Microparticles production for drug delivery using glass microfluidic devices

This item was submitted to Loughborough University's Institutional Repository by the/author.

Citation: EKANEM, E.E. ...et al., 2015. Microparticles production for drug delivery using glass microfluidic devices. Graduate School Post Graduate Showcase, Loughborough

Additional Information:

- This is a poster presentation.

Metadata Record: https://dspace.lboro.ac.uk/2134/18578

Version: Submitted for publication

Publisher: Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
1. Introduction

- The production of uniform microparticles from microdroplets by emulsification of different organic phase solutions has been achieved via 3D flow focusing in microfluidic glass capillary devices (Chu et al., 2007; Vladisavljevic et al., 2014).
- The size and morphology of produced microparticles of biodegradable poly(lactic acid) (PLA) and poly(lactic-co-glycolic) acid (PLGA) particles were varied and modified (with nanoclay or a non-solvent) to ascertain their effect on drug release.

2. Methodology

- Properties (microstructural and drug release) of monodispersed biodegradable polymer microparticles (PLA/PLGA) produced via microfluidic devices were shown to be dependent on dispersed phase formulation, device orifice size, phase flow rates, polymer concentration in organic solvent, and orifice size.

3. Droplet Generation

- The production of uniform microparticles from microdroplets by emulsification of different organic phase solutions has been achieved via 3D flow focusing in microfluidic glass capillary devices (Chu et al., 2007; Vladisavljevic et al., 2014).
- The size and morphology of produced microparticles of biodegradable poly(lactic acid) (PLA) and poly(lactic-co-glycolic) acid (PLGA) particles were varied and modified (with nanoclay or a non-solvent) to ascertain their effect on drug release.

4. Results

- Figure 3. Experimental and simulated droplet size variations as a result of flow rate and orifice differences.

5. Conclusion

- Properties (microstructural and drug release) of monodispersed biodegradable polymer microparticles (PLA/PLGA) produced via microfluidic devices were shown to be dependent on dispersed phase formulation, device orifice size, phase flow rates, polymer concentration in organic solvent, and orifice size.