It is recommended that the assessment be undertaken regularly at various stages of the project in order that the client can continuously monitor their own performance and react to the needs of their architect / contractor. Openness, trust and a willingness to be criticised, as well as a team spirit are pre-requisites to implementation of this formal assessment.
The ultimate aim of the research is to develop similar tools for assessing the performance of the two other coalition participants (i.e. architects and contractors). The assessment process would then become a team effort, thereby promoting the development of long-term relationships and mutual benefits. This will be followed by full validation of the tools, through application / testing by industry participants. As a final word, the ‘values’ derived from the assessment are not critical, but the tool essentially serves as a guide to flagging-up problems so that they can be discussed / resolved at the said meetings.

References

