Digitising the splinting process using computer aided design and additive manufacturing

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is a meeting abstract.

Metadata Record: https://dspace.lboro.ac.uk/2134/18700

Version: Accepted for publication

Publisher: Sage Publications / © The Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Digitising the splinting process using computer aided design and additive manufacturing

Campbell R, Paterson A, Bibb R, Loughborough University, UK

The splinting process is considered a very challenging and demanding activity, requiring a considerable amount of skill, clinical expertise and creative prowess in order to design and fabricate splints which suit the patient, their condition and their lifestyle. However, patient adherence is often low due to factors such as perceived social stigma (Veehof et al, 2008), poor fit (Fess and Philips, 1987) and hygiene issues (Sandford et al, 2008). With the goal of overcoming these weaknesses, the investigators explored a different fabrication process for splinting; Additive Manufacturing (AM). More commonly referred to as three-dimensional (3D) printing, AM is a layered manufacturing process where materials are joined layer by layer to form a physical artefact. The key benefit is the ability to make almost any object, regardless of complexity, and, therefore, ideal for creating custom-made products (Campbell, 2006). In the context of splinting, more complex design features may be delivered to make further customisation of wrist splints a reality by circumventing or even eliminating current weaknesses. However, in order to provide these freedoms, a suitable supporting Computer Aided Design (CAD) software is required to create 3D virtual forms, which could then be fabricated using AM. It is acknowledged that the time of clinical practitioners is extremely valuable and limited. Therefore, a specialised CAD software for splinting practitioners has been developed, to design splints for AM. The software prototype was evaluated by ten splinting practitioners within the United Kingdom; two physiotherapists and eight occupational therapists. User trials and interviews relating to the software prototype were performed. Procedures complied with the Loughborough University’s Ethical Advisory Committee requirements. Results concluded that the digitised splinting approach is a welcome and feasible intervention, with scope for further development to overcome adherence issues.

References

Author CVs
Dr Abby Paterson is a lecturer in Industrial and Product Design at Loughborough University, specialising on the applications of Additive Manufacturing/3D Printing and Computer Aided Design for assistive devices.
Dr Richard Bibb is a Reader in design for medical applications, with an interest in Additive Manufacturing of surgical and prosthetic artifacts.

Contact
a.m.paterson@lboro.ac.uk

Keywords
Assistive technology, Recovery and rehabilitation, Research, Practice development