Embedding human factors & ergonomics in healthcare with building design at the centre of the system

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a conference poster.

Metadata Record: https://dspace.lboro.ac.uk/2134/18487

Version: Accepted for publication

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Background

Risk factors for patient slips, trips and falls (STF) have been identified and reported since the 1950s and are mostly unchanged in the 2010s. The prevailing clinical view has been that STF events indicate underlying frailty or illness and so many of the interventions over the last 60 years have focussed on assessing and treating physiological factors rather than designing environmental interventions to reduce risk factors.

Methods

Purpose: To use a theoretical model for HFE (DIAL-F) to discuss patient STF interventions

Methods: Three case studies are used to discuss how HFE has been applied to STF risk management:

1. **Design-based (building) approach to embed safety into the built environment**
2. **Staff (and organisation)-based approach using Lean and Six Sigma to improve processes**
3. **Patient behaviour-based approach to explore and understand patient perspectives of STF events**

Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Rationale</th>
<th>Design Consideration (Steuer/Environment)</th>
<th>Provision of restroom so that the bathroom door is clearly identifiable from the bed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>One study found that bathroom locations visible from the bed, with the door open and out of the way (e.g., not under a angled door and room layouts to provide better sight lines).</td>
<td>Provide smooth transitions in walking surfaces or between flooring types to avoid surface irregularities leading to falls.</td>
<td></td>
</tr>
<tr>
<td>Flooring</td>
<td>Changes in floor surfaces (e.g., soft surface to hard surface and/or slip resistance) and unevenness (e.g., minor changes in height requiring transition strips, transition strips (in/away) can be a problem).</td>
<td>Select call and communication systems designed to minimize public noise.</td>
<td></td>
</tr>
<tr>
<td>Noise reduction</td>
<td>Noisy environments can lead to confusion in older hospitalized patients, sometimes leading to restlessness and the risk of falls.</td>
<td>Select call and communication systems designed to minimize public noise.</td>
<td></td>
</tr>
</tbody>
</table>

Results

Case study 1: many elements of STF interventions require risk management decisions (i.e. likelihood and consequence) to be made during the design and construction of healthcare facilities.

Case study 2: the reduction in the total STF rate reported from the Lean and Six Sigma projects was time-limited and had dropped to only 6% improvement over baseline within 12 months of the end of the project.

Case study 3: most of the items usually found on the bedside table (e.g., drink, spectacles) were within reach (>80%). Only 21% of walking aids (frames, crutches and sticks) were within reach, and the bedside table was often an obstruction to mobility. Almost all patients strongly disagreed that they were at risk of a STF during their hospital stay.

Benefits from retaining mobility are associated with continence, cognitive function, pressure care, and muscular conditioning.

Conclusion

Design proactively for STF with an HFE integration approach to facility design by using similar approach to other industrial sectors with input from the person who experiences the STF - the patient.

Design STF interventions to support mobility, safety and autonomy for patients.