High temperature lead-free relaxor ferroelectric: intergrowth Aurivillius phase BaBi2Nb2O9-Bi4Ti3O12 ceramics

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: ZHANG, H., YAN, H. and REECE, M.J., 2010. High temperature lead-free relaxor ferroelectric: intergrowth Aurivillius phase BaBi2Nb2O9-Bi4Ti3O12 ceramics. Journal of Applied Physics, 107, article 104111

Additional Information:

- Copyright (2010) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics and may be found at http://dx.doi.org/10.1063/1.3380847

Metadata Record: https://dspace.lboro.ac.uk/2134/17753

Version: Published

Publisher: © American Institute of Physics

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
High temperature lead-free relaxor ferroelectric: Intergrowth Aurivillius phase BaBi 2 Nb 2 O 9 – Bi 4 Ti 3 O 12 ceramics
Hongtao Zhang, Haixue Yan, and Michael J. Reece

Citation: Journal of Applied Physics 107, 104111 (2010); doi: 10.1063/1.3380847
View online: http://dx.doi.org/10.1063/1.3380847
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/107/10?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Electric-field–temperature phase diagram of the ferroelectric relaxor system (1−x)Bi1/2Na1/2TiO3−xBaTiO3 doped with manganese
J. Appl. Phys. 115, 194104 (2014); 10.1063/1.4876746

Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics

Electric-field-induced and spontaneous relaxor-ferroelectric phase transitions in (Na1/2Bi1/2)1−xBaxTiO3

On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3
J. Appl. Phys. 110, 074106 (2011); 10.1063/1.3645054

Dielectric and piezoelectric properties of (1 − x) (Bi 1 − y Li y) (Sc 1 − y Sb y) O 3 − x Pb Ti O 3 high-temperature relaxor ferroelectric ceramics
I. INTRODUCTION

High-temperature sensing technology is important in the chemical and material processing, automotive, aerospace, and power generating industries. Electromechanical transducing materials are required to sense strains, vibrations, and noise under harsh thermal conditions. Relaxor ferroelectrics (RFE) have large dielectric permittivity and electromechanical constants, which make them very attractive for the above applications. RFE exhibit a broad frequency dependent dielectric anomaly. With increasing frequency, the temperature \(T_m \) of the maximum of dielectric permittivity \(\varepsilon_{r_{\text{max}}} \) increases and the magnitude of \(\varepsilon_{r_{\text{max}}} \) decreases. However, their relatively low \(T_m \) temperature may limit their application in high temperature fields. Consequently, a great deal of effort has recently been put into exploring new RFE materials with higher \(T_m \) value.

RFE exist in the different crystal structures that host ferroelectricity, including perovskites, tungsten bronzes, rutile structure, and Aurivillius phase. In perovskites, RFE behavior occurs predominantly in lead-based complex compositions with the general formula \(\text{Pb}(B_1B_2)O_3 \), \((B_1=\text{Mg}^{2+},\text{Zn}^{2+},\text{Ni}^{2+},\text{Sc}^{3+},\ldots, B_2=\text{Nb}^{5+},\text{Ti}^{3+},\text{W}^{6+},\ldots) \) or lanthanium-substituted \(\text{PbZn}_{1-x}\text{Ti}_xO_3 \) (PLZT). Among lead-based perovskite compounds, \(\text{Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})O_3 \) has the highest \(T_m \) of 140 °C (100 kHz). To increase the piezoelectric activity and \(T_m \) of RFE, lead-based perovskite, ferroelectric solid solutions, especially those containing \(\text{PbTiO}_3 \) as one of the end components, have been developed. Their superior piezoelectric properties can be observed in compositions close to the morphotropic phase boundary (MPB). A MPB separates strong RFE behavior from normal ferroelectric behavior in the phase diagram of \(\text{Pb}(B_1B_2)O_3-\text{PbTiO}_3 \) solid solutions. Compositions of \(\text{Pb}(B_1B_2)O_3-\text{PbTiO}_3 \) that are rich in \(\text{Pb}(B_1B_2)O_3 \) and close to the MPB usually display RFE behaviors. Solid solution of \((1-x)\text{Pb}(\text{Yb}_{1/2}\text{Nb}_{1/2})O_3-x\text{PbTiO}_3 \) with \(x=0.2 \) to 0.49 are RFE and the composition of \(x=0.49 \) has a \(T_m \) of ~300 °C at 10 kHz, which is the highest \(T_m \) among all \(\text{Pb}(B_1B_2)O_3-\text{PbTiO}_3 \) RFE systems studied to date. Recently, a qualitative relationship between perovskite tolerance factor and the Curie point \(T_c \) at the MPB in \(\text{PbTiO}_3 \) based systems was proposed. In general, the smaller the tolerance factor of the non-\(\text{PbTiO}_3 \) end member, the higher \(T_c \) at the MPB. Guided by this relationship, low tolerance factor bismuth perovskite compounds with \(\text{PbTiO}_3 \) have been shown to be promising candidates for new, lead-free or lead reduced, high \(T_m \) RFEs. The compounds \(x\text{BiScO}_3-(1-x)\text{PbTiO}_3 \) in the range of \(0.5 \leq x \leq 0.6 \) are RFE with \(T_m \) up to ~323 °C (100 kHz) at \(x=0.5 \). The solid solution of \(x\text{PbTiO}_3-(1-x)\text{Bi}(\text{Mg}_{1/2}\text{Ti}_{1/2})O_3 \) with \(x=0.30 \) to 0.35 exhibit RFE behavior with \(T_m \approx 400 \) °C at 100 kHz. In tungsten bronzes, \(\text{Pb}_{1-x}\text{Ba}_x\text{Nb}_2\text{O}_6 \) with \(x=0.25 \) exhibit RFE response with \(T_m \approx 389 \) °C at 100 kHz. Rutile-based \(\text{FeTiTaO}_6 \) is reported to be RFE with \(T_m \approx 550 \) K at 530 Hz.

Aurivillius phase materials have generated increasing attention due to their potential use in nonvolatile ferroelectric random-access memory and high-temperature piezoelectric applications. Moreover, they are environment friendly lead-free piezoelectric materials. Their general formula is \(\text{Pb}_2\text{O}_5\text{Zr}_2(\text{M}_{2/3}\text{Bi}_{1/3})\text{O}_{3+m} \), where \(\text{M} \) is a 12-coordination site and \(m \) indicates the number of octahedra stacked along the \(c \)-axis between two neighboring \(\text{Bi}_2\text{O}_5 \) layers. The ferroelectric properties for even- \(m=2n \) and odd-layer \(m=2n+1 \) Aurivillius phase compounds are different. The spontaneous polarization \(P_s \) of even-layer compounds is only along the...
-axis. Based on their orthorhombic space group A_2am, the polarization along the c-axis is cancelled because of mirror symmetry. However, in odd-layer compound $Bi_4Ti_3O_{12}$ ($m=3$, monoclinic, space group P_{c1}) a small degree of spontaneous polarization along the c-axis can be observed besides the major polarization along the a-axis.

Some Aurivillius phase compounds show interesting relaxor and multiferroic properties when Ba/lanthanides and Fe (Ref. 33) are on the A- and B-site in the general formula, respectively. $BaBi_4Ti_4O_{15}$ is reported to show RFE behavior with $T_m = 400^\circ C$ at 1 MHz.

Mixed-layer Aurivillius phase compounds were first discovered by Kikuchi et al. They consist of a regular intergrowth of one half the unit cell of a m member structure and one half the unit cell of a $m+1$ member structure. Recently, they have generated a renewed interest because of their superior and interesting ferroelectric properties. For example, in intergrowth $Bi_4Ti_3O_{12}$–$PbBi_4Ti_4O_{15}$ single crystals, remnant polarization (P_r) was observed for intergrowth oxides not only along the a-axis but also along the c-axis, and the c-axis component is suggested to originate from the $Bi_4Ti_3O_{12}$ layers in the intergrowth structure. An enhanced P_r was found in intergrowth $Bi_4Ti_3O_{12}$–$SrBi_4Ti_4O_{15}$ ceramics and $Bi_4Ti_3O_{12}$–$BaBi_4Ti_4O_{15}$ ceramics, where P_r was larger than that of either $Bi_4Ti_3O_{12}$ or $SrBi_4Ti_4O_{15}$/$BaBi_4Ti_4O_{15}$.

In this paper, a new Aurivillius phase RFE, $BaBi_4Ti_3Nb_2O_{21}$ (BBTN), with the highest value of T_m ($636^\circ C$ at 100 kHz) of all the known RFESs is reported. It is an intergrowth of $BaBi_4Nb_2O_{9}$ (BBN, $m=2$)–$Bi_4Ti_3O_{12}$ (BIT, $m=3$). Although this compound was reported by Kikuchi et al., they only provided the dielectric spectrum of BBTN ceramics at 1 MHz, so the RFE behavior of BBTN was not reported. What makes this system of additional interest is that one of constituent component is ferroelectric (BIT) (Ref. 40) and the other is relaxor (BBN). The aim of this paper is to present the results of an investigation of the electrical properties of BBTN ceramics and to discuss them with respect to those of two constituent oxides, BBN and BIT.

II. EXPERIMENTAL

BBTN, BBN, and BIT were prepared by the conventional solid-state reaction sintering. The starting materials were $BaCO_3$ of 99.0% purity, Bi_2O_3 of 99.975% purity, TiO_2 of 99.6% purity, and Nb_2O_5 of 99.5% purity. The stoichiometric mixtures of oxides were thoroughly milled. The calcination conditions were 950 °C 4 h for BBN and BIT, and 1050 °C 4 h for BBTN. After calcination, the powders were pressed into disks and sintered for 1 h at 1100 °C for BBN, 1150 °C for BIT, and 1080 °C for BBTN. The samples obtained were >95% of their theoretical density. X-ray diffraction (XRD) patterns for the calcined powders were obtained using $Cu K\alpha$ radiation in a Siemens D5000. The microstructures of the BBTN ceramics were analyzed with a scanning electron microscope (SEM; JEOL JSM 6300). The samples for the SEM study were polished and then thermally etched at 1010 °C for 20 min. Electrical property measurements were performed on Pt-electroded samples (Gwent Electronic Materials Ltd., C2011004DS). The temperature dependence of the dielectric constants ε_r and losses D were measured at different frequencies using an LCR meter (Agilent 4284A). The frequency dependence of the dielectric constants and losses were measured at room temperature using an impedance analyzer (Agilent 4294A). The ferroelectric $I-E$ (current-electric field) and $P-E$ (polarization—electric field) loops were measured by a ferroelectric hysteresis measurement tester at 25 and 200 °C at 100 Hz. The measurement procedure involved the application of triangular voltage waveform for two complete cycles. BBTN ceramics for piezoelectric measurements were poled in silicone oil at 200 °C under a dc electric field of 9 MV/m. BIT ceramics could only be poled at room temperature due to its high electrical conductivity. The piezoelectric constant, d_{33}, was measured using a piezo d_{33} meter (ZJ-3B, Institute of Acoustics, Chinese Academic of Science, Beijing). Thermal depoling experiments were conducted by holding the poled samples with platinum electrodes for 2 h at high temperatures, cooling to room temperature, measuring d_{33}, and repeating the procedure at increasing temperature.

III. RESULTS AND DISCUSSION

A. Crystal structure

Figure 1 shows the XRD patterns of the calcined BIT, BBTN, and BBN powders. The materials are all single-phase. The XRD pattern of BBTN is not a simple mixture of BBN and BIT, which clearly indicates the formation of an intergrowth Aurivillius phase. The strongest diffraction peak is (115) for BBN ($m=2$), (116) for BBTN ($m=2.5$), and (117) for BIT ($m=3$), which is consistent with the (1 1 2m+1) highest diffraction peak in Aurivillius phase. Figure 2 shows the microstructure of BBTN ceramic; it is composed of platelike grains, ~2 μm long, and 0.5 μm thick.

B. Dielectric properties

Figure 3 illustrates the temperature dependence of dielectric constants and losses of BBTN ceramic at different frequencies up to 750 °C. A double dielectric anomaly is clearly observed at T_{m1} ($\approx 280 \pm 5 ^\circ C$ at 100 kHz) and T_{m2}
(≈636 ± 5 °C at 100 kHz). In addition, both dielectric peaks are broad. Kikuchi et al.35 also reported a double dielectric anomaly at about 280 and 650 °C at 1 MHz, which is consistent with the present work (652 ± 5 °C at 1 MHz). The temperature (T_m) of the first anomaly of ε_r is frequency independent, while T_m2 of the second anomaly of ε_r is frequency dependent. The T_m2 shifts from 632.9 ± 5 °C at 10 kHz to 652.3 ± 5 °C at 1 MHz. The losses increase with increasing temperature. Unlike Pb(B$_2$B$_2$)O$_3$, where frequency dispersion of the loss peaks can be observed, the frequency dispersion of loss peaks of BBTN are lost in the background produced by the high electrical conductivity of BBTN above 500 °C.45 Two mechanisms are proposed to explain the two dielectric anomalies for intergrowth Aurivillius phase materials. Based on the dielectric properties of intergrowth Bi$_3$Ti$_{1.5}$W$_{0.5}$O$_9$–Bi$_4$Ti$_3$O$_{12}$ ($m=2$ and 3) ceramics, Luo et al.46 suggested that there are two ferroelectric phase transitions above room temperature, which correspond to the T_c of the members of the intergrowth compound transforming from their ferroelectric to paraelectric state. Maalal et al.47 suggested from their study of intergrowth Bi$_3$TiNbO$_9$–Bi$_4$Ti$_3$O$_{12}$ ($m=2$ and 3) ceramics that the higher transition temperature corresponds to the Curie point, whereas the lower one can be assigned to a phase transition within the orthorhombic symmetry produced by a change in the space group.

In order to compare the dielectric properties of BBTN ceramics with those of the two constituent oxides: (a) BBN and (b) BIT.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig2.png}
\caption{SEM micrographs of BBTN ceramics.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig3.png}
\caption{Temperature dependence of dielectric constant ε_r and loss factor D for BBTN ceramics.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{Fig4.png}
\caption{(Color online) Comparison of dielectric properties of BBTN ceramics with those of two constituent oxides: (a) BBN and (b) BIT.}
\end{figure}
100 kHz) of BBTN ceramics is shifted toward a lower temperature. The fact that \(T_c \) (or \(T_{m2} \)) of Aurivillius intergrowth phase materials is between those of its two constitutes has been reported in \(\text{Bi}_4\text{Ti}_3\text{O}_{12} - \text{Bi}_3\text{Ta}_2\text{O}_{11} \) (intergrowth 2+3, \(T_c = 830 \, ^\circ\text{C} \)) (Ref. 47) and \(\text{Bi}_3\text{Ti}_{1.5}\text{W}_{0.5}\text{O}_9 - \text{Bi}_4\text{Ti}_3\text{O}_{12} \) (intergrowth 2+3, \(T_c = 730 \, ^\circ\text{C} \)).

Figure 5 shows the variation of dielectric constant and loss values as a function of frequency ranging from 100 Hz to 10 MHz at room temperature for BBN, BBTN, and BIT ceramics. Compared to the normal ferroelectric behavior of BIT, both BBN and BBTN show much stronger frequency dependence of dielectric constant and loss, as is the case for a typical relaxor. The dielectric constants of BBN and BBTN decrease dramatically as the frequency increases. On the contrary, the dielectric constant of BIT just shows a slight decrease. Among all three compositions, BBN shows the highest loss throughout the frequency range. The broad maximum in the dielectric loss of BBN occurs at \(f = 1.68 \times 10^4 \) Hz. The loss of BIT continuously increases with increasing frequency and no maximum was observed in the measured frequency ranges. Presumably, the loss peaks of BBTN are shifted to the high frequency range (\(>10^7 \) Hz). The dielectric loss of BIT slightly drops from \(10^2 \) to \(10^3 \) Hz and then remains almost constant above \(10^3 \) Hz.

C. Ferroelectric and piezoelectric properties

Although BBTN shows relaxor behavior, its ferroelectric nature is still unclear. So \(P-E \) loop measurements of the three different ceramics were performed first at room temperature and 100 Hz. Only BIT exhibited ferroelectric switching, as evidenced by obvious current peaks in the \(I-E \) loop (Fig. 6). However, both BBTN and BBN (Ref. 31) did not show any ferroelectric switching at room temperature. This suggested that either BBTN is not ferroelectric or its coercive field is too high at room temperature. Then \(P-E \) loop measurements were performed at 200 \, ^\circ\text{C} and 100 Hz. The leakage current of BIT was too large to obtain a \(P-E \) loop. Although saturated loops were not obtained for BBTN due to its very high coercive field, the onset of ferroelectric switching, as indicated by current peaks (arrowed in Fig. 6), was observed. In addition, BBN still did not show ferroelectric switching at 200 \, ^\circ\text{C}, as shown in Fig. 6. The piezoelectric constant \(d_{33} \) of BBTN was \(3.2 \pm 0.2 \) pC/N after poling at 200 \, ^\circ\text{C} and BIT was \(4.5 \pm 0.2 \) pC/N after poling at room temperature. The results of ferroelectric and piezoelectric property measurements show that BBTN is a RFE. Figure 7 shows the \(d_{33} \) of a BBTN ceramic as a function of the annealing temperature. The \(d_{33} \) of BBTN ceramics continuously dropped with increasing annealing temperature and larger decreases occurred at about \(T_{m1} \) and \(T_{m2} \). The BBTN ceramics still showed weak piezoelectric response after annealing at temperatures above \(T_{m2} \). Finally, after annealing at 775 \, ^\circ\text{C}, the BBTN ceramics exhibited no piezoelectric response. The existence of weak piezoelectric response above \(T_c \) has been reported in mixed-layer \(\text{Bi}_7\text{Ti}_4\text{NbO}_{31} \) (\(\text{Bi}_3\text{TiNbO}_9 - \text{Bi}_4\text{Ti}_3\text{O}_{12} \)) ceramics. This was ascribed to the existence of poled \(\text{Bi}_3\text{TiNbO}_9 \) (\(T_c = 935 \, ^\circ\text{C} \)) clusters in \(\text{Bi}_7\text{Ti}_4\text{NbO}_{31} \). However, the thermal depoling behavior of BBTN in the present work cannot be explained by the existence of poled BIT clusters present in BBTN ceramics because BIT will totally lose piezoelectric activity after annealing above 700 \, ^\circ\text{C}. The weak piezoelectric activity of BIT ceramic above \(T_{m2} \) suggests that spontaneous polarization of BBTN ceramics is not suddenly lost at \(T_{m2} \) but decays more gradually to zero, which is consistent with it being a RFE.
IV. CONCLUSION

In summary, intergrowth BaBi$_2$Nb$_2$O$_9$–Bi$_5$Ti$_3$O$_{12}$ (BaBi$_5$Ti$_3$Nb$_2$O$_{21}$) ceramic was found to be a RFE with the highest T_m value (636 °C at 100 kHz) of all of the known RFE systems. The electrical properties of BaBi$_5$Ti$_3$Nb$_2$O$_{21}$ are greatly different from its two constituent oxides, BaBi$_2$Nb$_2$O$_9$ and Bi$_5$Ti$_3$O$_{12}$. The dielectric spectrum of BaBi$_5$Ti$_3$Nb$_2$O$_{21}$ was characterized by two dielectric anomalies. Relaxor behavior was confirmed by the dielectric anomaly at about 636 °C (100 kHz). An obvious frequency dependence of dielectric response was observed at room temperature, as is the case for a typical relaxor. The detectable ferroelectric domain switch and measurable value of piezoelectric constant d_{33} clearly indicated the ferroelectric nature of BaBi$_5$Ti$_3$Nb$_2$O$_{21}$ ceramics. The weak piezoelectric response above 636 °C at 100 kHz suggests the existence of spontaneous polarization of BBTN ceramics above T_m, which is consistent with it being a RFE.

3L. E. Cross, Ferroelectrics 151, 305 (1994).
42XRD PDF Number 80–2143.
43XRD PDF Number 86–1191.
45K. H. Härdtl, Ceram. Int. 8, 121 (1982).