Organocatalytic asymmetric domino Michael-Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: TSAKOS, M., ELSEGOOD, M.R.J. and KOKOTOS, C.G., 2013. Organocatalytic asymmetric domino Michael-Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones. Chemical Communications, 49 (22), pp.2219-2221

Additional Information:

- This paper was submitted for publication in the journal ‘Chemical Communications’ and the definitive version can be found at: http://dx.doi.org/10.1039/c3cc39165e

Metadata Record: https://dspace.lboro.ac.uk/2134/18334

Version: Accepted for publication

Publisher: © Royal Society of Chemistry

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Organocatalytic asymmetric domino Michael-Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones

Michail Tsakos,* Mark R. J. Elsegoodb and Christoforos G. Kokotosa

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

The first organocatalytic asymmetric reaction between 1,4-cyclohexanedione and nitroalkenes have been studied, affording bicyclo[3.2.1]octane derivatives containing four continuous stereogenic centres. The products were obtained through a domino Michael-Henry process as a single diastereoisomer with excellent enantioselectivities.

In recent years, domino and cascade reactions have attracted the interest of organic chemistry research, as they constitute a powerful tool for the formation of several bonds in a one-step process.1 The application of these reactions in the field of organocatalysis2 is particularly appealing because it can lead to the formation of complex structures with high stereoselectivities, in an operationally simple and straightforward manner. Amongst the numerous strategies employed in this category,3 domino Michael-Henry reaction4 plays a pivotal role as these reactions constitute two of the most widely used reactions in organic asymmetric synthesis.5,6

In line with our latest studies on the asymmetric Michael addition of ketones to nitroalkenes utilizing bifunctional organocatalysts,7 we became interested in the use of 1,4-cyclohexanedione as the Michael donor. Rueping et al and Zhao et al reported the tandem Michael-Henry reaction of 1,2-cyclohexanedione with nitroalkenes.8,9 The only example utilising a modified tricarbonyl 1,4-diketone has been reported by Zhong and co-workers.10 Bearing in mind these literature reports, we envisaged that 1,4-cyclohexanedione could be used for the first time in such a reaction and could also undergo a similar reaction sequence to assemble a multifunctionalized bicyclo[3.2.1]octane structure [Eq. (1)]. This unprecedented methodology would lead to a scaffold which is encountered in numerous natural products and biologically active molecules,11 and any enantioselective synthetic route to this structural motif could be of great importance.

We initiated our study by choosing as a model reaction the addition of 1,4-cyclohexanedione 1 to phenyl nitrodiene 2a in the presence of L-proline as the chiral catalyst. The use of nitrodiienes as the Michael acceptor is considered much more challenging7d, 7e and it remains underdeveloped in comparison to the extensively studied nitrostyrenes. Indeed, proline enabled the reaction forming the bicyclic compound 3a in excellent yield but in a nearly racemic form. This result led us to the assumption that the domino Michael-Henry reaction proceeds through an enamine activation mode,12 as opposed to the existing protocols8,10 that suggest the formation of the enolic tautomer of the dione by a cinchona-alkaloid derived catalyst. To support our hypothesis, we repeated the reaction using catalytic amounts of tertiary amine bases that cannot form an enamine intermediate with the dione. Thus, we tested an achiral base, such as DABCO, and a bifunctional base, such as quinine, and in both cases no reaction took place.

Based on these observations, we set out to develop an
asymmetric version of this domino reaction. Several bifunctional catalysts were screened, but only the proline derived catalysts I-III displayed noteworthy effects on the outcome of the reaction (Table 1, entries 1-3. See ESI for full optimization study).

Catalysts I and II developed by us, bearing a thiofuroxylaldehydeimidazoline or a thiohdyantoin ring respectively, delivered the product in excellent enantioselectivity, but the size of the ring exhibited a tremendous impact on the activity of the catalyst (Table 1, entry 1 vs 2). Catalyst III led to high yield but the selectivity dropped significantly (Table 1, entry 3). It has to be highlighted that compound 3a was formed as a single diastereoisomer in all cases, demonstrating the excellent stereocentricity of this protocol on four continuous stereocenters. To optimize the reaction conditions, several solvents and additives were examined in the presence of 10 mol% of catalyst I (Table 1 and ESI†). Polar solvents that could solubilize efficiently the dione favoured the reaction, with THF being the optimum both in terms of yield and selectivity. On the other hand, it is well documented that a careful selection of additives can play a significant role in the activity of the catalyst. Thus, 4-nitrobenzoic acid made an ideal pair with our catalyst providing significant role in the activity of the catalyst. Thus, 4-nitrobenzoic acid made an ideal pair with our catalyst providing excellent enantioselectivity (Table 2, entries 2-5). Nitrodiene 2f bearing a methyl group at the α-position with respect to the phenyl ring, was also successfully employed (Table 2, entry 6).

To broaden the scope of our methodology, nitrodienes were replaced by aromatic nitrostyrenes as the electrophilic partner. Unfortunately, when we employed the same reaction conditions (Table 1, entries 4 and 5)

Table 2 Domino Michael-Henry reaction between dione I and nitrostyrenes 4 utilizing catalyst I:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar, R</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph, H (2a)</td>
<td>3a, 91</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>4-OMe-Ph, H (2b)</td>
<td>3b, 56</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>4-Cl-Ph, H (2c)</td>
<td>3c, 72</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>2-N02-Ph, H (2d)</td>
<td>3d, 89</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>4-N02-Ph, H (2e)</td>
<td>3e, 73</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Ph, Me (2f)</td>
<td>3f, 70</td>
<td>95</td>
</tr>
</tbody>
</table>

* Reactions were performed using I (0.2 mmol) and 2 (0.1 mmol) in the presence of catalyst I (10 mol%), 4-NBA (10 mol%) and H2O (50 μL) in dry THF (0.25 mL) at room temperature for 24 hours. Isolated yield.

The enantiomeric excess (ee) was determined by chiral HPLC.

used for nitrodienes, we encountered a significant handicap with trans-β-nitrostyrene 4a. The reaction rate was much slower (a reaction time of 4 days was required in order to reach completion), while simultaneously the second, intramolecular ring closing, step experienced difficulties in advancing, thus leading to the formation of intermediate 6a in 10% yield (Table 3, entry 1). The latter was probably due to steric repulsion and/or stabilizing factors from the adjacent bulky phenyl group. To overcome this obstacle, 20 mol% of catalyst I was used and the desired product 5a was delivered as a single diastereoisomer in 86% yield and 93% ee (Table 3, entry 2). Having established the optimal reaction protocol, a variety of substituted aromatic nitrostyrenes was investigated. Aromatic groups with electron-rich and electron-deficient substituents were successfully utilized to form the bicyclic products in high yield and with excellent ee values (Table 3, entries 3-7). In addition, nitrostyrenes bearing heteroaromatic as well as other aromatic groups were also well tolerated (Table 3, entries 8, 9). It should be noticed that a small percentage of the Michael adduct 6 was observed in all cases, lowering the yield of the desired product. All attempts to force the second ring closing step on 6 by adding a base in the product mixture resulted in the epimerization of the α-nitro carbon centre of 5 and subsequently retro-Henry degradation. The products were separated by FC chromatography.

The absolute configuration of the products was indicated by X-ray crystallographic analysis of a crystal of compound 3a (Figure 1). On the basis of this result, a plausible mechanistic pathway is proposed to account for the stereochemical outcome of this reaction (see ESI†).

In conclusion, we have developed an unprecedented organocatalytic asymmetric addition of 1,4-cyclohexanediol to aromatic nitrodienes and nitrostyrenes, leading to complex...
bicyclo[3.2.1]loctan-2-one derivatives containing four continuous stereocentres as a single diastereoisomer and with excellent enantioselectivities. The products were delivered through a domino Michael-Henry process utilizing a proline-based bifunctional organocatalyst.

M. T. and C. G. K. acknowledge COST Action CM0905 (ORCA) and Prof. A. Malkov (Loughborough University) for initiating the cooperation between the Universities of Athens and Loughborough. C. G. K. would like to acknowledge the Operational Program “Education and Lifelong Learning” for financial support through the NSRF program “METADIDAKTORES (PE 2431)” co-financed by ESF and the Greek State.

Notes and references

14 X-ray data for 3a, C_{13}H_{18}NO_{3}, M = 278.30, colourless block, 0.70 > 0.21 mm2, orthorhombic, P2$_2$/2$_1$/a, a = 10.3329(10), b = 19.6202(19), c = 7.1804(7) Å, V = 1455.7(2) Å3, Z = 4, μ(Mo-Kα) = 0.10 mm$^{-1}$, T = 150K, 17114 reflections measured on a Bruker APEX 2 CCD diffractometer, 4410 unique, R$_{int}$ = 0.033, R$_1$(I2+2S2) = 0.041, wR$_2$(all data) = 0.107, Fack x = −0.64; not reliably determined, but gives an indication. H atoms freely refined. CCDC 916313 contains the supplementary crystallographic data for this

Fig. 1 X-Ray structure of enantiopure 3a.
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.