Numerical and analytical investigation of the influence of porosity on the frequency response of GLARE composite

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Metadata Record: https://dspace.lboro.ac.uk/2134/17322

Version: Accepted for publication

Publisher: © IEEE

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Numerical and analytical investigation of the influence of porosity on the frequency response of GLARE composite

Istvan A. Veres
Department of Mechanical Engineering
University Walk, University of Bristol
Bristol BS8 1TR, UK
RECENDT GmbH, Altenberger Str. 69
4040 Linz, Austria
Email: istvan.veres@recendt.at

Robert A. Smith
Department of Mechanical Engineering
University Walk, University of Bristol
Bristol BS8 1TR, UK

Valerie J Pinfield
Chemical Engineering Dept.
Loughborough University
Loughborough, Leics., UK

Abstract—In this study, the validity of the effective-medium model approach to model the ultrasonic response of porosity is investigated with the help of time-domain Finite Element Method simulations. The effective-medium model is based on a single scattering approach i.e. by neglecting the rescattering of the waves and assuming a complex wave number to account for the frequency-dependent attenuation of the elastic waves. The numerical model, on the other hand, allows the study of the scattering of the elastic waves on randomly distributed spherical cavities and also accounts for the multiple scattering effects.

I. INTRODUCTION

Fibre-metal laminates such as GLARE (Glass Laminate Aluminium Reinforced Epoxy) provide enhanced fatigue resistance compared with unreinforced metals. The composite layers, however, frequently suffer from air inclusions, or porosity, which reduces the overall strength and performance of the laminate. During the propagation of ultrasonic waves through such a porous material the waves are scattered at the randomly distributed voids. This scattering leads to a frequency-dependent attenuation as previously demonstrated [1]. Measurement of this attenuation allows the evaluation of the bulk-averaged porosity. The measurement principle is in general independent of the investigated material and has been successfully applied in composites [2] and in aluminum castings [3], [4], [5] but does not provide any information about the depth distribution of the porosity. For this, a pulse-echo method is required but the reflected waveform is complex for GLARE due to the high reflection coefficients at each interface. Small changes in the glass-fibre layer thicknesses cause large changes in the reflected response, making it impossible to distinguish signals from porosity.

In the applied effective-medium model a complex wave number is used to match the response of a homogenous medium to the frequency-dependent response of a random distribution of cavities, calculated from the scattering from a single cavity [7], [8], [9]. As well as effective-medium models, also numerical simulation can be used to study wave-propagation problems in inhomogeneous media, such as periodic structures [10] or random media [11]. In the presented work, both techniques are applied to model porosity. In particular, three-dimensional time-domain FEM simulations are carried out to model the scattering of the elastic waves on randomly distributed cavities. The range of validity of the effective-medium model is investigated by comparing calculated transmission spectra for various porosity levels and distributions to the numerical simulations.

II. ANALYTICAL AND NUMERICAL MODELING OF WAVE PROPAGATION IN RANDOM MEDIUM

Within an effective-medium model the ultrasonic scattering from porosity is taken into account by using a complex wave number. The 3D time-domain FEM simulations, on the other hand, are carried out by modeling the scattering of the ultrasonic waves at a random arrangement of spherical voids. The results of the two models are compared to verify and to investigate the limitations of the frequency-domain effective-medium model.

A. Effective-medium model

For a particular volume fraction \(\phi \) of cavities the complex wave number \(K \) of the effective medium [7], [8] is given as:

\[
K^2 = k^2 + \frac{3\phi}{R^3} f(0),
\]

where \(k \) is the real wave number and \(f(0) \) is the backscattered amplitude. For simplicity it is assumed that the pores are spherical scatterers with radius \(R \). For longitudinal waves the backscattered amplitude can be obtained as [8]:

\[
f(0) = \frac{1}{i k} \sum_{n=0}^{\infty} (2n+1)A_n,
\]

with \(A_n \) being the scattering coefficients of order \(n \) for a spherical cavity. For transverse waves, the definition of the scattering cross-section in Eq.(2) is slightly different due to the
The attenuation coefficients from cavities with radius $R = 10 \, \mu m$ and volume fraction $\phi = 5\%$ with $n = 15$ terms. (a) Longitudinal waves and (b) shear waves. The insets show the convergence of the attenuation coefficients with up to 5 terms.

presence of two transverse waves with different polarizations [13]:

$$f(0) = \frac{1}{ik} \sum_{n=1}^{\infty} (2n + 1) (B_n + C_n),$$

where B_n, C_n are the scattering coefficients for the transverse waves. The scattering of plane waves from spherical obstacles, such as cavities or inhomogeneities, is a well-known problem. The scattering coefficients (A_n, B_n, C_n) can be found in the literature for longitudinal waves [14] and also for transverse waves [13]. The infinite sum in Eq.(2) can be truncated; in the current work 15 terms were used, which provides sufficient accuracy up to 250 MHz for the current system. Calculated attenuation coefficients for cavities with radius $R = 10 \, \mu m$, volume fraction $\phi = 5\%$, and longitudinal (c_l) and shear (c_s) wave velocities of $c_l = 3330 \, m/s$ and $c_s = 1870 \, m/s$ are shown in Fig.1 with $n = 15$ terms. The insets of the Figure show the convergence for a low-frequency range, below ~ 25 MHz where approximately 5 terms are sufficient.

Cavities of unequal radii, i.e. with a distribution of radii, can be evaluated by using an effective attenuation α_{eff} [5]. For the corresponding average void volume fraction of $\bar{\phi}$ the effective attenuation is the sum of the imaginary parts of the effective wave numbers for each of the ith pore sizes within a discretised distribution:

$$\alpha_{eff} = \sum_i K_i^{imag},$$

where the complex wave numbers K_i are calculated for the ith discrete range of radii (with R_i) and the corresponding volume fractions ϕ_i is given as:

$$\phi_i = \frac{R_i^3}{\sum_i R_i^3}.$$

These relatively simple relationships are used to assign a complex wave number to the propagating waves. The influence of the porosity on the ultrasound propagation is investigated in the following by using this model, and compared to 3D time-domain FEM simulations.

B. Wave propagation through a porous layer

The scattering of the ultrasonic waves at a random distribution of cavities is simulated using a time-domain FEM model. For this purpose the commercial FEM package PZFlex (Weidlinger A., Inc.) was used. The applied model is shown in Fig. 2. The FEM model consists of two aluminium layers with 400 μm thicknesses each and a porous composite layer with 250 μm thickness whereby the pores are modeled as randomly-distributed spherical voids. The spherical voids were arranged around the centre of a cell in a 3D cuboid lattice 3D cuboid lattice (87.5 $\mu m \times 87.5 \, \mu m \times 50 \, \mu m$). The distance from the center of the cuboid cell was randomly chosen within twice of the lattice constant in each direction. In the y, z directions symmetric boundary conditions (BCs) were used; along the x direction, at both ends, absorbing BCs were applied. The time-domain results of the 3D FEM simulations were converted into frequency-domain responses by evaluating the frequency-dependent attenuation of the waves, represented by the transmitted spectrum. This is demonstrated in Fig. 3(a) showing the normalized input and transmitted frequencies from an incident plane wave generated along the x direction with a Gaussian envelope with a full-width at half maximum of 20 ns. The transmission spectrum is obtained by dividing
configuration.

In further simulations the effect of varying the pore diameter was studied. In these simulations two ranges of pore diameters were used $R = 7.5 - 22.5 \, \mu m$ and $R = 0 - 30 \, \mu m$ both with a uniform distribution of the diameters and with the same total void volume fraction. In the first case ($R = 7.5 - 22.5 \, \mu m$) 726, in the second case ($R = 0 - 30 \, \mu m$) 486 spheres were randomly arranged leading to total volume fractions of 4.62\% and 4.59\% respectively. Similarly to the previous simulations the intersection of the spheres was allowed and the models consisted of 181×10^6 elements corresponding to 542×10^6 DOF. The attenuation coefficients for the effective-medium model were calculated by using Eq.4 and a comparison with the FEM models in Fig. 3(b) shows that the effective-medium model is a good approximation of the FEM solution. In addition, by comparing the curves, it is clearly-visible that the broader void-size distribution leads to a stronger attenuation for lower frequencies but the curve flattens out with a higher transmission coefficient. This property might allow a unique determination of the volume fraction or the void-size distribution from an inverse problem if one of these properties is known and measurement data is available for sufficiently high frequencies.

Next, different cavity diameters and different volume fractions were studied. Three simulations were performed, each with 726 randomly arranged spherical scatterer with radii $R = 10/16/20 \, \mu m$. The geometric arrangements remained identical in all cases - i.e. the location of the pores remained the same only the diameter was increased - leading to total volume fractions of 1.1\%, 4.7\% and 9.4\% respectively. Similarly to the previous simulations the intersection of the spheres was allowed and the models consisted of 180.6×10^6 elements corresponding to 541.8×10^6 DOF.

The transmission spectra in Fig. 4(a) of the three systems with radii $R = 10/16/20 \, \mu m$ were evaluated from the FEM simulation similarly to the previous cases using the spatially averaged time-domain responses. The comparison with the effective-medium model shows that this model is a good approximation of the numerical simulation for the cases with radii $R = 10/16 \, \mu m$ (total volume fractions of 1.1\%, 4.7\%). For the largest diameter $R = 20 \, \mu m$ with a total volume fraction of 9.4\% deviations starts to become visible as the effective medium-model underestimates the attenuation. Finally, a simulation with high void volume fraction ($\phi = 25.86\%$, $R = 16 \, \mu m$) was also carried out and compared to the prediction of the effective-medium model. The transmission spectrum in Fig. 4(b) shows that the approximation using a complex wave number and neglecting multiple scattering leads to a significant error.

IV. Conclusion

In the presented paper an effective-medium model was compared to a 3D FEM numerical model. Calculations were carried out by assuming identical spherical scatterers with diameters up to $60 \, \mu m$ and by assuming different size distributions. The comparison of the models included different pore
Fig. 4. (a) Analytical and numerical transmission spectra for three different scatterer diameters and volume fractions. The effective medium model shows a good agreement with the FEM simulations. (b) Transmission spectra from a simulation with large volume fraction (25.9%) compared to the transmission spectrum of the effective medium-model. In this case the effective medium model fails to predict the transmission spectrum.

ACKNOWLEDGMENT

Support is acknowledged from an ongoing research program of the UK Engineering and Physical Sciences Research Council EPSRC (EP/K037315/1). The Authors gratefully acknowledge the help of M. Caleap, B. Drinkwater and P.D. Wilcox for valuable discussions.

REFERENCES