A visibility and total suspended dust relationship

This item was submitted to Loughborough University's Institutional Repository by the author.

Citation: BADDOCK, M.C. ... et al, 2014. A visibility and total suspended dust relationship. Atmospheric Environment, 89, pp. 329 - 336.

Additional Information:

- This article was published in the journal, Atmospheric Environment [© Elsevier Ltd]. The definitive version is available at: http://dx.doi.org/10.1016/j.atmosenv.2014.02.038

Metadata Record: https://dspace.lboro.ac.uk/2134/17698

Version: Accepted for publication

Publisher: © Elsevier Ltd

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
A Visibility and Total Suspended Dust Relationship

M.C. Baddock¹*, C.L. Strong¹, J.F. Leys², S.K. Heidenreich², E.K. Tews³ and G.H. McTainsh¹

¹Atmospheric Environment Research Centre, Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia 4111

²Office of Environment and Heritage, Science Division, Gunnedah, New South Wales, Australia 2380

³Australian Rivers Institute, Griffith School of Environment, Griffith University, Brisbane, Queensland, Australia 4111

*Corresponding author
Tel: +61 7 373 57645
Fax: +61 7 3735 4378
Email: m.baddock@griffith.edu.au

Abstract

This study reports findings on observed visibility reductions and associated concentrations of mineral dust from a detailed Australian case study. An understanding of the relationship between visibility and dust concentration is of considerable utility for wind erosion and aeolian dust research because it allows visibility data, which are available from thousands of weather observation stations worldwide, to be converted into dust concentrations. Until now, this application of visibility data for wind erosion/dust studies has been constrained by the scarcity of direct measurements of co-incident dust concentration and visibility measurements. While dust concentrations are available from high volume air samplers, these time-averaged data cannot be directly correlated with instantaneous visibility records from meteorological observations. This study presents a new method for deriving instantaneous values of total suspended dust from time averaged (filter-based) samples, through reference to high resolution PM₁₀ data. The development and testing
of the model is presented here as well as a discussion of the derived
expression in relation to other visibility-dust concentration predictive curves.
The current study is significant because the visibility-dust concentration
relationship produced is based on visibility observations made 10-100 km
from the dust sources. This distance from source makes the derived
relationship appropriate for a greater number of visibility recording stations
than widely-used previous relationships based on observations made directly
at eroding sources. Testing of the new formula performance against observed
total suspended dust concentrations demonstrates that the model predicts
dust concentration relatively well ($r^2 = 0.6$) from visibility. When considered
alongside previous studies, the new relationship fits into the continuum of
visibility-dust concentration outcomes existing for increasing distance-from-
source. This highlights the important influence that distance to source has on
the visibility-dust concentration relationship.

Keywords: duststorm; sandstorm; air quality; PM10; aerosols; TSP

1. Introduction
The visibility distance at the time of observation is a commonly reported
atmospheric variable in meteorological data. The presence of smoke,
pollution, moisture and suspended mineral dust in the atmosphere can all
result in a reduction in visibility. The impact that dust has on visibility is a chief
cause of the transport disruptions caused by these aeolian phenomena
(Baddock et al., 2013; Tozer and Leys, 2013). For research into aeolian dust,
the degree of visibility reduction associated with dust-related weather codes
has provided fundamental information on the spatio-temporal characteristics
of dust activity. Before the advent of satellite remote sensing, visibility was the
dominant variable used in mapping the distribution of wind erosion and dust
activity (Orgill and Sehmel, 1976; Middleton et al., 1986; McTainsh and

Visibility has been widely used in dust studies because these basic data are
readily available from thousands of observation stations in the World
Meteorological Organisation (WMO) network, and are often available for long
time series. Values of the concentration of dust in the atmosphere however represent a more process relevant and precisely quantifiable measure of mineral dust loading than visibility. For instance, dust concentration is the form by which off-site air quality is measured and regulated, such as in maximum concentration for dust particles of all sizes, TSD (Total Suspended Dust), or size-selective e.g., PM$_{10}$ (particles <10 µm) (e.g., Stetler and Saxton, 1996; Neff et al., 2013).

Estimates of dust concentration can be derived from visibility measurements, and several empirical relationships that relate concentration to visibility have previously been put forward (e.g., Chepil and Woodruff, 1957; Patterson and Gillette, 1977; Ben Mohamed and Frangi, 1986; D’Almeida, 1986; Chung et al., 2003; Wang et al., 2008). Such visibility-based estimates of dust concentration have numerous applications in; the mapping of wind erosion (McTainsh et al., 2008; O’Loingsigh, 2014), the ‘ground truthing’ of remote sensing (Wang and Christopher, 2003; Guo et al., 2009), air quality assessments (Ozer et al., 2006; Dagsson-Waldhauserova et al., 2013), the validation of dust activity modelling (Shao et al., 2003; 2007), the estimation of peak loads of large dust storms (Raupach et al., 1994; Chung et al., 2003; McTainsh et al., 2005; Leys et al., 2011) and for better understanding the effects of suspended mineral aerosols on the radiative budget (e.g., Sokolik et al., 2001; Satheesh and Moorthy, 2005).

The various empirical expressions that relate visibility and dust concentration have been found to differ between studies (Patterson and Gillette, 1977; Ben Mohamed and Frangi, 1986; Dayan et al., 2007; Shao et al., 2007; Wang et al., 2008). For such expressions to be useful in dust-atmospheric studies, it is important that this variability be understood. Furthermore, so that accurate estimates of dust concentration can be produced from visibility, it is also important that the most appropriate expression be applied for a given visibility observation location. The need to understand the relationship between visibility and dust concentration as part of wind erosion research has long been recognised (e.g., Ette and Olorode, 1988; Ackerman and Cox, 1989; Shao et al., 2003). In particular, two classic studies in the United States, those
of Chepil and Woodruff (1957) and Patterson and Gillette (1977) used empirical fits of observed data to describe the relationship

\[C_m = \frac{A}{\gamma V} \]

(1)

with

\[A = C_m V \]

(2)

where \(C_m \) is total mass concentration, \(A \) is a term related to the effects on extinction due to particle size distribution, \(\gamma \) a constant and \(V \) is observed visibility. These studies demonstrate the suitability of the power relationship in describing the relationship between visibility and dust concentration.

Patterson and Gillette (1977) noted the variety in the values of constant terms put forward to relate concentration and visibility. They attributed the lack of a single applicable term to variations in dust particle size distributions (PSD) between both dust events and study areas. PSDs can be highly variable between wind erosion episodes, and are controlled chiefly by source soil characteristics, wind erosivity and the distance of observation point from the eroding source (El-Fandy, 1953, Chepil and Woodruff, 1957).

It is noteworthy that both the Chepil and Woodruff (1957) and Patterson and Gillette (1977) studies were based on visibility and dust concentration measurements made at, or very close to, eroding sources. This constrains the application of their visibility and dust concentration functions because worldwide, the most readily available source of visibility data is from WMO meteorological stations which are impacted by dust, but are not located directly at the eroding source. An expression describing the visibility and dust concentration relationship at a greater distance from source will therefore be more appropriate for these locations. Following terminology from the transport distance model of Tsoar and Pye (1987), dust within a few kilometres from its source can be termed local, while >10 km dust can be regarded as regional (see also Cattle et al., 2009).
The aim of this study was to produce a relationship between visibility and total suspended dust concentration for dust events observed at a regional scale (10-100 km) from source. A new method is presented here for obtaining instantaneous dust concentrations from time-averaged data, to allow their correlation with instantaneous visibility observations.

2. Methods

2.1 Background to methods

The most reliable source of near-surface dust concentration data is field sampling using active samplers, such as vacuum pump-based devices (e.g., Nickling and Gillies, 1993; Nickling et al. 1999), or from networks of high volume samplers (HVS) (Leys et al., 2008). Such equipment however is costly, labour intensive to operate and largely impractical for widespread spatial monitoring of dust, especially in remote areas. A more widely applicable approach for wind erosion monitoring involves the use of DustTrak® (TSI, St. Paul, MN, USA) samplers (Leys et al., 2008). DustTrak instruments provide real time dust concentrations, but only for particulates with an aerodynamic size of <10 µm (PM$_{10}$). This size selectivity makes such instruments suitable for monitoring air pollution and the associated effects that fine particles have on human health. While PM$_{10}$ is being successfully used for wind erosion mapping (e.g., Wang et al., 2008), wind erosion events also entrain coarser particles than this size. As a result, PM$_{10}$ does not fully characterise all dust events, or describe the full size range of suspended particles contributing to atmospheric mass loadings (Tsoar and Pye, 1987; Lawrence and Neff, 2009; Neff et al., 2013). It is preferable therefore for measurements of dust concentration for a given dust event to be calculated from the entire range of particle sizes present.

High volume samplers (HVS) collect the total range of particles in the air, but as the resultant dust concentration is time-integrated over the total sampling period for which the HVS was operating (generally 24 h), these time-averaged data have a poor relationship with time-averaged visibility. The focus of the current study is to use the high resolution time series of PM$_{10}$ dust
concentration measured with a DustTrak \((C_{DT}) \) to calculate the equivalent total dust concentration measured with a co-located HVS \((C_{HVS}) \) for a point in time \((C_{HVS_i}) \), which can then be correlated with the concurrent visibility. The resultant relationship is referred to from here on as the Visibility-Total Suspended Dust (V-TSD) model.

2.2 Site and sampling details

A HVS and a DustTrak instrument, operated by the New South Wales Office of Environment and Heritage (OEH) and Griffith University, provide two forms of dust concentration data at Buronga, New South Wales (34.17°S, 142.20°W). The HVS at this site constitutes the longest rural record of dust concentration in Australia, monitoring dust in the intensively cultivated Mallee region for over 24 years (Leys et al., 2008). For dust events, the HVS collects the full range of suspended particles on glass fibre filter papers (Whatman GF/A with nominal pore size of 1.6 μm) using a sampling flow rate of about 0.7 m\(^3\) min\(^{-1}\). The record of HVS dust event concentration data from Buronga was examined for the years 2004 – 2007.

Determination of dust concentration from the HVS is in part governed by the duration that each filter sampled for. As filter changing is a manual operation, the sampling time varied for each filter (20-75 hours). This time period introduces the chance of multiple dust events becoming sampled. In conjunction with the HVS filter data, 5-minute PM\(_{10}\) data from the DustTrak at Buronga were also used in order to measure the timing and duration of the dust events.

The dust concentration data gathered at Buronga were correlated with visibility data from Mildura, Victoria as the nearest Australian Bureau of Meteorology (BoM) station, located 12 km to the south-west of Buronga. Visibility data from Mildura came from two datasets; the regular 3-hourly synoptic observation \((Vis_{synop}) \) (excluding the midnight 0000 reading) and irregular A37 visibility recordings \((Vis_{A37}) \), which have a 5 to 30-minute frequency when available. A37 reports augment the synoptic record and are typically recorded during notable weather phenomena such as dust events.
Whilst it would have been preferable to have the concentration sampling sited at the same location as the BoM visibility observation, for practical reasons this was not possible. The siting of instruments and the observer in different locations creates some challenges and these were taken into account by the method used for comparing visibility and dust concentration.

2.3. Deriving instantaneous dust concentration from HVS data

From the HVS filters obtained at Buronga during 2004-2007, a total of 13 filters was used to create a high quality dataset comprising 83 discrete dust concentrations. The selection criteria producing the 13 filters included: i) TSD load >100 µg/m³ and filter run time between 18 and 30 hours, ii) a continuous 5-minute PM₁₀ concentration record existed for the HVS sampling period, iii) the availability of high temporal resolution A37 visibility observations for the dust event and iv) wind direction during the event from the south west, to ensure that dust observed at Mildura was measured at Buronga.

Given that the DustTrak is limited to recording the PM₁₀ fraction, the ratio between PM₁₀/TSD was determined for each dust event in order to relate the high frequency PM₁₀ concentration to TSD. Calculation of this ratio involves two assumptions; i) that the PM₁₀ dust concentration time series is the same as the TSD time series, and the only difference between the measurements is the particle size limitation of the PM₁₀ measurements, ii) that the PM₁₀ to TSD ratio is constant over the HVS sample period $t=0$ to $t=T$. Accepting these conditions, equation 3 defines how the PM₁₀/TSD ratio (a) relates the DustTrak and HVS concentrations

$$C_{DT_t} = a \times C_{HV_t}$$ \hspace{1cm} (3)

where C_{DT_t} is PM₁₀ concentration from DustTrak, C_{HV_t} is TSD concentration from HVS, and a is the ratio between the two. This ratio was determined for each HVS filter paper used, or in other words, for each dust event examined.
The total mass m collected on the filter paper for any given time interval $t=0$ to $t=T$ is

$$m = \int_{t=0}^{t=T} C_{HV_t} \cdot \frac{dV}{dt} \cdot dt$$ \hspace{1cm} (4).$$

Because the volume of air flow passing through the filter can be regarded as a constant for each sampling event ($\dot{V} = \frac{dV}{dt}$), re-arranging equations 3 and 4 produces

$$m = \frac{\dot{V}}{a} \cdot \int_{t=0}^{t=T} C_{DT_t} \cdot dt$$ \hspace{1cm} (5).$$

From the total mass on the filter for the sampling period, the total air volume sampled, and the time-averaged PM$_{10}$ concentration of the DustTrak (\bar{C}_{DT_t}) for the same period, the value of a can be determined through

$$\bar{C}_{DT_t} = a \cdot C_{HV_t}$$ \hspace{1cm} (6)$$

re-arranged to

$$a = \frac{C_{DT_t}}{m_{HV}/V_{HV}}$$ \hspace{1cm} (7).$$

As the object of the study was to relate visibility to dust concentration, an instantaneous value of TSD concentration at time (C_{HV_i} at time i) was required. For this, equation 8 was applied

$$C_{HV_i} = \frac{C_{DT_i}}{a}$$ \hspace{1cm} (8).$$

To obtain C_{HV_i}, first, the measured PM$_{10}$ concentration C_{DT_i} was obtained for i when an A37 visibility reading existed. One issue with the split-site sampling and the distance between Mildura and Buronga is the small time difference in
the onset of dust between the two locations (Figure 1). As this effectively
represents a time lag between the sites, the time difference was calculated
and applied to the lagging station to ensure that A37 visibilities and PM$_{10}$ data
corresponded with one another. For instance, in Figure 1, the drop in visibility
marking the event onset occurred at 18:13 at Mildura, when windspeed was
42 km/h and wind direction 220°. At Buronga, downwind of Mildura and to the
NE, the peak PM$_{10}$ concentration was 11 minutes later, an acceptable time
lag given the Mildura wind data and the 12 km distance between the sites. Per
equation 8, the PM$_{10}$ concentration at i was divided by the PM$_{10}$/TSD ratio (a)
to yield an instantaneous TSD concentration for the time of the visibility
reading.

>>Figure 1 here

2.4 Testing the V-TSD model

In order to validate the V-TSD expression, a comparison was made between
values of dust concentration estimated from the model and those directly
measured by the HVS. From the HVS filters obtained at Buronga during 2002
and 2003, a total of 22 filters was used as a test database, with each one
representing an individual dust event. The use of this time period, which was
prior to the years used to develop the V-TSD model, ensured the test dataset
was independent of that used to formulate the model. To incorporate a range
of dust concentrations in the testing (i.e., different dust event intensities), of
the 22 events, four filters were randomly chosen from events with C_{HVS} >300
μg/m3 to represent relatively intense dust conditions, seven filters for
moderate dust concentration (100-300 μg/m3) and eleven filters with <100
μg/m3.

For each test event, the Vis_{synop} values during the HVS sampling period were
used to determine visibility. Given that C_{HVS} represents the dust concentration
over the extended period that the HVS sampled, multiple three-hourly Vis_{synop}
values existed for each dust event. To account for this, the V-TSD modelled
dust concentration was calculated for an event by substituting each visibility
into the V-TSD model and then weighting the result by the time period that the
visibility represented. This was achieved through multiplication of the estimated concentration by the time interval (e.g., three hours). The time-weighted concentration values were summed and divided by total event duration to produce the modelled concentration (C_{VTSD}).

3. Results

The extended duration of individual dust events typically provided multiple high-frequency A37 visibilities at different times throughout each event. Equation 8 could therefore be applied to a range of visibilities and therefore dust concentrations ($n = 83$) from the 13 events of 2004-2007. Best fitting this data produced the V-TSD model (Figure 2) represented by the relationship

$$C_{VTSD} = 4050 \times Vis^{-1.016} \quad (9)$$

where C_{VTSD} is total suspended dust concentration ($\mu g/m^3$) and Vis is visibility (km). The power form for the expression was adopted because comparable earlier studies produced expressions of this form, also with power functions close to 1 (Chepil and Woodruff, 1957; Patterson and Gillette, 1977; Wang et al., 2008), and the $r^2 = 0.79$ of equation 9 reveals a relatively strong correlation.

Section 2.4 detailed how a dataset was produced in order to test the predictive ability of the V-TSD model. When dust concentrations calculated by equation 9 (C_{VTSD}) were plotted against the measured HVS dust concentration (C_{HVS}) for 22 independent dust events from 2002-2003, a positive linear fit resulted with an $r^2 = 0.60$ (Figure 3).

4. Discussion

4.1 The V-TSD model
The aim of this study was to examine the relationship between TSD concentration and visibility for the Mildura/Buronga location. Although the correlation between TSD and visibility is relatively strong, in some sections of the plot the strength of the relationship is weaker (Figure 2). Between 3 and 6 km visibility, concentrations generated by the V-TSD model were greater than the line of best fit. This is most likely a consequence of overestimation of visibility by observers for this range of distance, and is exacerbated by the relatively few observations at visibilities between 1 and 3 km. For visibility observations of 7 km and above, dust concentrations were variable, but typically under 1000 µg/m³. At these distances, the variation in the recorded concentration values for a given visibility must partly reflect the subjectivity of visibility estimation at such range in conditions with reduced dust loading.

The V-TSD model is based on the consideration that it is the complete particle size range of suspended dust that exerts a fuller influence on visibility (El-Fandy, 1953). However, as the DustTrak instrument also provided direct measurements of PM₁₀ concentration, a useful comparison can be made between the relationship of PM₁₀ concentration with visibility, and that of TSD from Figure 2. Using instantaneous PM₁₀ concentrations in place of the modeled TSD values, the weaker correlation with visibility that the size selective dust concentration results in, compared to the full particle size range, is evident (Figure 4). In fact, the contribution that large (>PM₁₀) dust particles make to total dust concentrations in the Colorado Plateau region of the U.S. has recently been demonstrated by Neff et al. (2013). Given the relative prevalence of PM₁₀ monitoring devices however, for instance, as part of air quality monitoring networks, the relationship between visibility and the concentration of dust limited to PM₁₀ size is still of appreciable utility for wind erosion studies (Chung et al., 2003; Dayan et al., 2007; Wang et al., 2008; Leys et al., 2011).

4.2 Comparison of the V-TSD model with other studies

>>Figure 4 here
Patterson and Gillette (1977) commented that expressions for estimating dust concentration from visibility would vary between studies, explaining that the relative concentration of large particles exerts a strong influence on the visibility-dust concentration relationship. They stated that different soil conditions as well as the distance that the dusts had been transported would control the proportion of large particles present to affect visibility. Further insights into the nature of these controls upon the visibility-dust concentration relationship can be gained by comparing the curves of previous studies with the V-TSD relationship of equation 9 (Figure 5).

To explain the divergence between Chepil and Woodruff's (1957) expression and that of their own work, Patterson and Gillette (1977) postulated that different soil conditions between the studies produced different dust PSDs. They suggested that the drought conditions during Chepil and Woodruff's (1957) monitoring period (1954 – 1955) produced more erodible soils which resulted in increased dust particle size. This in turn produced higher dust concentrations for a given level of visibility, an effect evident in the displacement of the Chepil and Woodruff line in Figure 5. Patterson and Gillette also correctly assert that the difference in these empirical relationships was not due to distance from source because sampling in both studies was conducted very close to, or directly at, the eroding surfaces. Conversely, they show that the lower dust concentrations measured in the study by Bertrand et al. (1974) arose because the dusts were sampled approximately 2000 km from source.

While the particle size characteristics of dust have been found to relate to the particle size of the source soil (e.g. Gillette and Walker, 1977; Alfaro and Gomes, 2001) the influence that the parent soil has on the PSD of dust is strongest near to source, directly above the wind-eroded surface from where the dust is entrained (Tsoar and Pye, 1987). Furthermore, the entraining wind strength has been argued to affect the PSD of dust, with the influence of this factor again dominant near to source (e.g., Gillette and Walker, 1977), though
this theory is not without challenge (see Kok, 2011). For both these factors, their influence on dust PSD would be greatest closer to entrainment because with downwind transport, larger particles preferentially settle out so differences in PSD will be reduced with distance from source (Pye, 1987).

In the present study, it is significant that the dust sampling at Mildura/Buronga was not conducted immediately 'at source'. Wind erosion mapping based on meteorological observations of dust show that the cultivated sandy soils of the Mallee region 10-100 km SW of the Mildura/Buronga site is the main source region for the examined dust events (McTainsh and Pitblado, 1987). At this distance, the PSD of sampled dust would be relatively finer than at-source due to coarser particles settling out closer to source (Tsoar and Pye, 1987). As finer particles have a greater relative influence on visibility impairment than on mass concentration, the reduction of visibility by a given dust concentration is greater at a point further from source. The differences between our V-TSD expression and those of Chepil and Woodruff (1957) and Patterson and Gillette (1977) therefore probably result more from the effect of distance-from-source, than parent soil particle size or eroding wind conditions (Figure 5). A similar result is also seen in the work of Shao et al. (2003; also Shao and Wang, 2003). In their study, the effects of distance from source were accommodated by using two expressions of the dust concentration to visibility relationship; one for cases above a threshold visibility of 3.5 km (assumed to be distant dusts) and the other for below 3.5km visibility (local dusts).

Distance from source effects may also be demonstrated by values of A (equation 2), as the term used to characterise the effects of the suspended PSD on optical extinction. Patterson and Gillette (1977) explain that A should be lower for observations made at greater distance from source, again owing to the reduced contribution to visibility attenuation from larger sized particles when further from source. The findings here show good agreement with the range of A values presented by Patterson and Gillette. The A outcomes for measurements predominantly at eroding field sources were 5.6×10^{-2} g m$^{-3}$ km in Chepil and Woodruff (1957) and 2.0×10^{-2} g m$^{-3}$ km for Patterson and
Gillette (1977). The lower average of A (4.6×10^{-3} g m$^{-3}$ km) from the current study of regional erosion reflects the fact that observations were made at a greater distance from source (< ~100 km). In the case of distantly sourced dust, Patterson and Gillette (1977) estimated $A = 1.4 \times 10^{-3}$ g m$^{-3}$ km for observations made approximately 2000 km from source using data of Bertrand et al. (1974). This result further reinforces the significance of distance from source for expressing the effect of dust on visibility.

By adding our new visibility-dust concentration curve developed for regional dusts (i.e., dust transported and observed some 10-100 km from source) to two previous visibility-dust concentration curves from at-source (Figure 5), it is now possible to more accurately estimate dust concentration using the visibility data from a much larger number of WMO stations. Our V-TSD relationship applies to the greater proportion of stations located in regions experiencing dust transport, but not located directly at the source of dust. By enhancing our capability to estimate dust concentration away from source areas, improved concentration estimates will allow for better and more complete; mapping of wind erosion (O’Loingsigh et al., 2014), comparison of ground data with remote sensing aerosol products (e.g. MODIS Deep Blue (Ginoux et al., 2012)), validation of dust emission models, and, the estimation of peak loads of large dust storms, within the region an order of 10-100 km downwind from source.

In addition, the methodology demonstrated here provides a means of further expanding the suite of visibility-dust concentration curves by using HVS, DustTrak and visibility data from WMO stations in other wind erosion settings. For example, medium distance dust concentrations could be estimated without the need to conduct dedicated field experiments of the type originally carried out by Patterson and Gillette (1977).

5. Conclusion
This study is an outcome of an ongoing, long term, synergistic dust monitoring program in rural New South Wales, Australia (Leys et al., 2008; McTainsh et al., 2008). The study applies a novel methodology to data from high volume
sampler and DustTrak dust monitoring devices to derive instantaneous values of total suspended dust concentration from time-averaged values. By relating high frequency meteorological visibility reports to the derived at-a-time concentrations, an empirical relationship between observed visibility and measured dust concentration was produced. Whereas previous studies were based on field experiments dedicated to exploring the relationship between visibility and dust concentration, the current study presents an innovative way of utilising existing datasets to quantify this relationship.

The new model for visibility and dust concentration from the Mildura/Buronga location demonstrates the effect that distance from source has on the nature of the relationship. Prominent previous studies produced expressions based on observations made at, or very close to, the eroding soil source. The current study, by using visibility and concentration measurements made further from source (10-100 km) demonstrates the influence of particle size, in this case, reduced particle size of the dust as a result of this regional distance from source. The new visibility-dust concentration expression is therefore more appropriate to visibility data from those observer stations regional to source areas. This makes the expression applicable to a larger number of WMO stations.

Acknowledgements

The authors extend thanks to Terry Koen for statistical advice and Michael Case (both New South Wales Office of Environment and Heritage) for changing hundreds of HVS filter papers, obtaining manually recorded visibility records from the BoM and maintaining the DustTrak. We also thank the input of the editor regarding an early draft of the manuscript, and the constructive comments of two anonymous reviewers.

References

Ackerman, S.A., Cox, S.K., 1989. Surface weather observations of atmospheric dust over the Southwest Summer Monsoon Region. Meteorology and Atmospheric Physics 41, 19-34.

Lawrence, C.R., Neff, J.C., 2009. The contemporary physical and chemical flux of
aeolian dust: a synthesis of direct measurements of dust deposition. Chemical Geology 267, 46-63.

Figure Captions

Figure 1: The 5-minute PM$_{10}$ dust concentration record from the DustTrak at Buronga and visibility (A37 records) at Mildura for the dust event of December 12th 2005. Note inverted visibility on secondary vertical axis. Dashed lines mark the onset of the event as detected by each monitoring technique. The displacement of the plots arises because the dust event reached Mildura before Buronga (see Section 2.3).

Figure 2: The relationship between visibility and total suspended dust for the Mildura/Buronga sampling location, expressed as the V-TSD model ($n = 83$).

Figure 3: Measured total suspended dust concentration by HVS (C_{HVS}) and modelled total suspended dust concentration by V-TSD (C_{VTSD}) for 22 dust events experienced at Buronga, NSW during 2002-03 (see Section 2.4).

Figure 4: The relationship between visibility and PM$_{10}$ dust for the Mildura/Buronga sampling location ($n = 83$).

Figure 5: Comparison between the V-TSD model and other selected expressions relating dust concentration and visibility, from Chepil and Woodruff (1957) (C&W) and Patterson and Gillette (1977) (P&G).
Figure 1
Figure 2
Figure 3

\[y = 1.0957x + 33.5 \]
\[R^2 = 0.60 \]
Figure 4

\[y = 0.556x^{-1.034} \]

\[R^2 = 0.726 \]
Figure 5