The first study about the relationship between the extractability of thiacalix[4]arene derivatives and the position of the coordination binding sites

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: ZHAO, J-L. et al., 2015. The first study about the relationship between the extractability of thiacalix[4]arene derivatives and the position of the coordination binding sites. Organic & Biomolecular Chemistry, 13(11), pp. 3476 - 3483

Additional Information:

- This paper was accepted for publication in the journal Organic & Biomolecular Chemistry and the definitive published version is available at http://dx.doi.org/10.1039/C4OB02393E.

Metadata Record: https://dspace.lboro.ac.uk/2134/18137

Version: Accepted for publication

Publisher: © The Royal Society of Chemistry

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
The first study about the relationship between the extractability of thiacalix[4]arene derivatives and the position of the coordination binding sites

Jiang-Lin Zhao, Hirotsugu Tomiyasu, Xin-Long Ni, Xi Zeng, Mark R. J. Elsegood, Carl Redshaw, Shoifur Rahman, Paris E. Georghiou and Takehiko Yamato*

The extractability of thiacalix[4]arene derivatives 2–4 are largely dependent on the position of the binding sites.
Queries for the attention of the authors

Journal: *Organic & Biomolecular Chemistry*

Paper: c4ob02393e

Title: The first study about the relationship between the extractability of thiacalix[4]arene derivatives and the position of the coordination binding sites

Editor’s queries are marked like this [Q1, Q2, ...], and for your convenience line numbers are indicated like this [5, 10, 15, ...].

Please ensure that all queries are answered when returning your proof corrections so that publication of your article is not delayed.

<table>
<thead>
<tr>
<th>Query Reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>For your information: You can cite this article before you receive notification of the page numbers by using the following format: (authors), Org. Biomol. Chem., (year), DOI: 10.1039/c4ob02393e.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Please check that the inserted CCDC number is correct.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Please carefully check the spelling of all author names. This is important for the correct indexing and future citation of your article. No late corrections can be made.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>In Scheme 1, is it correct that the solvent is shown as “DMF&THF”? Or should it perhaps be shown as “DMF-THF” as it appears in the text? If the latter, please resupply the scheme, either as ChemDraw file or as TIF at 600 dpi.</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>Please check that the changes to the English in the sentence beginning “This maybe attribute that when 3 complexes with Ag+,” ...” have not affected the meaning.</td>
<td></td>
</tr>
</tbody>
</table>
The first study about the relationship between the extractability of thiacalix[4]arene derivatives and the position of the coordination binding sites†

Jiang-Lin Zhao, a Hirotugu Tomiyasu, a Xin-Long Ni, b Xi Zeng, b Mark R. J. Elsegood, c Carl Redshaw, d Shofiu Rahman, e Paris E. Georgiou e and Takehiko Yamato a

Three organic ionophores (2–4) based on the p-tert-butylthiacalix[4]arene backbone, blocked in the 1,3-alternate conformation, bearing two pyridyl coordinating moieties (ortho for 2, meta for 3 and para for 4), have been synthesized and characterized in the solid state. The solvent extraction experiments with the metal ions showed that the ability of these derivatives to complex with Ag+ appeared to be largely dependent on the position of the nitrogen atoms of the pyridyl ring. Two different complexion modes have been confirmed by 1H NMR titration; ionophore 2 armed with two pyridyl moieties, complexed with Ag+ cation through N⋯Ag+⋯S interactions; however, ionophore 3 and ionophore 4, complexed with Ag+ through metal–nitrogen (N⋯Ag+) interactions. The DFT computational studies were consistent with the experimental findings. These findings will provide us an important rule to design an appropriate thiacalix-arene ionophore in the future. Another study on the possibility for application of ionophores 2–4 for the treatment of waste water containing Cr(VI) and Cr(III), showed that ionophore 3 was useful in the application of the solvent extraction method in selective treatment of waste water containing Cr(VI) and Cr(III) prior to discharge.

Introduction

Thiacalix[4]arene is widely used as a macrocyclic platform for designing and building synthetic receptors toward metal cations.1 The complexation properties of these molecules appear to be highly dependent upon the nature and number of donor atoms and also the conformation of the calix[n]arene moiety.2 It is found that thiacalix[4]arene has a very high ability to bind transition metal ions,3 which has been quite unexpected considering the poor binding ability of calix[4]-arene. The 1,3-alternate stereoisomer, which shows an allosteric effect in metal cation binding, or offers divergently oriented binding sites, is of special interest.1,4 For the synthesis of macrocycles with controlled (switchable) binding sites of metal cations,5 there is a need for the development of novel approaches to the design of tetrasubstituted thiacalix[4]-arenes with various groups with specific conformations. Recently, we reported the regioselective synthesis of distal-bis-((2-pyridylmethyl)oxy)tetrathiacalix[4]arene in the 1,3-alternate conformation by a protection–deprotection method using benzyl groups as protecting groups.6 Pyridine derivatives of thiacalix[4]arene can exist as positional isomers which differ by the positions of the nitrogen (N) atom on the pyridyl unit which can be ortho, meta and para to the phenolic oxygen attachment position. The N-hetero atoms can serve as additional coordination sites due to their electron lone pairs and can also undergo facile further modification. Given that the position of the nitrogen atoms of the pyridyl ring can differ in thiacalix[4]arene derivatives, it is interesting to assess what kind of ability these derivatives will provide to interact with metal cations (hard or soft).

Chromium(III) has been reported to be biologically essential to mammals as it maintains effective glucose, lipid, and protein metabolisms. However, chromium(VI) can be toxic, as it can diffuse as Cr$_2$O$_7^{2-}$ or HCr$_2$O$_7^{-}$ through cell membranes and oxidize biological molecules.7 Therefore, selective treatment of waste water containing Cr(VI) and Cr(III) prior to dis-
charge is essential. Solvent extraction is one of the most commonly used treatment methods and employs a selective complexant especially for ions in aqueous solution. Thus, the development of efficient extractants for anions has received considerable attention in recent years. The dichromate (\(\text{Cr}_2\text{O}_4^{2-}\) and \(\text{HCr}_2\text{O}_7^{-}\)) ions are anions with oxide functionalities at their periphery. These oxide moieties are potential sites for hydrogen bonding to the complexant or host molecule(s). Thiacalix[4]arene derivatives with nitrogen functionalities such as pyridine, amino, or imino groups on their lower rim have been shown to be capable of interacting with anions by hydrogen bonds as efficient extractants for oxoanions. Thus, the introduction of a pyridyl moiety to thiacalix[4]arene would potentially lead to an effective extractant for dichromate anions.

In this study, a series of 1,3-alternate thiacalix[4]arenes bearing pyridyl moieties (ortho, meta and para) at the lower rim which should have the appropriate encapsulating ionophilic cavity were targeted for synthesis. The relationship between the position of the nitrogen atoms of the pyridyl ring and the ability of these derivatives to interact with various ionic species were evaluated.

Results and discussion

The synthesis of the new thiacalix[4]arene derivatives is given in Scheme 1. For the synthesis of thiacalix[4]arene derivatives based on different functional units (1,3-alternate-2, 1,3-alternate-3 and 1,3-alternate-4), the parent compound (distal-1) was prepared according to published literature procedures. The reaction of bisbenzylated compound distal-1 with 3-(chloromethyl)pyridine in THF–DMF in the presence of Cs$_2$CO$_3$ as base yielded 1,3-alternate-3 in 59% yield. 1,3-alternate-2 and 1,3-alternate-4 were prepared as following a published procedure. All of the structures were confirmed by their 1H and 13C NMR and IR spectra, MS, elemental analyses and by X-ray crystallography.

The 1H NMR spectrum of 1,3-alternate-3 shows two singlets for tert-butyl protons, in which both tert-butyl protons were observed at higher field, at δ 0.85 and 0.86 ppm due to the ring current effect arising from the two benzyl benzene rings and the two pyridine rings introduced; two singlets for the methylene protons at δ 5.06 ppm (OCH$_2$Benzyl) and 5.19 ppm (OCH$_2$Pyridyl), respectively, indicating a C$_2$-symmetric structure for the 1,3-alternate-3 (Fig. S1). X-ray quality colourless crystals of 1,3-alternate-2, and 1,3-alternate-3 were obtained by recrystallizations from mixed MeOH and CHCl$_3$ solutions. The single crystal X-ray diffraction Ortep (Pluto) representations of 2 and 3 are shown in Fig. 1. It is clear that these compounds adopt 1,3-alternate conformations. Interestingly, both of the pyridine nitrogen atoms in 2 are orientated outwards, the distance between them being 9.079 Å. However, the pyridine nitrogen atoms in 3 are orientated inwards, the distance between them being only 3.883 Å.
This may be attributed to the distances between the pyridine nitrogen atoms and the oxygen atoms (N1⋯O1 and N2⋯O2). In the case of compound 2, the distances between N1⋯O1 and N2⋯O2 are shorter; but for 3 the corresponding N1⋯O1 and N2⋯O2 distances are longer.

The shorter distances and hence the stronger electron repulsion could therefore be factors which control the different orientations of the nitrogen atoms toward each other.

Recently, the synthesis of calix[4]arenes bearing pendant pyridine groups at the lower rim as potential ligands for transition metal cations have been reported. A similar investigation has also been conducted using hexahomotrioxacalix[3]-arene and homocalix[3]arene-based derivatives. It is well known that the metal selectivity and extractability of these types of receptors are dependent on the ring size and the nature of the O-alkyl substituents. However, it is still unknown whether the metal extractability can be affected by the position of the coordination binding sites of the substituents themselves. Therefore, it is of importance to assess the relationship between the position of the nitrogen atoms of the pyridyl ring and the ability of these derivatives (2–4) to interact with ions. Experiments for solvent extraction of aqueous phase metal ions to the organic phase were therefore undertaken with 2–4. The results showed that the extraction of transition metals by all three receptors 2–4 was higher than for the extraction of alkali metals, especially for Cr³⁺ and Ag⁺ (Fig. 2). The E% values of Cr³⁺ i.e. 43%, 61% and 52% for 2–4, respectively, showed that a higher Cr³⁺ affinity exists for these molecules. However, what is surprising is that the extractability for Ag⁺, the E% values of 95%, 52% and 36% for 2–4, respectively, showed that the extractability of Ag⁺ by 2 to 4 decreased gradually. These compounds are positional isomers differing only by the position of the nitrogen atom on the pyridyl ring. The position of the N atoms on the pyridyl rings (ortho for 2, meta for 3 and para for 4), which determines the distances between the nitrogen and the diaryl thiaether linkages were also reduced gradually. Recently, Ferlay reported a 1,3-alternate conformation thiacalix[4]arene armed with four pyridyl (ortho), complexed with Ag⁺ cation through N⋯Ag⁺⋯S interactions.

Thus, the extractability (E%) of 2–4 which followed the order of 2 > 3 > 4, may be attributed to the shorter distance, the stronger N⋯Ag⁺⋯S interactions, the higher extractability (E%). This hypothesis is supported by the stability constants, which follow the same order of 2 > 3 > 4. The binding constant (Kb) values for the complexation with Ag⁺ ion was determined to be 2.05 × 10⁴ ± 875 M⁻¹ (2), 3.86 × 10³ ± 572 M⁻¹ (3), 2.25 × 10³ ± 365 M⁻¹ (4) based on the Benesi–Hildebrand equation, respectively (Fig. S13–18†).

Due to the existence of the two potential metal-binding sites, namely, the pyridine moieties and two benzyl moieties, there are several possibilities for metal complexation for compounds 2–4. Both 1 : 1 and 1 : 2 metal complexation might be possible, attributable to electrostatic interactions as well as cation–π interactions. Job plots of 3 and 4 were carried out in the H₂O–CH₂Cl₂ phases. The E% values reach maxima at 0.5 mol fraction when 3 or 4 with Ag⁺ were changed systematically (Fig. S12†). Similar 1 : 1 coordination of 2 with Ag⁺ was shown by Job plots in our previous study (Fig. S12†). Thus, it can be concluded that Ag⁺ forms 1 : 1 complexes with 2–4. These results suggest the major contribution of receptors 2–4 to Ag⁺ binding are from the nitrogens of the pyridine rings, and not from the alternative cation–π interactions.

Furthermore, in order to look further into the binding properties of receptors 2–4 with Ag⁺, ¹H NMR titration experiments were carried out in CD₃Cl–CD₃CN = 10 : 1 solution. The chemical shift changes for compound 2–4 on complexation with Ag⁺ are illustrated in Fig. 3 and are summarized in Fig. 4.

Significant changes were observed for the pyridine ring protons after the complexation of each of 2–4 with Ag⁺ (Fig. 3).

Fig. 2 Extraction percentages of metal picrates with ionophores 2–4 ([host] = 4.0 × 10⁻⁵ M in CH₂Cl₂, [guest] = 4.0 × 10⁻⁵ M in water at 25 °C).

Fig. 3 ¹H NMR spectral changes of ionophores 2–4 (5 × 10⁻³ M) on addition of AgClO₄ (300 MHz; CD₃Cl–CD₃CN = 10 : 1, [ionophores 2–4] = 5 × 10⁻⁵ M). (a) Free 2; (b) 2 in the presence of 1.0 equiv. of AgClO₄; (c) free 3; (d) 3 in the presence of 1.0 equiv. of AgClO₄; (e) free 4; (f) 4 in the presence of 1.0 equiv. of AgClO₄.
1.0 equiv. Ag⁺. In the case of 2, the protons in the pyridine rings were shifted to lower field with Δδ = +0.27, +0.21, +0.52 and +0.83 ppm for H₆, H₅, H₄, and H₃ protons, respectively. In contrast, the OCH₃Py methylene protons were shifted dramatically up field, with Δδ = −0.53. This may be due to both pyridine nitrogens of 2 close to the diaryl thiaether linkages (N₂⋯S₁ = 6.360 Å and N₂⋯S₂ = 5.847 Å, Fig. 1a). Thus, when 2 complexes with Ag⁺, the Ag⁺ is easily captured through N⋯Ag⁺⋯S interactions.¹⁴ As a result, since the pyridine moieties are orientated inwards, the ring current shielding effect¹⁵ operating in the two thiacalixarene benzene rings is destroyed, forcing the steric conformation change. This affects the protons H₆, H₅, H₄ and H₃ of the pyridine rings which shift to lower field, due to the deshielding effect. Also, the OCH₃Py methylene protons become folded into the thiacalix[4]arene cavity and are thus shifted strongly upfield (−0.53 ppm), due to the steric conformation changes.

However, a different phenomenon was observed in the complexation of 3 with Ag⁺. From the X-ray results, both pyridine nitrogen atoms in 3 were orientated inwards and far from the diaryl thiaether linkages (N₂⋯S₁ = 5.333 Å, Fig. 1a). Thus, when 3 complexes with Ag⁺, the Ag⁺ is easily captured through N⋯Ag⁺⋯S interactions.¹⁴ As a result, since the pyridine moieties are orientated inwards, the ring current shielding effect¹⁵ operating in the two thiacalixarene benzene rings is destroyed, forcing the steric conformation change. This affects the protons H₆, H₅, H₄ and H₃ of the pyridine rings which shift to lower field, due to the deshielding effect. Also, the OCH₃Py methylene protons become folded into the thiacalix[4]arene cavity and are thus shifted strongly upfield (−0.53 ppm), due to the steric conformation changes.

Similar phenomena were observed for the complexation of 4 with Ag⁺; protons H₄ and H₃ in the pyridine rings of 4 shifted to lower field after complexation (+0.05 ppm), as they are deshielded due to the N⋯Ag⁺ interactions. Pyridine ring protons H₂ and H₆ in 4 shifted upfield after complexation (−0.06 ppm), which may be attributed to the weaker repulsion between the nitrogen atoms in the pyridine rings.¹⁵

The chemical shift changes of the thiacalixarene benzene and benzyl protons may also be attributed to the conformational changes of 2–4 upon complexation. The chemical shift changes (Δδ) of 2–4 upon complexation are in the order 2 > 3 > 4, which corresponds with the extractability of Ag⁺ which was found to be in the same order.

To better understand the binding properties of receptors 2–4 with Ag⁺, a computation study was carried out. The molecular geometry of the individual structures in the gas-phase were fully optimized using Gaussian09,²² with the B3LYP level of DFT and the lanl2dz basis set. Significant conformational changes were observed for the pyridine ring protons of 2–4 after the complexation with Ag⁺. The conformation changes for 2 on complexation with Ag⁺ ion can be seen in Fig. 5 (see the ESI for details of the computational study, Fig. S19–24†). Fig. 5 shows the structure (right) of the 2 ⋅ Ag⁺ complex. The optimized molecular geometry suggests that the Ag⁺ binds, in accord with the ¹H NMR complexation study, via a N⋯Ag⁺⋯S short contact distance bond, which results in the conformation change. The N⋯N distance between the pyridine ring nitrogens decreases from 8.001 to 3.761 (Å) since the nitrogen

Fig. 4 Chemical shift changes of 2, 3 and 4 induced in the presence of AgClO₄⁺; + denotes the downfield and − denotes the upfield shift.

Fig. 5 Geometry-optimized (ball and stick) structures of: left: 2 and right: 2 ⋅ Ag⁺ complex. Color code for Ag⁺ = magenta, pyridine nitrogen = blue, sulphur = yellow and oxygen atom = red. Hydrogen atoms have been omitted for clarity.
atoms move inwards after complexing with the Ag$. All four bridge sulphur atoms are roughly the same distance from the Ag$ and presumably take an equal part in the coordination bonding.

However, a different phenomenon was observed in the complexation of 3–4 with Ag$. The N$–N$ distance between the pyridine ring nitrogens decreases from 9.305 to 4.234 (Å) for 3 and 10.138 to 3.798 (Å) for 4 after complexing with the Ag$ (Fig. S19–S24, Table S17). The optimized molecular geometry suggests that complexation of 3–4 with Ag$ occurs via N$–Ag$ interactions. The calculated complexation energies (ΔE kJ mol$^{-1}$) of the Ag$ complexes of 2–4 are −488.096, −464.022 and −372.966 kJ mol$^{-1}$ respectively (Table S2†), which is in agreement with the trend observed for the experimentally observed complexation data.

A preliminary evaluation of the anion binding efficiencies of 2–4 as potential extractants for the dichromate anion has been carried out by solvent extraction of aqueous solutions of K$_2$Cr$_2$O$_7$ into dichloromethane at different pH values according to a reported procedure.15,16 The extraction results, summarized in Fig. 6, indicate that 3 showed to be more effective for the extraction of dichromate anions at low pH (pH 1.5) than either 2 and 4. This is also consistent with the solvent extraction results seen with Cr$^{3+}$ (Fig. 2). This could be attributed to the shorter (3.883 Å) distances (Fig. 1) between the pyridine nitrogen atoms in 3, which easily formed an efficient ion-pair (complexed bond) complex in the two-phase extraction system following proton transfer to the nitrogen atoms. As the pH of the solution increased from 1.5 to 2.5 to 5.5 to 7.0, the E% for all three receptor ionophores decreased. This may directly be attributed to decreased proton concentrations in the solution.17 In other words, 3 showed a high extractability with dichromate anions only at lower pH, but another high extractability of Cr$^{3+}$ at higher pH. Since, Cr(vi) is highly toxic, carcinogenic and harmful to human beings because it can diffuse as Cr$_2$O$_7^{2−}$ or HCr$_2$O$_7$ through cell membranes and oxidize biological molecules,7 whereas Cr(III) is an essential ion for mammals as it maintains effective glucose, lipid, and protein metabolisms.18 Thus, 3 could be a meaningful extractant when applying a solvent extraction method for the selective treatment of waste water containing Cr(vi) and Cr(III) prior to discharge.

Conclusion

Three 1,3-alternate thiacalix[4]arenes bearing pyridyl moieties (ortho for 2, meta for 3 and para 4) at the lower rim were regioselectively synthesized. The solvent extraction experiments of the metal ions showed that the ability of these derivatives to complex with Ag$^+$ (95%, 52% and 36% for 2, 3 and 4, respectively) appeared to be largely dependent on the position of the pyridine nitrogen atoms. The mode of binding of the C$_{2V}$-symmetrical dipyrild-substituted thiacalix[4]arenes, 2–4 with Ag$^+$ was elucidated clearly using a 1H NMR titration method. Two different complexation modes were observed: 2 armed with two ortho pyridyl groups, complexed with Ag$^+$ via N$⋯$Ag$^+$···S interactions, whereas 3 and 4 complexed with Ag$^+$ through N$⋯$Ag$^+$ interactions. The DFT computational studies were consistent with the experimental findings. These findings will provide us an important rule to design an appropriate thiacaloarene ionophore in the future.

Further studies aimed at the potential for application of these extractants for the treatment of waste water containing Cr(vi) and Cr(III) were initiated. The combination of the two-phase solvent extraction data of Cr$^{3+}$ and the results of the dichromate anion extraction by 3, suggests that 3 could be useful in the application of a solvent extraction method for the selective treatment of waste water containing Cr(vi) and Cr(III) ions prior to discharge.

Experimental section

General

All melting points were determined using a Yanagimoto MP-S1. 1H NMR spectra were determined at 300 MHz with a Nippon Denshi JEOL FT-300 NMR spectrometer with SiMe$_4$ as an internal reference; 1J values are given in Hz. IR spectra were measured as KBr pellets or as liquid films on NaCl plates in a Nippon Denshi JIR-AQ2OM spectrophotometer. UV spectra were measured by a Shimadzu 240 spectrophotometer. Mass spectra were obtained on a Nippon Denshi JMS-01S-2 mass spectrometer at an ionization energy of 70 eV using a direct inlet system through GLC. Elemental analyses were performed by a Yanaco MT-5.

Materials

![Fig. 6](image) E% values of dichromate anion with ionophores 2–4 (2.0 \times 10$^{-4}$ M, 2 h at 25 °C) at pH 1.5–7.0 (H$_2$O–CH$_2$Cl$_2$: 10/10 v/v); K$_2$Cr$_2$O$_7$ = 1 \times 10$^{-4}$ M).
O-Alkylation of distal-1 with 3-(chloromethyl)pyridine in the presence of Cs₂CO₃

A mixture of distal-1 (400 mg, 0.44 mmol) and Cs₂CO₃ (1.60 g, 4.92 mmol) in dry tetrahydrofuran (THF; 8 mL) was heated at reflux for 1 h under N₂. A solution of 3-(chloromethyl)pyridine (4.92 mmol) [prepared by neutralization of 3-(chloromethyl)pyridine hydrochloride (807 mg, 4.92 mmol) in DMF (8 mL) with a solution of triethylamine (0.68 mL, 4.92 mmol) in methylpyridine hydrochloride (807 mg, 4.92 mmol) in dry tetrahydrofuran (THF; 8 mL) was heated at

5

10

15

20

25

30

35

40

45

50

1H NMR (400 MHz, CDCl₃) δ = 0.84 (s, 18 H, tBu), 0.86 (s, 18 H, tBu), 5.07 (s, 4 H, Ar-OCH₃Ph), 5.12 (s, 4 H, Ar-OCH₃Py), 6.90 (d, J = 5.5 Hz, 4 H, Ph-H₁), 7.04 (t, J = 7.6 Hz, 4 H, Ph-H₂, 1.12 (t, J = 7.6 Hz, 4 H, Ph-H₃), 7.19 (s, 4 H, Ar-H₁), 7.23 (s, 4 H, Ar-H₂), 7.26 (s, 4 H, Ar-H₃), and 8.49 (d, J = 4.8 Hz, 2 H, Ph-H₄). IR (KBr): cm⁻¹: 3563, 3101, 2962, 2884, 1543, 1490. UV max (CH₂Cl₂) = 286.6 °C. IR max (CH₂Cl₂) cm⁻¹: 3055, 3029, 2952, 2921, 2853, 1604, 1572, 1562. 1H NMR (400 MHz, CDCl₃) δ = 0.84 (s, 18 H, tBu), 0.86 (s, 18 H, tBu), 5.07 (s, 4 H, Ar-OCH₃Ph), 5.12 (s, 4 H, Ar-OCH₃Py), 6.90 (d, J = 5.5 Hz, 4 H, Ph-H₁), 7.04 (t, J = 7.6 Hz, 4 H, Ph-H₂, 7.19 (s, 4 H, Ar-H₁), 7.23 (s, 4 H, Ar-H₂), 7.26 (s, 4 H, Ar-H₃), and 8.49 (d, J = 4.8 Hz, 2 H, Ph-H₄). IR (KBr): cm⁻¹: 3563, 3101, 2962, 2884, 1543, 1490. UV max (CH₂Cl₂) = 286.6 °C. IR max (CH₂Cl₂) cm⁻¹: 3055, 3029, 2952, 2921, 2853, 1604, 1572, 1562. 1H NMR (400 MHz, CDCl₃) δ = 0.84 (s, 18 H, tBu), 0.86 (s, 18 H, tBu), 5.07 (s, 4 H, Ar-OCH₃Ph), 5.12 (s, 4 H, Ar-OCH₃Py), 6.90 (d, J = 5.5 Hz, 4 H, Ph-H₁), 7.04 (t, J = 7.6 Hz, 4 H, Ph-H₂, 7.19 (s, 4 H, Ar-H₁), 7.23 (s, 4 H, Ar-H₂), 7.26 (s, 4 H, Ar-H₃), and 8.49 (d, J = 4.8 Hz, 2 H, Ph-H₄). IR (KBr): cm⁻¹: 3563, 3101, 2962, 2884, 1543, 1490. UV max (CH₂Cl₂) = 286.6 °C. IR max (CH₂Cl₂) cm⁻¹: 3055, 3029, 2952, 2921, 2853, 1604, 1572, 1562. 1H NMR (400 MHz, CDCl₃) δ = 0.84 (s, 18 H, tBu), 0.86 (s, 18 H, tBu), 5.07 (s, 4 H, Ar-OCH₃Ph), 5.12 (s, 4 H, Ar-OCH₃Py), 6.90 (d, J = 5.5 Hz, 4 H, Ph-H₁), 7.04 (t, J = 7.6 Hz, 4 H, Ph-H₂, 7.19 (s, 4 H, Ar-H₁), 7.23 (s, 4 H, Ar-H₂), 7.26 (s, 4 H, Ar-H₃), and 8.49 (d, J = 4.8 Hz, 2 H, Ph-H₄). IR (KBr): cm⁻¹: 3563, 3101, 2962, 2884, 1543, 1490. UV max (CH₂Cl₂) = 286.6 °C. IR max (CH₂Cl₂) cm⁻¹: 3055, 3029, 2952, 2921, 2853, 1604, 1572, 1562. 1H NMR (400 MHz, CDCl₃) δ = 0.84 (s, 18 H, tBu), 0.86 (s, 18 H, tBu), 5.07 (s, 4 H, Ar-OCH₃Ph), 5.12 (s, 4 H, Ar-OCH₃Py), 6.90 (d, J = 5.5 Hz, 4 H, Ph-H₁), 7.04 (t, J = 7.6 Hz, 4 H, Ph-H₂, 7.19 (s, 4 H, Ar-H₁), 7.23 (s, 4 H, Ar-H₂), 7.26 (s, 4 H, Ar-H₃), and 8.49 (d, J = 4.8 Hz, 2 H, Ph-H₄). IR (KBr): cm⁻¹: 3563, 3101, 2962, 2884, 1543, 1490. UV max (CH₂Cl₂) = 286.6 °C. IR max (CH₂Cl₂) cm⁻¹: 3055, 3029, 2952, 2921, 2853, 1604, 1572, 1562. 1H NMR (400 MHz, CDCl₃) δ = 0.84 (s, 18 H, tBu), 0.86 (s, 18 H, tBu), 5.07 (s, 4 H, Ar-OCH₃Ph), 5.12 (s, 4 H, Ar-OCH₃Py), 6.90 (d, J = 5.5 Hz, 4 H, Ph-H₁), 7.04 (t, J = 7.6 Hz, 4 H, Ph-H₂, 7.19 (s, 4 H, Ar-H₁), 7.23 (s, 4 H, Ar-H₂), 7.26 (s, 4 H, Ar-H₃), and 8.49 (d, J = 4.8 Hz, 2 H, Ph-H₄).
1. 7.26 (s, 4H, Ar–H), 7.50 (d, J = 7.8 Hz, 2H, Py–H3), 7.57 (t, J = 5.7 Hz, 2H, Py–H3), 7.82–7.92 (m, 2H, Py–H3) and 8.77 (d, J = 4.9 Hz, 2H, Py–H6) ppm.

3. 1H NMR (300 MHz, CHCl3–CH2CN, 10 : 1, v/v): δ = 0.85 (s, 18H, tBu), 0.86 (s, 18H, tBu), 5.06 (s, 4H, CH2–Ph), 5.19 (s, 4H, CH2–Py), 6.93 (d, J = 7.2 Hz, 4H, Ph–H), 7.00–7.05 (m, 6H, Ph–H), 7.08 (s, 4H, Ar–H), 7.10 (s, 4H, Ar–H), 7.13 (m, 2H, Py–H3), 7.27 (d, J = 7.8 Hz, 2H, Py–H4), 8.20 (s, 2H, Py–H3) and 8.46 (d, J = 3.9 Hz, 2H, Py–H6) ppm.

Crystallographic analyses of 3

Diffraction data were collected on a Bruker APEX 2 CCD diffractometer equipped with graphite-monochromated Mo-Kα radiation at 150(2) K.20 Data were corrected for Lorentz and polarisation effects and for absorption.20 The structures were solved by direct methods and refined by full-matrix least-squares methods, on F2.21 H atoms were refined using a riding model except for those on hetero atoms in 3 which were freely refined.

Crystal data for 3. C66H70N2O4S4, M = 1083.48. Orthorhombic, space group Pmn21, a = 15.1668 (6), b = 14.7772 (7), c = 12.7612 (6) Å, V = 2860.1 (2) Å3. Z = 2, Dc = 1.258 g cm−3, F(000) = 1152, T = 100 K, μ(Mo-Kα) = 0.17 mm−1. λ(Mo–Kα) = 0.6529 Å, colourless crystal of size 0.20 × 0.20 × 0.06 mm3. The total number of reflections measured, to θmax = 30.3°, was 345 676 of which 11 331 were unique (Rint = 0.087); 10 920 were ‘observed’ with I > 2σ(I). For the ‘observed’ data only, R1 = 0.037; wR2 = 0.101 for all 11 331 reflections and 400 parameters. Residual electron density within ±0.48 e Å−3.

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 245644 for 26 and 1021161 for 3, respectively.

Notes and references

Acknowledgements

This work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University)”. We would like to thank the OTEC at Saga University and the International Cooperation Projects of Guizhou Province (no. 20137002), The Royal Society of Chemistry for financial support and the EPSRC for an overseas travel grant to C.R.