Ultrasound propagation in concentrated random dispersions of spherical particles: thermal- and shear-mediated contributions to multiple scattering [conference abstract]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: PINFIELD, V.J. and FORRESTER, D.M., 2015. Ultrasound propagation in concentrated random dispersions of spherical particles: thermal- and shear-mediated contributions to multiple scattering. 169th Meeting of the Acoustical Society of America, 18th-22nd May 2015, Pittsburgh, USA.

Additional Information:

- This is a conference abstract only. It also appeared in J. Acoust. Soc. Am. 137, 2293 (2015) and may be found at http://dx.doi.org/10.1121/1.4920369

Metadata Record: https://dspace.lboro.ac.uk/2134/17637

Version: Accepted for publication

Publisher: Acoustical Society of America

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Ultrasonic techniques offer advantages for process monitoring for dispersions of colloidal or nano particles; such materials occur in a wide variety of process industries. However, the application of ultrasonic techniques has been limited by the inaccuracy of ultrasonic propagation models used to interpret the measurements (typically attenuation spectra). Multiple scattering models, such as the Lloyd and Berry model (Proc Phys Soc London, 1967 (91) 678), have been used with great success in relatively dilute colloidal dispersions, but fail for higher concentrations, smaller particles, and low frequencies, primarily due to the neglect of thermal- and shear-mediated effects. We present a modified multiple scattering model that includes these thermal- and shear-wave contributions and explore their significance. The model develops work by Luppé, Conoir and Norris (J Acoust Soc Am, 2012 (131) 1113) for compressional, thermal and shear wave propagation. We identify the dominant scattering contributions for emulsions (Pinfield, J Acoust Soc Am, 2014 (136) 3008) and suspensions and develop analytical forms for them. Numerical calculations demonstrate the contribution of the additional multiple scattering effects to the compressional wave speed and attenuation through the emulsion or suspension. The calculations are compared with previously published experimental data.