The effect of blood flow occlusion and of heating lower and/or upper leg on the post warm up decline in muscle temperature

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: RACCUGLIA, M. ... et al, 2014. The effect of blood flow occlusion and of heating lower and/or upper leg on the post warm up decline in muscle temperature. Presented at: The 5th International Meeting on the Physiology and Pharmacology of Temperature Regulation (PPTR), 7th-12th September 2014, Skukuza, Kruger National Park, South Africa.

Additional Information:

- This is a conference presentation

Metadata Record: https://dspace.lboro.ac.uk/2134/17987

Version: Published

Publisher: University of the Witwatersrand, South Africa

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
The effect of leg blood flow occlusion and of heating lower and/or upper leg on the post warm up decline in muscle temperature

Margherita Raccuglia, Davide Filingeri, Alex Lloyd, Simon Hodder, George Havenith

Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Leicestershire, UNITED KINGDOM.

Elevated muscle temperature (T_m) has been repeatedly shown to be beneficial to power activities. Our previous studies demonstrated that passive leg heating attenuated the decline in T_m between warm up and competition. However despite external heating, T_m still decreased during the recovery period (Faulkner et al. 2013a, 2013b). This study aimed to investigate the role of the blood flow in the observed T_m drop, as well as to optimise the leg heating procedure. Eight male competitive cyclists (age=22.2 ± 0.8yr, height=1.82 ± 2.3m, body mass=76 ± 5.4kg) completed a 15-min intermittent warm-up on a cycle ergometer, followed by 30–mins passive recovery. During the recovery period participants wore water perfused (43.5°C±0.3°C) trousers. The effect of the blood flow was studied using single leg occlusion (OCCL) while the contralateral leg was used for control (CONT) in two conditions: whole leg heating and upper leg only heating. T_m was measured in vastus lateralis at 1, 2 and 3 cm depth before and after the warm up and immediately after the recovery period. External heating increased ΔT_m significantly at 1 cm depth in all conditions (1.34°C±0.53). After the recovery period there was a significantly lower ($p=0.011$) ΔT_m at 3 cm depth in CONT compared to OCCL (-0.21°C±0.03). Similarly, this effect was apparent at 2 and 1 cm depth, however the data did not reach significance ($p=0.06$; $p=0.07$, respectively). There was no effect of upper versus whole leg heating on post-recovery ΔT_m at all depths ($p \geq 0.31$). We can conclude that the optimised heating procedure avoided most of the T_m drop observed before, and that indeed the blood flow is responsible for the cooling process of the leg between warm up completion and the start of competition.

Presenting author: raccugliama@gmail.com