Very bright europium complexes that stain cellular mitochondria

This item was submitted to Loughborough University’s Institutional Repository by the/ an author.

Citation: WALTON, J.W. ... et al, 2013. Very bright europium complexes that stain cellular mitochondria. Chemical Communications, 49 (16), pp. 1600 - 1602.

Additional Information:

- This article was accepted for publication in the journal, Chemical Communications [© Royal Society of Chemistry]. The definitive version is available at: http://dx.doi.org/10.1039/c2cc35247h

Metadata Record: https://dspace.lboro.ac.uk/2134/18771

Version: Accepted for publication

Publisher: © The Royal Society of Chemistry

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Very Bright Europium Complexes that Stain Cellular Mitochondria

James W. Walton, Adrien Bourdolle, Stephen J. Butler, Marine Soulie, Martina Delbianco, Brian K. McMahon, Robert Pal, Horst Puschmann, Jurriaan M. Zwier, Laurent Lamarque, Olivier Maury*, Chantal Andraud and David Parker *

Received (in Cambridge, XXX) Xth July 2012, Accepted Xth XXXXXXXXX 2012
DOI: 10.1039/b000000x

The synthesis, structure and photophysical properties of a series of highly emissive europium complexes is reported. Certain complexes enter mammalian cells by macropinocytosis and stain the mitochondria selectively, allowing observation of the Eu emission in cellulo by time-gated spectral imaging.

Emissive lanthanide complexes for use as tags in bioassays or as optical probes require both a high emission quantum yield and large molar absorptivity at an excitation wavelength in the range 337 to 405 nm to give high brightness, \(B\), where \(B = \varepsilon \cdot \Phi\). Using sensitised emission, the incorporation of multiple chromophores into a polydentate ligand has been studied, allowing efficient energy transfer to a bound Eu(III) ion that is efficiently shielded from vibrational deactivation by solvent. In aqueous media, no 1:1 [Eu.L] systems have been reported with a brightness (\(\lambda_{exc} > 337\) nm) exceeding 3000 M\(^{-1}\)cm\(^{-1}\).

Here, we report systems in which the brightness is an order of magnitude larger. Moreover, certain complexes are taken into mammalian cells, allowing their use in microscopic imaging. In designing these systems, we have combined the very effective shielding of the Eu(III) ion using nonadentate ligands based on triazacyclononane \(\frac{3}{4}\) with strongly absorbing \(p\)-substituted arylalkynyl groups, [Eu.L\(^{1-4}\)]. Both carboxylate and phosphinate substituted systems have been prepared, and the synthetic pathway allows the preparation of derivatives that can be conjugated to a vector. In the phosphinate systems, the phosphorus substituents adopt a common configuration in the complex, and more effectively shield the excited Ln ion from intermolecular quenching processes.

The ligands and their Eu complexes were prepared using established methods. In the case of [Eu.L\(^{2}\)], the third substituent, bearing a remote protected amine group, was introduced last, following stepwise alkylation and de-protection of mono-BOC-triazacyclononane. Crystals of [Eu.L\(^{2}\)] grew from aqueous methanol and the structure of [Eu.L\(^{2}\)] revealed that the Eu ion is encapsulated by the ligand in a tricapped trigonal prismatic array (Figure 1). The nearest waters are over 6\(\AA\) from the metal ion, and the complex is slightly distorted from \(C_{3v}\) symmetry. This distortion may be related to the presence of several disordered solvent molecules in the lattice.

Figure 1 Molecular structure of the europium complex [Eu.L\(^{2}\)] (120K) showing part of the hydration sphere; mean bond lengths \(\pm 0.02\) \(\AA\) are: Eu-N(ring) 2.68 \(\AA\); Eu-N(py) 2.66 \(\AA\); Eu-O 2.32 \(\AA\). Nearest waters are H-bonded to each P=O, with an average O-O distance of 2.66 \(\AA\); CCDC 857545.
This complex, in common with the other triphosphinate systems, exists as a 50:50 mixture of \(\Lambda-(SSS) \) and \(\Lambda-(RRR) \) isomers. In solution, one \(^{31}P \) NMR resonance is observed; the paramagnetically shifted \(^1H \) NMR spectra of each Eu complex are consistent with average \(C_3 \)-symmetry.

Table 1 Selected photophysical data\(^{c} \) for Eu(III) complexes (295K, MeOH, or as stated)

<table>
<thead>
<tr>
<th>Complex</th>
<th>(\lambda_{max}/) nm</th>
<th>(c/\mu M^{-1} \ cm^{-1})</th>
<th>(\phi_{em}/%)</th>
<th>(\tau/\mu s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Eu.L(^1)](^{a})</td>
<td>338</td>
<td>58.0</td>
<td>48</td>
<td>0.95</td>
</tr>
<tr>
<td>[Eu.L(^2)]</td>
<td>338</td>
<td>55.0</td>
<td>25</td>
<td>1.06</td>
</tr>
<tr>
<td>[Eu.L(^3)]</td>
<td>332</td>
<td>58.0</td>
<td>52</td>
<td>1.30</td>
</tr>
<tr>
<td>[Eu.L(^4)]</td>
<td>331</td>
<td>58.1</td>
<td>39</td>
<td>1.03</td>
</tr>
<tr>
<td>[Eu.L(^5)]</td>
<td>332</td>
<td>60.0</td>
<td>54</td>
<td>1.00</td>
</tr>
<tr>
<td>[Eu.L(^6)]</td>
<td>322</td>
<td>59.2</td>
<td>37</td>
<td>1.24</td>
</tr>
<tr>
<td>[Eu.L(^7)]</td>
<td>307</td>
<td>63.5</td>
<td>15</td>
<td>1.35</td>
</tr>
</tbody>
</table>

\(^{a} \) in water; in MeOH \(\phi_{em} = 43\% \) and \(\tau = 1.18 \) ms; \(^{b} \) in 3:1 \(H_2O/MeOH; \(^{c} \) errors on quantum yields and lifetimes are \(\pm 15\% \); at 77K, phosphorescence spectra for [Gd.L\(^1\)] and [Gd.L\(^2\)] reveal a broad emission at 390 and 380nm respectively, consistent with a dominant charge transfer excitation band \(^{1}\); \(^{d} \) lifetime values in deuteriated solvents were typically 0.2 to 0.3 ms longer, e.g. for [Eu.L\(^2\)], \(\tau(D_2O) \) was 1.28 ms, consistent with a metal solvation state, \(q = 0 \).

Each chromophore absorbs around 310 to 340 nm, with an overall extinction coefficient of 55-60,000 M\(^{-1}\)cm\(^{-1}\) (Table). Emission spectra in aqueous or methanol solutions were very similar for each Eu complex (Figure 2). The Eu complexes of L\(^1\), L\(^2\), L\(^3\) and L\(^4\) dissolved readily in MeOH, but were not soluble in water. The water solubility was higher with the complexes bearing PEG substituents, but did not allow greater than 2 \(\mu M \) solutions to be made up; for the PMe phosphinate complex, [Eu.L\(^2\)], the limiting solubility was about 20 \(\mu M \). The amount of complex internalized was estimated by ICP-MS analysis of intracellular Eu, for a set of 390,000 washed counted cells, revealing the complex concentration within the

Cell uptake was inhibited (>30\%) by pre-administration for 30 minutes with amiloride (3mM) or wortmannin (0.3 \(\mu M \)), or by lowering the temperature to \(5^\circ C \). Such behaviour is consistent with cell uptake by macropinocytosis, as revealed recently for a wide range of emissive lanthanide complexes bearing heterocyclic sensitizing groups. \(^{7} \) The lack of uptake of [Eu.L\(^3\)] and [Eu.L\(^5\)] may reflect inhibition of a cell surface protein binding step that is essential for macropinocytosis. Using a standard MTT assay, assessing perturbation of mitochondrial redox activity, the IC\(_{50}\) value was calculated to be >150 \(\mu M \) for [Eu.L\(^2\)]. The amount of complex internalized was estimated by ICP-MS analysis of intracellular Eu, for a set of 390,000 washed and counted cells, revealing the complex concentration within the

![Figure 2: Europium emission spectra of [Eu.L\(^1\)] (green) and [Eu.L\(^2\)] (295K, H\(_2\)O, \(\lambda_{exc} \) 355 nm), showing minor changes in spectral form in the hypersensitive \(\Delta J = 2 \) manifold around 615 nm, associated with variation of oxygen donor polarisability.](image)

![Figure 3: left: Bidirectional confocal microscopy images (Leica SP5 II) showing staining of cellular mitochondria in NIH 3T3 cells for [Eu.L\(^2\)] (10\(\mu M \), 15 min loading time, \(\lambda_{exc} \) 355nm, 100 Hz scan, hybrid detector 600-720 nm, 0.77\(\mu m\) voxel size, 12mW laser power, 40k image acquisition time); right: time-gated spectral image of a cell (\(\lambda_{exc} \) 365 nm, \(\tau_{em} \) 2 \(\mu s \), \(\tau_{meas} \) 10\(\mu s \), 10,000 scans averaged duty cycle using a 2D CCD detector, 100x acquisition time). The upper image shows a dividing cell (bar = 20 \(\mu M \)).](image)
cell to be 0.65(±0.3) µM for a 10µM loading, under the stated conditions. 8

Furthermore, these Eu complexes can act as effective donors to near-IR acceptor dyes, such as the cyanine dye, 1, allowing their use in time-resolved homogenous FRET assays. 9 A short comparative analysis of the efficiency of energy transfer was undertaken, comparing the behaviour of [Eu.L 1a], [Eu.L 2a] and [Eu.L 3] in MeOH and 1:1 aqueous methanol. The quenching of the Eu emission was monitored as a function of added dye concentration over the range 0.3 to 5µM, using 5 µM solutions of the Eu complex. The second order rate constants characterizing intermolecular energy transfer were 1.45, 0.57 and 0.65 mM−1s−1 associated with Forster radii of 6.86, 6.95 and 6.76 nm respectively. 10 The lower efficiency of quenching with each phosphate complex may reflect both the slightly larger spectral overlap integral in [Eu.L 1a] (Figure 3: AJ = 2 manifold is about 10% larger for [Eu.L 2a] vs [Eu.L 2a]), as well as the different electric dipole transition moments in the complexes.

In conclusion, the europium complexes defined here possess a very high brightness aids rapid spectral imaging. This behaviour paves the way for examination of analogues as intracellular optical probes, in which the emission spectral signature is a function of a biochemical variable, such as pH, bicarbonate or related bioactive species. 11 Furthermore, these examples highlight the opportunities to develop emissive metal coordination complexes as more general stains and probes for the biosciences. 12

We thank the EPSRC, ESF COST CM-1006 and the ERC (DP) for support (FCC 266804).

Notes and references

† Electronic Supplementary Information (ESI) available: Details of complex synthesis and characterization, microscopy/spectroscopy instrumentation and the structural analysis of [Eu.L 1a] are available: CCDC 857545. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b000000x/

6. Details of complex synthesis and characterization are given in the supporting information.

8. Similar methods have been reported earlier, 2(b) and in J. Yu, R. Pal, D. Parker, R. A. Poole, M. J. Cann, J. Am. Chem. Soc. 2006, 128, 2294.

10. In the rapid diffusion limit, energy transfer from a Eu donor to the dye acceptor (Q) obeys pseudo-first order kinetics, where 1/τ = k−1 + kQ = k−1 + k[Q] hence τ/τ0 = k−1/kQ, allowing the second order rate constant for energy transfer, kQ, to be estimated; C. F. Meares, T. G. Wensel, Acc. Chem. Res. 1984, 17, 202.
