Repeatability of cold atmospheric pressure plasma experiments for biological inactivation applications

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: SHAW, A. ... et al, 2014. Repeatability of cold atmospheric pressure plasma experiments for biological inactivation applications. Presented at: The 12th UK Technological Plasma Workshop, 15th-16th October 2014, Ricoh Arena, Coventry.

Additional Information:

• This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/18345

Version: Accepted for publication

Publisher: IOP Plasma Physics Group and Vacuum Expo

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Research related to non-thermal atmospheric pressure plasma sources and technologies is currently focused on emerging applications in medicine and biology. As in any other plasma application, the efficacy of the plasma treatment depends on various discharge operating conditions such as temperature, humidity, discharge geometry, dissipated power and feed gas composition, all of which influence chemical and physical processes in the discharge. In addition, attention needs to be paid to the various methods in which biological ‘targets’ are prepared and presented to the plasma as these can have a profound influence on the treatment efficacy. Currently, different laboratories around the world use a wide variety of plasma devices and microbiological techniques, making a direct and quantitative comparison of experimental results virtually impossible.

The work we present here is part of an ongoing European initiative (European COST Action MP 1101) that aims to create a reference plasma system and a biological reference protocol for the study and comparison of plasma treatments across labs. We are also exploring the characterisation and closed-loop control of plasma treatments using a range of optical, chemical and physical diagnostics with a view to automate repeatable plasma treatments. This presentation details the standardisation of bacterial preparation protocols with a view to use these as a tool to characterise plasma systems.

Endospores of *Bacillus subtilis ATCC 6633* are proposed as reference microorganisms as they can be stored for long periods without any significant loss of viability, serving as a common starting point for experiments performed in different locations and at different times. To avoid problems related to multi-layer formation, a monolayer of spores are deposited onto filter membranes using a vacuum filtration technique similar to that reported by Bayliss *et al* and these are then exposed to different continuous and pulsed plasmas.

This work has been supported by the MEYS under project LD13010, VES13 COST CZ (COST Action MP 1101) and the Engineering and Physical Sciences Research Council (EPSRC), UK.