Synthesis and solid state structure of pyridyl diboroxines linked by a chiral spacer analogous to Troger's base

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: ELSEGOOD, M.R.J. and KIMBER, M.C., 2015. Synthesis and solid state structure of pyridyl diboroxines linked by a chiral spacer analogous to Troger’s base. Tetrahedron Letters, 56 (2), pp. 346 - 349

Additional Information:

• NOTICE: this is the author’s version of a work that was accepted for publication in Tetrahedron Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Tetrahedron Letters, vol 56, issue 2, January 2015, DOI:10.1016/j.tetlet.2014.11.094

Metadata Record: https://dspace.lboro.ac.uk/2134/16853

Version: Accepted for publication

Publisher: © Elsevier Ltd

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Graphical Abstract.

Synthesis and solid state structure of pyridyl diboroxines linked by a chiral spacer analogous to Tröger’s base
Mark R. J. Elsegood, Marc C. Kimber*
Synthesis and solid state structure of pyridyl diboroxines linked by a chiral spacer analogous to Tröger’s base

Mark R. J. Elsegood, Marc C. Kimber*

Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU, UK; Tel: ++44 (0) 01509 22 2570.
E-mail: M.C.Kimber@lboro.ac.uk

The carbocyclic dione cleft molecule 1 has become a valuable surrogate for Tröger’s base in catalysis, supramolecular chemistry and chiral recognition (Figure 1). It is analogous to Tröger’s base as it contains a C2-symmetric axis and a chiral cavity with a defined geometry and a rigid, predictable structure. The advantages of 1 over Tröger’s base lie in the dione, which can be conveniently and stereoselectively reduced to give the diol 2 (see 2a and 2b for alternative views).

This reduction then positions the two hydroxyl groups into the chiral environment of the cleft giving the ability, via hydrogen bonding, to orientate and organise substrates into the chiral cavity (Figure 1). It is this singular attribute of 1 which has been successfully exploited in the development of new catalysts and novel supramolecular assemblies.

To date, the only functionalization of these hydroxyl groups has been by esterification and alkylation; for example, we successfully demonstrated that the diol could be selectively transformed into the mono- and dipyridyl analogues, with the potential to interact with transition metals. This type of interaction with transition metals is typical for pyridyl ligands of this kind, as demonstrated by Harding and co-workers who exploited such binding for the self-assembly of [2+2]-macrocycles. However, we perceived an opportunity to use the pyridyl groups attached to these hydroxyl groups, in the self-assembly of boroxines. Boroxines are the result of the trimerisation of boronic acids, which is typically achieved by dehydration, however, their formation can be assisted by N-coordinating ligands such as pyridine, and as such, this can be thought of as a templating strategy for their formation (Scheme 1).

Pyridyl assisted templating of phenyl boronic acid has been utilised to link two remote boroxines via a chiral spacer. The chiral spacer is a carbocyclic analogue of Tröger’s base and contains a unique chiral cavity, and the flanking boroxine units have been shown, by single crystal X-ray analysis, to extend the size and shape of this cavity.

ARTICLE INFO

Article history:
Received
Received in revised form
Accepted
Available online

ABSTRACT

Pyridyl assisted templating of phenyl boronic acid has been utilised to link two remote boroxines via a chiral spacer. The chiral spacer is a carbocyclic analogue of Tröger’s base and contains a unique chiral cavity, and the flanking boroxine units have been shown, by single crystal X-ray analysis, to extend the size and shape of this cavity.

2009 Elsevier Ltd. All rights reserved.

Keywords:
boroxine
boronic acid
pyridyl
chiral cleft
self-assembly

Figure 1. The carbocyclic dione cleft molecule 1, its reduced form 2 (alternative views 2a and 2b), and the functionalised analogues 3a-c and 4a-c.

Scheme 1. The self-assembly of boroxine-pyridyl adduct 8 via stabilization of 6 with 7.
In a wider context, boroxines are becoming increasingly prevalent due to their use in self-assembly and particularly in the formation of covalent organic frameworks (COFs), the first of which was reported by Yaghi in 2005.

In this Letter, we disclose our efforts on the self-assembly of ligand sets 3a-c and 4a-c' with phenyl boronic acid. This would serve two purposes: (1) it would demonstrate the first non-organometallic self-assembly of a carbocyclic Tröger’s base analogue/s; and (2) it would be the first example of linking two remote boroxine units with a chiral spacer unit, which may enhance the binding cavity of our chiral cleft for the purposes of molecular recognition (Scheme 2).

Initially in this study, we used the racemic clefts 4- (3a), 3- (3b), and 2-dipyridyl ether (3c), which have been previously synthesised and fully characterised. Consequently, taking 3a (1 equiv) with phenylboronic acid 5 (6 equiv) in CH₂Cl₂, we found that the boronic acid rapidly solubilised to give a homogenous reaction mixture (Scheme 3). Upon removal of the solvent the ¹H and ¹³C NMR spectra of the crude white solid showed the formation of one discrete product which was assigned to 3a.₆₂. This was based on the downfield shift of the pyridyl signals of 3a relative to 3a, and the formation of the adduct was further support by an m/z value of 1081.4452.

5 failed to give the adduct with the ¹H NMR spectrum being identical to that of the parent ligand 3c.

With the success of the ether series we next investigated the esters 4a-c. Accordingly, the 4-dipryidyl ether 4a was exposed to 6 equiv of 5 which yielded the pyridyl adduct 4a.₆₂ in quantitative yield (Scheme 4). Once again ¹H and ¹³C NMR spectra supported the structure. We were also able to deliver 4b.₆₂ from 4b, and once again the ¹H and ¹³C NMR spectra, together with mass spectral analyses, supported the formation of the assigned structure. However, in line with the 2-pyridyl ligand 3c above, 4c failed to assemble. We believe that both 3c and 4c failed to give the desired bis-boroxine adducts due to unfavourable steric interactions.

To assign fully the structures of these novel bis-boroxines we deemed it necessary to acquire crystals suitable for single crystal X-ray analysis. Additionally, this would give an insight into the effect, if any, that the boroxine would have on the chiral cavity of the cleft. After exhaustive attempts, adducts 3b.₆₂, 4a.₆₂, and 4b.₆₂ proved to be uncooperative, but gratifyingly, adduct 4a.₆₂ delivered crystals suitable for single crystal X-ray analysis, and we were able to assign unambiguously its structure (Figures 2 and 3).

The compound 3a.₆₂ crystallises as the racemate with the molecule lying on a two-fold axis; thus half is unique. Associated with each molecule of 3a.₆₂ are three molecules of dichloromethane (Figure 2). One of these forms C–H···π [ring centroid···H(34A) = 2.67 Å] interactions with the aromatic rings in the cleft. The other two simply fill voids in the crystal lattice. The boroxine rings and the phenyl groups directly attached to them interact via π···π stacking across inversion centres to those on a neighbouring molecule, with closest contacts in the range 3.46-3.50 Å (Figure 3(ii)).
As can be seen from Figures 2 and 3, the pyridyl-assisted assembly of the bis-boroxine clearly extends the size and shape of the pre-existing cleft contained within 4a in the solid state. This is demonstrated by the inclusion of solvent molecules within the cavity of 4a.6. Additionally, to our knowledge, this is the first example of a crystal structure of a bis-boroxine adduct.

In summary, we have demonstrated that the incorporation of a chiral spacer between two remote boroxines can be achieved via a dipyrild template. The 4-pyridyl and 3-pyridyl ligands in both the ester and ether series gave the respective boroxines, but the 2-pyridyl ligands 3c and 4c failed to give the desired adducts. Formation of the bis-boroxine structures were supported by NMR and mass spectral analysis, as well as via single crystal X-ray analysis of 3a.6. The solid state structure of this adduct illustrates that the boroxine assemblies can enhance the chiral pocket, both in size and shape in the solid state. We are currently investigating the use of this chiral cavity, and the role of boroxines in self-assembly.

Acknowledgments

We gratefully acknowledge financial support from the Department of Chemistry at Loughborough University.
Tetrahedron

29.1: MS-ESI found 1109.4042, C_{62}H_{57}Br_{12}O_{12}Na [M+Na]^+ requires 1109.4078.

11. See the Supporting information for a comparison of the 1H NMR spectra of 3a and 3a.6.

12. Crystal data for 3a.6·3CH$_2$Cl$_2$: C$_{68}$H$_{62}$Br$_6$Cl$_6$N$_2$O$_8$, M = 1312.76, monoclinic, space group $C2/c$, $a = 26.488(5)$, $b = 16.113(3)$, $c = 16.634(3)$ Å, $\beta = 110.583(2)^\circ$, $V = 6646(2)$ Å3, $T = 150$ K, $Z = 4$, μ (Mo-K$_\alpha$) = 0.315 mm$^{-1}$, 34672 reflections measured using a Bruker APEX II CCD diffractometer with graphite-monochromated Mo-K$_\alpha$ radiation ($\lambda = 0.71073$ Å), 8665 independent data, $R_w = 0.0200$; all unique data used in refinement against F^2 values to give $wR_2 = 0.2025$ (on F^2 for all data), $R = 0.0658$ (for 7043 data with $F^2 > 2\sigma(F^2)$). Programs used were Bruker APEX II13, SAINT13, and SHELXL-2014.14,15 Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1023502. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

Supplementary Material

Supplementary material including 1H and 13C NMR spectra of 3a.6$_2$, 3b.6$_2$, 4a.6$_2$, and 4b.6$_2$, and the Crystallographic data for 3a.6$_2$·3CH$_2$Cl$_2$.