New routes towards reutericyclin analogues

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: JONES, R.C.F. ... et al, 2014. New routes towards reutericyclin analogues. Chemical Communications, 50 (13), pp.1588-1590

Additional Information:

- This paper was submitted for publication in the journal Chemical Communications. The definitive version can be found at: http://dx.doi.org/10.1039/c3cc47867j

Metadata Record: https://dspace.lboro.ac.uk/2134/18335

Version: Submitted for publication

Publisher: © Royal Society of Chemistry

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
A range of N-acylpyrrolo[3,4-c]isoxazoles and derived N-acyltetramides has been prepared via a nitrile oxide dipolar cycloaddition approach, as analogues of the acyltetramic acid metabolite reutericyclin, of interest for their antibiotic potential against Gram-positive bacteria including hospital-acquired infections of resistant Clostridium difficile.

In order to combat the growing resistance to generally administered antibiotics, such as penicillin and methicillin, the research community is endeavouring to find new compounds that actively inhibit problematic resistant bacteria. This effort has identified a number of potential candidates, one example of which is reutericyclin (1), isolated in 2000 by Jung et al. from Lactobacillus reuteri LTH2584. Reutericyclin belongs to the 3-acyltetramic acid group of natural products (2), characterised by a pyrrolidine-2,4-dione unit carrying an acyl group at C-3. Molecules containing this motif exhibit a range of bio-activities including antibiotic, antitumor, antiviral, antiulcerative, fungicidal and cytotoxic properties. Interest in the antibiotic activity of tetramic acids has recently been stimulated by their key relationship to the inducers of bacterial quorum sensing. Reutericyclin and derivatives display varying inhibition in Gram-positive bacteria. The most interesting of these results is the inhibition of growth of resistant bacterium Clostridium difficile, a leading cause of antibiotic-associated diarrhoea in hospitalized patients which can lead to mortalities in persons with a compromised immune system.

We have, over many years, explored the synthesis of the acyltetramic acid moiety and other cyclic tricarbonyl systems, most recently using pyrroloisoxazoles as masked acyltetramic acids and as core building blocks for peripheral elaboration. Our 2nd generation strategy (Scheme 1) uses pyrrolo[3,4-c]isoxazoles 3 (cf. pyrrolo[3,4-d]isoxazoles in our 1st generation approach) formed by cycloaddition of nitrile oxides 4, available in three steps from α-amino esters, with enamino ester dipolarophiles. We report here significant practical improvements in this strategy (principally in lactam closure) and its application to access novel bicyclic reutericyclin analogues. Reutericyclin has R-configuration at C-5, and is presumably biosynthesised from R-leucine, however we have conducted our studies in the more readily available S-series: the chemistry should, of course, be equally applicable to the enantiomeric series.

Scheme 1. The pyrrolo[3,4-c]isoxazole strategy (P = protecting group)

The commercially available methyl esters of S-valine, S-leucine and S-phenylglycine were efficiently N-protected (Boc2O, Et3N, CH2Cl2, 0–20 ºC; 99, 97 and 99 %, respectively). The protected amino esters (5a-c, respectively) were selectively reduced to the corresponding aldehydes using DIBAL-H at –78 ºC (91, 93 and 87%), which were converted directly to the oximes 6a-c (H2NOH.HCl, NaOAc, aq. EtOH, 2–8 ºC; 86, 79 and 88 %) to inhibit potential epimerisation (Scheme 2). Treatment with NCS (CHCl3 reflux) afforded C-chloro-oximes 7, either used directly (7a,c) or isolated (7b; 75%); an extended reaction time for chlorination (18 h) led to better results when using the hydroximoyl chlorides (vide infra) than in our previous reports.

Scheme 2. Synthesis of pyrroloisoxazoles. 10 a, R1 = CHMe2; b, R1 = CH2CHMe2; c, R1 = Ph. Reagents: i, DIBAL-H, toluene, –78 ºC; ii, H2NOH.HCl, NaOAc, aq. EtOH, 2–8 ºC; iii, NCS, CHCl3 reflux, 18 h; iv, Et3N, CHCl3 reflux; v, TFA, 20ºC; 2M aq. HCl; vi, T3P, EtOAc, 0–20 ºC, 17 h (with 9a,b) or PS-CDI, Et3N, DMF-CH2Cl2, 20 ºC, 17 h (with 9c)

The key dipolar cycloaddition step was performed by addition of Et3N to the chloro-oximes in the presence of the pyrrolidine
enamine of tert-butyl acetoacetate and pyrrolidine (separately prepared; toluene reflux, Dean-Stark conditions; 99%) to form the nitrile oxide in situ and complete the cycloaddition (CHCl₃ reflux) to afford isoxazoles 8a,c (49 and 56% from 6a,c) and 8b (60% from 7b). Simultaneous deprotection of the N-Boc amine and tert-butyl ester cleavage was achieved by acid treatment (TFA, 20 °C; then 2M aq. HCl to give hydrochloride salts of better stability for handling and on storage) to leave amino acid salts 9a-c (99, 70 and 68%).

The final stage in assembly of the pyrroloisoxazoles, closure of the pyrrolo ring, was initially completed by our previously reported method using N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide hydrochloride (EDCI) (N-hydroxysuccinimide, Et₃N, DMF, 0-20 °C) which required column chromatography and yielded the pyrroloisoxazoles 10a,b in unreliable yields (ranging 8–60%). Other peptide coupling reagents were investigated: whilst PyBroP failed, HATU did produce 10a in 40% yield.¹⁴ The variable performance could be improved by using a polystyrene-supported carbodiimide (supplied as PS-CDI; Argonaut Technologies™) (Et₃N, DMF-CH₂Cl₂, 20 °C, 17 h) that reliably afforded 10a (66%), still however requiring column chromatographic purification and a costly alternative. Finally the simplest and most reliable lactam closure was achieved using the recently commercialised cyclic propylphosphonic anhydride (supplied as T3P; Archemica™).¹⁵ Thus a base (Et₃N) was added to the salts 10a,b in EtOAc followed by T3P (0-20 °C, 17 h). The pyrroloisoxazoles 10a,b were isolated pure without needing chromatography in good yields (59 and 68%). The phenylglycine-derived 10c was unsuccessful with T3P but could be prepared reliably by the PS-CDI protocol (50%). We have thus revealed two improved protocols for lactam closure to pyrroloisoxazoles 10: using T3P or PS-CDI.

The last stage in the synthesis of the masked reutericyclin analogues was to perform an N-acylation. As base we selected to use BuLi (THF, –78 °C). Carboxylic esters were investigated as acylating agents but without success. However, acyl chlorides proved to be effective acylating agents to produce the N-acyl derivatives 11 (Scheme 3).¹³ A variety of acyl chlorides were selected including long and short aliphatic chains, an α,β-unsaturated chain, a hindered branched moiety and an aromatic substituent, and all afforded N-acyl products 11a-c in yields of 33–97% (Table 1).† Longer chain, aromatic or more hindered acyl chlorides required a slightly longer time for complete reaction than the shorter, unhindered, examples; a standard reaction time of 3 h was eventually employed. The constitution of the N-(but-2-enyl)-6-(2-methylpropyl)pyrroloisoxazole 11c was confirmed by an X-ray crystal structure (Fig. 1).‡

This completed the synthesis of the reutericyclin analogues. Next we determined to create some tetramide analogues, by N-O bond cleavage of the pyrroloisoxazole nucleus. This was achieved for bicycles 11a,f by hydrogenolysis (1 atm H₂, Pd-C) to afford the enaminoketones (tetramides) 12a,b (49 and 52%) (Scheme 4). To demonstrate an alternative protocol, and because hydrogenation would be likely to reduce an unsaturated N-acyl group,¹⁰b N-O cleavage of 11i was accomplished by Mo(CO)₆ (aq. MeCN; then 2M aq. HCl) to give enaminoketone 12c (60%).¹⁶ Attempted hydrolysis of the enamine to generate acetyltetramic acid either returned unchanged enaminoketone (e.g. H₂O at 20 °C or 2M aq. HCl at reflux; NaNO₂, 3M aq. H₂SO₄) or led to N-deacylation (aq. NaOH, 2M at reflux or 0.1M at 20 °C).
Scheme 4. Formation of N-acyl tetramides 12 from pyrroloisoxazoles 11

In conclusion, we have developed a synthetic route, based on a nitrone 1,3-dipolar cycloaddition, from amino acids to N-acetylpyrrolo[3,4-c]isoxazoles 11 as reutericyclin analogues, and presented a diverse selection of 12 novel compounds. Furthermore, we have demonstrated the conversion of these heterocycles into N-acyl tetramides 12. All of these new compounds are currently undergoing biological evaluation.

The authors acknowledge Loughborough University for the award of studentships (C. C. M. L and J. P. B.) and Novartis for financial support (C. C. M. L.).

Notes and references


This journal is © The Royal Society of Chemistry [year].

Journal Name, [year], [vol], 00–00 | 3