Structured microparticles with tailored properties produced by membrane emulsification

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This paper was accepted for publication in the journal Advances in Colloid and Interface Science and the definitive published version is available at http://dx.doi.org/10.1016/j.cis.2015.07.013

Metadata Record: https://dspace.lboro.ac.uk/2134/18895

Version: Accepted for publication

Publisher: © Elsevier B.V.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Structured microparticles with tailored properties produced by membrane emulsification

Goran T. Vladisavljevića,b

aChemical Engineering Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom, Email: G.Vladisavljevic@lboro.ac.uk.
bLaboratory of Chemical Dynamics, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia

ABSTRACT
This paper provides an overview of membrane emulsification routes for fabrication of structured microparticles with tailored properties for specific applications. Direct (bottom-up) and premix (top-down) membrane emulsification processes are discussed including operational, formulation and membrane factors that control the droplet size and droplet generation regimes. A special emphasis was put on different methods of controlled shear generation on membrane surface, such as cross flow on the membrane surface, swirl flow, forward and backward flow pulsations in the continuous phase and membrane oscillations and rotations. Droplets produced by membrane emulsification can be used for synthesis of particles with versatile morphology (solid and hollow, matrix and core/shell, spherical and non-spherical, porous and coherent, composite and homogeneous), which can be surface functionalised and coated or loaded with macromolecules, nanoparticles, quantum dots, drugs, phase change materials and high molecular weight gases to achieve controlled/targeted drug release and impart special optical, chemical, electrical, acoustic, thermal and magnetic properties. The template emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, multilayer, and Pickering emulsions can be produced with high encapsulation efficiency of encapsulated materials and narrow size distribution and transformed into structured particles using a variety of different processes, such as polymerisation (suspension, mini-emulsion, interfacial and in-situ), ionic gelation, chemical crosslinking, melt solidification, internal phase separation, layer-by-layer electrostatic deposition, particle self-assembly, complex coacervation, spray drying, sol-gel processing, and molecular imprinting. Particles fabricated from droplets produced by membrane emulsification include nanoclusters, colloidosomes, carbon aerogel particles, nanoshells, polymeric (molecularly imprinted, hypercrosslinked, Janus and core/shell) particles, solder metal powders and inorganic particles. Membrane
emulsification devices operate under constant temperature due to low shear rates on the membrane surface, which range from \((1-10) \times 10^3 \text{ s}^{-1}\) in a direct process to \((1-10) \times 10^4 \text{ s}^{-1}\) in a premix process.

Keywords: Membrane Emulsification; Polymeric microsphere; Microgel; Janus Particle; Core/Shell Particle, Colloidosome.

1. Membrane emulsification

Membrane emulsification (ME) involves preparation of emulsions by pressing a pure dispersed phase or pre-emulsified mixture of the dispersed and continuous phase through a microporous membrane under controlled injection rate and shear conditions. In direct membrane emulsification (DME), one liquid (a dispersed phase) is injected through a microporous membrane into another immiscible liquid (the continuous phase) (Nakashima et al., 1991; 2000), which leads to the formation of droplets at the membrane/continuous phase interface (Figure 1a). In premix membrane emulsification (PME) (Figure 1b), a pre-emulsion is pressed through the membrane (Suzuki et al., 1996) or a packed bed of uniform particles (van der Zwan et al., 2008; Yasuda et al., 2010; Laouini et al., 2014), which leads to homogenisation of existing coarse droplets. If the transmembrane pressure is lower than the capillary pressure, the pressure force acting on a droplet will not be able to squeeze the droplet through a pore, which will lead to the separation of the pre-emulsion into a droplet-free continuous phase and concentrated emulsion (Koltuniewicz et al., 1995; Park et al., 1998). Hydrophobic membranes are needed to produce water-in-oil (W/O) (Cheng et al., 2008; Jing et al., 2006) and oil-in-water-in-oil (O/W/O) (Wei et al., 2013) emulsions and hydrophilic membranes are required to prepare oil-in-water (O/W) and water-in-oil-in-water (W/O/W) (Vladisavljević et al., 2014) emulsions. The advantages of PME over DME are in smaller droplet sizes and higher transmembrane fluxes that can be achieved for any given pore size and higher dispersed phase content that can be obtained (up to 60 vol% in simple PME and up to 90 vol% in PME with phase inversion (Suzuki et al., 1999)). On the other hand, PME gives broader particle size distribution with a more severe membrane fouling and operates at higher transmembrane pressures. The main limitations of ME for industrial scale production are in low emulsion throughputs and membrane fouling (Piacentini et al., 2014). In order to produce \(1 \text{ m}^3 \text{ h}^{-1}\) of a 30% emulsion with a droplet size of 5–10 \(\mu\text{m}\), the required membrane area in shear-based DME is 5–60 \(\text{m}^2\) (Schroên et al., 2015).
1.1 Comparison of membrane and conventional emulsification

Compared to high-shear rotor-stator mixers, high-pressure valve homogenizers, ultrasonic and static mixers, ME devices operate under constant temperature due to mild shear conditions, keeping heat and shear-sensitive ingredients intact and providing high encapsulation yields of multiple emulsions (Surh et al., 2007; Vladisavljević and Williams, 2008; Dragosavac et al., 2012). Conventional homogenisation devices apply high specific energy inputs to disrupt droplets (Karbstein and Schubert, 1995), which leads to an increase in the temperature of an emulsion, because a significant amount of the mechanical energy is converted into heat due to viscous dissipation (McClements, 2005). In DME, shear rate on the membrane surface is \((1–10) \times 10^3 \text{ s}^{-1}\) but uniform droplets can be produced even without any shearing, simply by spontaneous droplet formation through Laplace pressure differences (Kukizaki, 2009; Kukizaki and Goto, 2009; Kosvintsev et al., 2008; Maan et al., 2011). In PME, the shear rate inside the pores of SPG membrane is \((1–10) \times 10^4 \text{ s}^{-1}\). As a comparison, a shear rate in high-shear in-line mixers and colloid mills is about \(10^5 \text{ s}^{-1}\) and can exceed \(10^7 \text{ s}^{-1}\) in microfluidizers®. In PME, the energy input per unit volume is 0.05–5 kJ dm⁻³, which is 1–2 orders of magnitude smaller than in high-pressure valve homogenizers (3–20 kJ dm⁻³).

In conventional emulsification devices energy input is not spatially uniform. For example, in rotor-stator devices, shear forces are high in close proximity to a rotor and low in “dead zones”, leading to droplet size polydispersity. In most ME systems (e.g. cross-flow), shear stress is uniformly distributed over the membrane surface and localised to the membrane wall rather than the entire bulk volume of the fluid. A Computational Fluid Dynamics (CFD) analysis has shown that in an azimuthally oscillating membrane emulsification system, shear rate becomes negligible at radial distances from the membrane surface of just 0.5 mm although the shear rate could be 1400 s⁻¹ at the membrane surface (Silva et al., 2015). Due to controlled localised shear and geometrically-mediated drop formation, the droplet size can be precisely controlled over a wide range and a narrow droplet size distribution can be achieved. Membrane devices can be integrated with downstream processing to achieve a simultaneous drop generation and chemical/biochemical conversion or physicochemical transformation in the formed droplets. The examples include integration of ME with liquid-liquid extraction (Chen et al., 2004, Xu et al., 2005), biphasic enzymatic transformation (Li and Sakaki, 2008;
Mazzei et al., 2010), pervaporation (Chang and Hatton, 2012), and complex coacervation (Piacentini et al., 2013).

2. Membranes for preparation of emulsions and particles

Membranes used for preparation of emulsions should have the following properties: (i) uniform pore size distribution with a wide range of available mean pore sizes to obtain uniform droplets with tuneable sizes; (ii) low hydrodynamic resistance; (iii) high mechanical strength and thermal and chemical resistance; (iv) high tolerance to organic solvents used in product formulation to suit different applications; (v) ease of surface modification and functionalization to modify their wettability, charge, permeability, etc; (vi) ability to keep constant wettability in contact with the dispersed and continuous phase; (vii) low fabrication costs per unit membrane area. In this section only membranes most commonly used in membrane dispersion processes will be discussed.

2.1 SPG membrane

Shirasu Porous Glass (SPG) meets the majority of the above criteria and it is the most widely used microporous membrane used for emulsification. Advantages of SPG membrane over microengineered membranes are in higher porosity, more versatile surface chemistry that can be implemented, a broader range of commercially available mean pore sizes, and lower fabrication costs. For a constant fraction of active pores, the higher the membrane porosity, the lower the dispersed phase velocity in the pores at any dispersed phase flow rate, and the higher the likelihood that the dripping regime will persist in DME. However, high membrane porosity can promote droplet-droplet interactions on the membrane surface, such as steric hindrance of droplets forming simultaneously, which can compromise droplet size uniformity (Abrahamse et al., 2002).

2.1.1 Fabrication of SPG membrane

SPG membrane is fabricated from Na$_2$O–CaO–Al$_2$O$_3$–B$_2$O$_3$–SiO$_2$ or Na$_2$O–CaO–MgO–Al$_2$O$_3$–B$_2$O$_3$–SiO$_2$ type mother glass through phase separation by spinodal decomposition (Nakashima and Kuroki, 1981; Nakashima and Shimizu, 1986; Kukizaki and Nakashima, 2004). The mother glass is prepared by mixing and melting raw materials (Shirasu, limestone,
boric acid and soda ash) at 1300–1400 °C. Typical mixing ratio of raw materials is shown in Table 1. MgO and ZrO₂ can be added to mother glass to adjust the rate and temperature of phase separation and glass resistance to alkali. Shirasu is a volcanic ash sediment which contains 72–77 wt% SiO₂, 10–15 wt% Al₂O₃, and small amounts of other inorganic oxides (Table 2). Molten mother glass is shaped into tubes or discs, cooled to 650–760 °C and then kept at that temperature for a period of several hours to several days. The thermal treatment causes a homogeneous melt to separate into an acid-insoluble (Al₂O₃–SiO₂ rich) phase and acid-soluble (CaO–B₂O₃ rich) phase. The phase-separated glass is then immersed into a hydrochloric acid solution to dissolve CaO–B₂O₃ rich phase, which results in the formation of porous skeleton whose composition is given in Table 2.

The phase diagram in Figure 2 depicts the process of cooling homogeneous glass from the initial temperature \(T_1 \), which lies above the upper critical solution temperature, \(\text{UCST} \), where all components are miscible in all proportions, to the phase separation temperature, \(T_2 \), which lies between the spinodal curve and the glass transition temperature, \(T_g \). The mother glass with a composition of \(x_i \) is separated into two immiscible phases with compositions of \(x_s \) and \(x_i \). The mass ratio of acid-soluble to acid-insoluble phase can be estimated by the lever rule: \(x_s / x_i = (x_i - x_t) / (x_1 - x_t) \). The mean pore diameter \(d_p \) of SPG membrane can be controlled by the time \(t \) and temperature \(T_2 \) of the heat treatment process (Kukizaki, 2010):

\[
d_p = 4K^{1/2}(V_p / m_m)^{1/2} \exp[-E_a/(2RT_2)]
\]

where \(K \) is a constant depending on the composition of mother glass, \(E_a = 400–600 \text{ kJ mol}^{-1} \) is the activation energy for spinodal decomposition (Nakashima, 2002; Kukizaki, 2010), \(R = 8314 \text{ kJ kmol}^{-1} \text{K}^{-1} \) is the universal gas constant, and \(V_p / m_m \) is the total pore volume per unit mass of dry membrane. At constant temperature, the mean pore size of SPG membrane is proportional to the square root of the heating time, whereas a logarithm of the mean pore size decreases linearly with \(1/T_2 \) for a constant heating time. It means that small pores can be obtained by phase separation at low temperatures (but above \(T_g \)) for a short time.

A porosity of SPG membrane corresponds to the volume fraction \(\phi_s \) of acid-soluble phase in phase-separated glass and is normally from 0.50 to 0.60 (Vladisavljević et al., 2005). If \(\phi_s \) is
outside that range, separation can takes place by the nucleation and growth mechanism, which leads to the formation of discrete spherical particles of one phase embedded in a continuous matrix of the other (Figure 2). This morphology is undesirable in membrane fabrication.

2.1.2 Properties of SPG membrane

SPG membrane is available from SPG Technology Ltd (Sadowara, Japan) with a mean pore size ranging from 0.040 to 40 µm (Table 3). The membrane has a uniform internal microstructure, as confirmed by X-ray microtomography (Vladisavljević et al., 2007), characterised by interconnected cylindrical pores with a tortuosity factor of ξ ≈ 1.3. The number of pores per unit cross-sectional area is given by (Vladisavljević et al., 2005):

$$N / A_m = 0.56 / d_p^2$$

(2)

where N / A_m and d_p are in m$^{-2}$ and m, respectively. The hydraulic resistance of isotropic SPG membrane is given by (Vladisavljević et al., 2005):

$$R_m = 32 \varepsilon^2 \delta_m / (d_p^2 \varepsilon)$$

(3)

where δ_m is the membrane thickness and ε is the membrane porosity. The hydraulic resistance of isotropic SPG membrane is high (Table 3), due to its thickness of 400–1000 µm, but can be reduced by one order of magnitude if the membrane is fabricated with anisotropic structure (Kukizaki and Goto, 2007b).

A comparison of chemical composition of SPG and common porous glasses is shown in Table 2. SPG is more stable in water and alkaline solutions than Porous Vycor® Glass, because it contains less SiO$_2$ and more Al$_2$O$_3$. However, the durability of both membranes at high pH is limited, due to attack of hydroxide ions on siloxane (Si-O-Si) bonds:

$$\equiv Si-O-Si \equiv + OH^- \rightarrow \equiv Si-O^- \equiv + Si-OH$$

Alkaline durability of SPG can be improved by incorporating 3 mol% of ZrO$_2$ into the mother glass, which results in to the formation of stable Zr–O–Si bonds in the silicate network (Kukizaki, 2010). The compressive strength of SPG of 200–280 MPa is much higher than that of a porous alumina or zirconia of the same porosity (Nakashima et al., 1992), because SPG is made up of a continuous glass skeleton with very few defects, while porous alumina or zirconia is composed of skeletal grains joined together discontinuously via grain boundaries.
2.1.3 Surface modification of SPG membrane

The surface of SPG membrane can be hydrophobised by chemical reaction with organosilane compounds, such as chlorosilanes (Kukizaki and Wada, 2008) or physical coating with silicone resin (Vladisavljević et al., 2005). Monochlorosilanes such as trimethylchlorosilane (TMS) and octadecyldimethylchlorosilane (ODS) are suitable agents for hydrophobisation because they contain only one reactive chlorine atom, which means that no polymerisation between silane molecules can occur while they react with a silanol group on the glass surface (Figure 3a) (Kai et al., 2006). The longer the length of the carbon chain in an organosilane compound, more hydrophobic the membrane surface becomes (Kukizaki and Wada, 2008). The membrane hydrophobicity can be enhanced by depositing silica nanoparticles onto the surface of SPG membrane prior to treatment with TMS (Meng et al., 2013). The surface of SPG membrane can also be made with thermoresponsive hydrophilic-hydrophobic properties by depositing silica nanoparticles containing poly(N-isopropylacrylamide) (PNIPAM) brushes grafted on their surface (Meng et al., 2010). The porosity and hydraulic resistance of SPG membrane can be modified over a wide range by synthesising dextran macromolecules within the pores via in-situ enzymatic reaction between dextransucrase and sucrose (Kawakita et al., 2009; Seto et al., 2011). A reversible change in the hydraulic resistance of dextran-loaded SPG membrane is a consequence of reversible extension and shrinkage of solvent-responsive dextran chains inside the pores initiated by washing the membrane with water or organic solvent, respectively.

The surface of untreated SPG surface has a negative zeta potential between -15 and -45 mV within a pH range of 2–8, due to dissociation of silanol groups (\equivSi-OH \rightarrow SiO$^-$ + H$^+$) (Kukizaki, 2009b). A positive charge on the membrane surface can be induced by treating the membrane with amino trialkoxysilanes, such as (3-aminopropyl)-trimethoxysilane (APTMS) and (3-aminopropyl)-triethoxysilane (APTES) (Figure 3b). Amino trialkoxysilanes undergo hydrolysis in aqueous solution resulting in the formation of silanol groups, which can be then condensed with a silanol group on the SPG surface to form stable siloxane bonds (Si–O–Si).

2.2 Microengineered membranes

Microengineered membranes are microfiltration membranes with a controlled pore geometry and spatial arrangement manufactured by semiconductor fabrication methods (Brans et al.,
Microengineered membranes are used in ME to achieve high transmembrane fluxes at low transmembrane pressures, due to its very low thickness, typically 1–100 µm. These membranes have rectilinear pores with very low internal surface area, so they are less prone to fouling by emulsion ingredients than highly tortuous and porous SPG membranes. It is especially important in PME, where whole emulsion, rather than a pure dispersed phase, is pressed through the membrane. Typical microsieves used in ME are nickel microengineered membranes manufactured using UV-LIGA process (Nazir et al., 2011; Schadler and Windhab, 2006; Egidi et al., 2008), silicon nitride Aquamarijn™ microsieves fabricated by reactive ion etching (RIE) (van Rijn et al., 1997), stainless steel membranes fabricated by pulsed laser drilling (Dowding et al., 2001; Vladisavljević and Williams, 2006; Geerken et al., 2008) or end-milling (Kobayashi et al., 2008), and microchannel arrays fabricated in single crystal silicon by Deep Reactive Ion Etching (DRIE) (Kobayashi et al., 2003) or in PMMA by X-ray lithography and wet etching (Kobayashi et al., 2008b). The fabrication of microengineered membranes for ME is described by Vladisavljević et al. (2012).

2.2.1 Surface modification of microengineered membranes

Silicon membranes can be made hydrophilic via plasma oxidation in a plasma cleaner (Holzapfel et al., 2013). Silicon nitride and nickel membranes can be rendered hydrophilic by coating their surface with a thin layer of silicon oxide using plasma-enhanced chemical vapour deposition (PECVD) (Holzapfel et al., 2013). PECVD can also be used to decrease the pore size, while keeping the circular pore shape (Schadler and Windhab, 2006). Nickel membrane can also be made hydrophilic by treatment with polyalkyleneoxide modified heptamethyltrisiloxane (Pan et al., 2012). Silicon nitride membranes can be hydrophobised by coating their surface with alkytrichlorosilanes using chemical vapour deposition (Geerken et al., 2007).

3. Emulsification using SPG membrane

SPG membrane was widely used in DME (Vladisavljević et al., 2004; Vladisavljević and Schubert, 2002) and PME (Vladisavljević et al., 2004b; 2006; 2006b). Two main designs of membrane modules for DME are: (i) cross-flow systems with a tubular SPG membrane,
which can be up to 500 mm long; (ii) SPG micro kits with a short SPG membrane tube (7–15 mm) immersed in a stirred continuous phase.

3.1 Cross-flow systems

Cross-flow systems can be operated batchwise (with emulsion recirculation) or continuously (without any recirculation of the product emulsion). The volume fraction \(\phi_d \) of the dispersed phase in a continuous cross-flow DME is given by:

\[
\phi_d = \frac{1}{(Q_c/Q_d) + 1}
\]

(4)

The dispersed phase flow rate \(Q_d \) must be much smaller than \(Q_c \) to generate sufficient shear on the membrane surface. Therefore, in a continuous system \(\phi_d \rightarrow 0 \) and simple cross-flow DME must be operated batchwise to achieve a reasonably high \(\phi_d \).

In a batch cross-flow DME system, a continuous phase liquid circulates from a storage tank through the bore of the membrane tube, and back to the storage tank (Figure 4). A dispersed phase-forming liquid stored in a pressure vessel is fed to the outside of the membrane tube and penetrates through the pores under the driving pressure of 1.1–5 times the capillary pressure (Vladisavljević and Schubert, 2003a). The system is operated until a desired volume fraction of the dispersed phase is reached in the product emulsion:

\[
\phi_d = \frac{Q_d t}{Q_d t + V_c}
\]

(5)

where \(t \) is the operation time and \(V_c \) is the volume of the continuous phase in the system. \(\phi_d \) can be further increased up to 0.75 by vacuum evaporation of the formed emulsion (Matos et al., 2015). Recirculation of emulsion at high flow rate can lead to secondary droplet breakup. Two methods have been used to decrease flow rate of the continuous phase in the recirculation loop, while keeping the same shear stress on the membrane surface: insertion of static turbulence promoters into the membrane tube (Koris et al., 2011) and generation of back-and-forward pulsations in the cross flow (Piacentini et al., 2013b).

Transmembrane flux in cross-flow DME can be increased by 1–2 orders of magnitude (from \(10^{-3} – 10^{-1} \) to \(10^{-1} – 10^{0} \) m\(^3\) m\(^{-2}\) h\(^{-1}\)) and the process can be run continuously by introducing the
continuous phase into a SPG tube tangentially. It generates spiral streamlines in the axial direction known as the swirl flow that effectively remove droplets from the membrane surface at high transmembrane fluxes (Shimoda et al., 2011). In swirl-flow DME, ϕ_d can reach 0.4 in a single pass of the continuous phase through the membrane tube.

3.2 SPG micro kits

Cross-flow systems are easy to scale up and offer constant shear on the membrane surface which is independent of the volume of the continuous phase in the system. However, the volume of the continuous phase in the system must be at least several hundred millilitres. SPG micro kits shown in Figure 5 require only 8–50 mL of the continuous phase per single batch, which is useful for expensive clinical preparations (Higashi and Setoguchi, 2000). In the external pressure micro kit (Figure 5a), the continuous phase is placed in a stirred beaker and the dispersed phase is injected through membrane tube from outside to inside. Membrane tube serves as a draft tube, which results in more effective circulation of the continuous phase than in the internal pressure micro kit shown in Figure 5c.

A typical SPG membrane rig for PME is shown in Figure 5b. A pressurised pre-mix from a pressure vessel is pressed through the membrane tube from outside to inside under the pressure difference ranging from several bars (for a 10-µm membrane) to more than 10 bar (for 1-µm membrane) and up to 50 bar for the membrane with sub-micron pore sizes. The product emulsion flows from the membrane tube under gravity and is collected in a beaker placed beneath the module. To further reduce the droplet size and improve the droplet size uniformity, the product emulsion can be pressed repeatedly through the same membrane (Vladisa vljević et al., 2004b; 2006; 2006b). Repeated membrane homogenisation was invented by Olson et al. (1979) and used for homogenisation of lipid vesicles by track-etch polycarbonate filters.

4. Emulsification using microengineered membranes

Microengineered membranes have been widely used in ME in the past two decades. They can be fabricated with circular pores (Kosvintsev et al., 2005), slotted (rectangular and squared) pores (Kobayashi et al., 2005; Nazir et al., 2013), asymmetric slotted/circular pores
(Kobayashi et al., 2005b), and micro-chimneys (Geerken, 2006). Rectangular pores with an aspect ratio of at least 3 enable a spontaneous drop generation due to a Laplace instability and are more convenient in DME than square or circular pores (Kobayashi et al., 2004; 2009; van Dijke et al., 2010). Asymmetric pores have circular channels on the upstream (bottom) side of the membrane and rectangular channels on the downstream (top) side (Kobayashi et al., 2005b; Vladisavljević et al., 2008; 2011). Asymmetric geometry is useful when the dispersed phase viscosity is low (1 mPa s or less), e.g. when the dispersed phase is water or volatile hydrocarbons (Kobayashi et al., 2005; 2009b).

A shear on the membrane surface can be generated using paddle stirrer placed above the membrane surface, like in the Micropore Dispersion Cell (Kosvintsev et al., 2005), but other ME systems with microengineered membrane have been also developed, such as cross flow (Abrahamse et al., 2002), pulsed cross flow (Holdich et al., 2013), rotating membrane (Vladisavljević and Williams, 2006; Aryanti et al., 2006) and oscillating membrane (Holdich et al., 2010). In an oscillating ME system, tubular membrane can oscillate tangentially clockwise and counter-clockwise (Silva et al. 2015) or radially upward and downward (Holdich et al., 2010), with frequencies from 10 to 90 Hz.

In a continuous DME device, cross flow velocity must be very low in order to achieve reasonably high dispersed phase content, which means that shear on the membrane surface must be controlled by alternative methods. The surface shear can be decoupled from the cross flow by rotating or vibrating the membrane within a static continuous phase (Holdich et al., 2010; Zeng et al., 2013; Gomaa et al., 2014; Vladisavljević and Williams, 2006) or introducing forward and backward flow pulsations in cross flow (Holdich et al., 2013). The advantages of pulsed cross flow over rotating or vibrating membrane are: (i) liquid pulsations require less energy than membrane oscillations or rotations because liquids are less dense than solids and have a lower inertia; (ii) the energy consumption to maintain pulsed flow is independent on membrane area, whereas energy input to maintain membrane vibrations or rotations is in proportion with membrane dimensions, and (iii) pulsed cross flow can be extended to a baffled reactor, connected in series to the membrane module, to achieve simultaneous drop generation and reaction in the produced emulsion (Piacentini et al., 2013).
PME was successfully carried out using microengineered nickel membranes with rectangular (Nazir et al., 2011), squared (Nazir et al., 2013) and circular (Santos et al., 2015) pores. The experimental set-up is very similar to that for SPG PME shown in Figure 5b.

5. Control over droplet size in DME

The droplet size distribution in DME depends on numerous factors, that can be divided into membrane parameters (surface wettability and charge, porosity, pore size distribution, pore morphology and spatial arrangement), formulation parameters (viscosity of the dispersed and continuous phase, the type and concentration of surfactants and additives) and process parameters (shear stress on the membrane surface and transmembrane flux) (Joscelyne and Trägårdh, 2000). The analytical and computational models for prediction of droplet size in DME can be found elsewhere (Spyropoulos et al., 2014; Rayner et al., 2004).

5.1 Effect of transmembrane pressure and flux

The minimum transmembrane pressure for driving the dispersed phase through the pores is known as the capillary pressure, P_{cap}, and is given by the Young-Laplace equation:

$$P_{\text{cap}} = \frac{4\gamma_{\text{wo}} \cos \theta}{d_p} \quad (6)$$

where γ_{wo} is the equilibrium interfacial tension between the dispersed and continuous phase, θ is the contact angle formed by the dispersed phase at the three-phase boundary where the continuous phase, the dispersed phase and the membrane meet together (Figure 6). A hydrophilic membrane ($\theta < 90^\circ$) is used for production of O/W emulsion, and thus $P_{\text{cap}} > 0$ and $P_o > P_{aq}$, i.e. at zero flux the oil phase has a higher pressure than the aqueous phase. A hydrophobic membrane ($\theta > 90^\circ$) is used for production of W/O emulsion, and thus $P_{\text{cap}} < 0$ and $P_o < P_{aq}$, i.e. the aqueous phase pressure should be higher than the oil phase pressure by at least P_{cap} to drive the water phase through the membrane.

Two mechanisms of drop formation are observed in DME: (a) shear-controlled detachment as a result of shear stress on the membrane surface and (b) spontaneous droplet detachment (Sugiura et al., 2002). A shear-controlled detachment dominates for membranes with circular
pores (Kosvintsev et al., 2005), while spontaneous detachment occurs for membranes with pronounced non-circular pores, such as SPG membrane and microengineered membranes with slotted pores. In a shear-controlled droplet formation process, bigger droplets are formed at higher transmembrane flux (line 1 in Figure 7), which can be explained by the fact that the detachment of a droplet from the membrane surface is not instantaneous but requires a finite time, the necking time. During the necking time an additional amount of the dispersed phase will flow into a forming droplet causing the droplet size to increase in proportion to the flow rate of the dispersed phase (van der Graaf et al., 2006). At high fluxes, the push-off force due to droplet-droplet interactions on the membrane surface assists in the droplet detachment process, causing a plateau region to occur on a d_d vs. J plot at high fluxes (Egidi et al., 2009).

Spontaneous droplet detachment can take place under two droplet formation regimes determined by the capillary number of the dispersed phase: $Ca = U_d \eta_d / \gamma_{wa}$, where U_d is the velocity of the dispersed phase within a pore and η_d is the viscosity of the dispersed phase. The dripping regime prevails at low fluxes ($Ca < Ca_{cr}$). In this regime, the interfacial tension dominates inertial and drag forces (Sugiura et al., 2002) and the droplet size is almost independent on transmembrane flux or shear stress (line 2 in Figure 7). At high transmembrane fluxes and U_d values ($Ca > Ca_{cr}$), droplets grow to a large size ($d_d / d_p > 10$) before being detached from the membrane surface, which is known as the continuous outflow regime (Kobayashi et al., 2003). In this regime, the inertial force dominates the interfacial tension force and the droplet size strongly depends on transmembrane flux. The transmembrane flux at which the transition occurs is independent on the pore size (Kobayashi et al., 2011) and increases with decreasing the viscosity of the dispersed phase (Vladisavljević et al., 2011). At high shear on the membrane surface and high dispersed phase flow rates, a growing droplet is significantly distorted in the direction of shear force and forms a neck parallel to the membrane surface, which is stretched until if collapses and releases a droplet (Van der Graaf et al., 2005), which is known as the jetting regime. DME must be conducted in the dripping regime, since the emulsions produced in the continuous outflow and jetting regimes are polydisperse, due to random nature of the pinch-off process. The transition from dripping to continuous outflow/jetting does not occur simultaneously for all the pores, leading to bimodal particle size distribution of the droplets as a result of droplets being formed under different regimes at the same time.
5.2 Effect of pore size and shear stress on the membrane surface

For spontaneous droplet formation, a linear correlation between the mean droplet size and the mean pore size exists in the dripping regime: $d_d = K'd_p$ (line 3 in Figure 7), where $K' = 2.8–3.5$ for SPG membrane (Kukizaki and Goto, 2009; 2007c; Nakashima et al., 1991; Vladisavljević et al., 2006). Even in the absence of any shear on the membrane surface, K' was found to be 3.3 for 1% Tween-80 stabilised O/W emulsions produced using SPG membrane (Kukizaki and Goto, 2009). For slotted pores: $d_d = K'_1D_h,p$, where D_h,p is the hydraulic pore diameter and $K'_1\approx3$.

In a shear-controlled droplet formation process at low transmembrane flux, the mean droplet size is determined by the balance between the shear force exerted on the forming droplet by the continuous phase, F_d and the capillary force, F_{ca} (Kosvintsev et al., 2005):

$$F_{ca} = \pi d_p \gamma_{wo}$$

(7)

$$F_d = 9\pi \tau_w d_p \sqrt{(d_d / 2)^2 - r_p^2}$$

(8)

where r_p is the pore radius and τ_w is the shear stress on the membrane surface. The droplet pinch-off occurs when $F_{ca} = F_d$.

$$d_d = \frac{\sqrt{18\tau_w^2r_p^2 + 2\sqrt{81\tau_w^4r_p^4 + 4r_p^2\tau_w^2\gamma^2}}}{3\tau_w}$$

(9)

The mean drop diameter decreases with increasing shear stress on the membrane surface and tends to the pore diameter at very high shear stresses.

As a conclusion, uniform droplets can be produced only in dripping regime, which prevails at low transmembrane fluxes. For droplet formation by spontaneous droplet detachment, the droplet size in the dripping regime is proportional to the pore size. For shear-controlled droplet formation, the droplet size is no longer proportional to the pore size and is generally determined by the balance between the shear force acting on the growing droplet, inertial force originating from the dispersed phase flow and the interfacial tension force. In this case, the size of resultant droplets increases with increasing transmembrane flux and pore size and decreases with increasing shear stress on the membrane surface and interfacial tension.
5.3 Effect of surfactant

The effect of kinetics of adsorption of surfactant at oil-aqueous interface during DME on the droplet size has been investigated by Schröder et al. (1998), Van der Graaf et al. (2004), and Rayner et al. (2005). The faster the surfactant molecules adsorb to the newly formed interface, the smaller the droplet size becomes. Surfactant molecules must not bind to the membrane surface by Van der Waals or electrostatic interactions, because the dispersed phase will spread over the membrane surface, which will lead to uncontrolled droplet generation. For negatively charged SPG membrane, it means that cationic surfactants, e.g. alkyltrimethylammonium salts such as cetyltrimethyl-ammonium bromide (CTAB) must not be used, since they lead to polydisperse O/W emulsions with \(d_d/d_p > 20 \) (Nakashima et al., 1993). The use of zwitterionic surfactants must also be avoided, even when they carry a net negative charge (Surh et al., 2008). To produce cationic droplets using SPG membrane, the membrane must be pre-treated with amino trialkoxysilanes to become positively charged (Figure 3b) or the charge of anionic droplets must be altered after ME by displacing anionic surfactants with cationic ones (Vladisavljević and McClements, 2010).

6. Control over droplet size in PME

The mean droplet size in PME depends on the pore size of the membrane, transmembrane flux, number of passes through the membrane, viscosity of the continuous and dispersed phase and interfacial tension (Nazir et al., 2010). The mean droplet size is a non-linear function of the mean pore size (line 5 in Figure 7):

\[
d_d = K^n(d_p)^n
\]

(10)

where \(n < 1 \). The droplet to pore size ratio \((d_d/d_p) \) decreases with the mean pore size and ranges from 1 to 1.5 for SPG membrane with \(d_p = 5–20 \) µm for the wall shear stress inside the pores of 200 Pa (Vladisavljević et al., 2006). The critical pressure in PME is given by (Park et al., 2001):

\[
P_{cap} = \frac{\gamma}{2} \left[\frac{2 + 2a_0/\sqrt{2a_0^2-1} \arccos(1/a_0^3) - 4a_0^2}{a + \sqrt{a^2 - 1}} \right]
\]

(11)
where \(a = \frac{d_{pm}}{d_p} \) and \(d_{pm} \) is the mean droplet size in a pre-mix. If \(a \approx 1 \), the capillary pressure is given by Eq. (6). In PME, the optimum transmembrane pressure is 10–50 times larger than \(P_{cap} \) (Vladisavljević et al., 2004b). The mean droplet size decreases with increasing the wall shear stress inside the pores, given by:

\[
\tau_{w,p} = \frac{8\eta_e J \xi}{\varepsilon d_p}
\]

where \(\eta_e \) is the viscosity of emulsion inside the pores. In PME, smaller droplets are produced at higher transmembrane fluxes, due to higher shear stresses generated inside the pores, as shown by line 4 in Figure 7. The droplet size can be additionally reduced by passing emulsion several times through the membrane (Vladisavljević et al., 2004b; Laouini et al., 2014).

7. Integration of membrane emulsification and solid/semi-solid particle fabrication

From the early 1990s, membrane emulsification was used for the preparation of O/W or W/O emulsions with a narrow particle size distribution and controlled mean particle size (Nakashima et al., 1991). Membrane emulsification technology has since been extended to the production of multiple emulsions, such as solid-in-oil-in-water (S/O/W) (Kukizaki, 2009c), oil-in-water-in-oil (O/W/O) (Wei et al., 2013; Cho et al., 2005) and water-in-oil-in-water (W/O/W) (Surh et al., 2007), nano- and micro-emulsions (Koga et al., 2010; Oh et al., 2011; Laouini et al., 2012; Choi et al., 2012; Pradhan et al., 2013; Oh et al., 2013), multilayer emulsions (Vladisavljević and McClements, 2010; Gudipati et al., 2010; Nazir et al., 2012), microbubbles (Kukizaki and Goto, 2007), nanobubbles (Kukizaki and Goto, 2006), micro- and nano-particles (Vladisavljević and Williams, 2005; 2010), and nanovesicles (liposomes and niosomes) (Hwang et al., 2011; Pham et al., 2012). The examples of particles fabricated by solidification of droplets produced using SPG membrane are given in Table 4.

7.1 Integration of membrane emulsification and crosslinking of gel-forming polymers

Hydrogels are three-dimensional networks composed of cross-linked hydrophilic polymers. Hydrogels are insoluble in water but can absorb and hold large amount of water due to their hydrophilic character (Hoare and Kohane, 2008). Microgels are spherical hydrogel microparticles which can be produced by injecting an aqueous solution of gel forming monomers or pre-formed polymers through hydrophobic membrane (Mi et al., 2015). A 3D network can be formed by chemical crosslinking of monomers through condensation
polymerisation (e.g. polyamide) and free radical polymerisation (e.g. polyacrylate), but physical crosslinking is more common and can involve heating (heat-set gels such as whey protein gel), cooling (cold-setting gels such as agarose and gelatine) or electrostatic interaction (ionotropic gelation). In ionotropic gelation, gel-forming polymer must contain charged functional groups, such as amino groups of chitosan or carboxylic group of alginate, which can interact with oppositely charged divalent or polyvalent crosslinkers. The main strategies used for physical crosslinking of droplets produced by ME are shown in Figure 8.

7.1.1 Internal gelation

In the internal gelation method (Figure 8a), the dispersed phase contains a gel-forming polymer and a crosslinking agent in a nondissociated (inactive) form (e.g. CaCO₃ particles instead of Ca²⁺). Solid beads are formed by adding a species (e.g. H⁺) that diffuses into the droplets and triggers the release of a crosslinking agent in its active form. In the case of CaCO₃/H⁺/alginate system, the released Ca²⁺ ions bind to the L-guluronate residues of alginate, crosslinking the polymer and causing the droplets to gel. The H⁺ ions can be added by dropping glacial acetic acid into the resultant W/O emulsion under stirring, as shown in Table 5A. The size of CaCO₃ particles should be about 10 times smaller than the pore size of the membrane to prevent pore blockage. A 10-μm microengineered membrane was blocked when the size of CaCO₃ particles suspended in the oil phase phase was 2.3 μm, but no blockage was observed when a 20-μm membrane was used (Hanga and Holdich, 2014). For SPG membrane, blockage is more likely due to tortuous and interconnected pore structure. Another disadvantage of internal gelation is that Ca²⁺ could be non-uniformly distributed in the dispersed phase, due to grains of nondissolved CaCO₃ in the beads (Ogończyk et al., 2011).

Gelation of alginate with Ca²⁺ is a reversible process and the Ca-alginate beads can be solubilised in an aqueous solution containing monovalent ions due to exchange of Ca²⁺ with non-cross-linkable monovalent ions. Irreversible alginate gel can be synthesised using alginate with phenol moieties, which can be crosslinked via oxidative C-C and C-O coupling with hydrogen peroxide (Sakai et al., 2007).

7.1.2 External gelation

In the external gelation method (Figure 8b and Table 5B), the aqueous phase droplets contain only a polymer or a mixture of polymers and the crosslinking agent is added once the W/O emulsion is formed. The dispersed phase also contains encapsulants, such as microbial cells,
if they need to be entrapped into a hydrogel matrix (Choi et al., 2014). Typical crosslinking agents are Ca\(^{2+}\) for alginate beads, glutaraldehyde (GA) and tripolyphosphate (TPP) for chitosan beads and GA for haemoglobin-albumin microspheres. In the case of calcium alginate and chitosan/TPP beads, cross-linking involves electrostatic interactions, but in the case of GA cross-linked polymers, the gelling occurs due to covalent bonding between amino groups of the polymer and aldehyde groups of GA and formation of a Schiff-base type bond. In order to maintain the original droplet size distribution after cross-linking, toluene saturated with GA was used for cross-linking reaction, rather than aqueous GA solution (Wang et al., 2005). The oil phase used in the external gelation was usually a mixture of oil-soluble surfactant and low-viscosity organic solvent, such as iso-octane, kerosene or 7:5 (v/v) paraffin/petroleum ether mixture.

7.1.3 Gel formation by cooling
Polymers like gelatine and agarose can form hydrogels upon cooling from their aqueous solutions. The gel formation is due to coil-to-helix transition: coil → helix → gel (Viebke et al., 1994). The first step in this process is the transition of polymer from a random coil to helix confirmation and the second step is association and branching of these helices into a 3D network. This method was used to produce agarose beads by emulsifying agarose solution using SPG membrane at 55–70 °C, followed by cooling the resultant W/O emulsion (Figure 8c and Table 5C). In ME using SPG membrane, the mean size of agarose beads was found to be proportional to the mean pore size of SPG membrane:

\[d_{\text{bead}} = n d_p \]

(13)

In DME, \(n = 3 \) for \(d_p = 5–20 \) µm (Zhou et al., 2007) and \(n = 3.6–3.7 \) for \(d_p = 23–30 \) µm (Zhao et al., 2014). In PME, \(n = 0.49 \) for \(d_p = 6–19 \) µm (Zhou et al., 2009). No difference in size was found between agarose droplets and produced beads. The droplets were much more uniform when low-viscosity mixture of liquid paraffin and petroleum ether oil (7:5 v/v) was used as the continuous phase liquid than high-viscosity oils such as pure paraffin oil and vegetable oil (Zhou et al., 2007).

7.1.4 Gel formation by droplet merging (coalescence)
In this method (Figure 8d), microgels are formed by mixing two W/O emulsions: emulsion 1 containing droplets of the polymer solution and emulsion 2 containing droplets of the cross-linking agent. The crosslinking mechanism involves merging two droplets (1 and 2) and
mixing of their contents, which triggers a crosslinking reaction within the fused droplet. However, a stochastic nature of the coalescence process inevitably leads to the formation of polydisperse beads even if the original emulsions are monodisperse (Sugiura et al., 2005). Alginate beads were created by mixing together alginate and CaCl₂ emulsion droplets and chitosan beads were obtained by fusing acidic chitosan drops and sodium hydroxide drops. In the latter case, the gelling was a result of precipitation of chitosan in a basic environment formed within the merged droplets (Table 5D). Emulsion 1 must be prepared by ME and emulsion 2 can be prepared by ultrasonication or ME. Hybrid chitosan/alginate beads were formed by merging a chitosan and alginate droplet and subsequent electrostatic interaction between a polycation (chitosan) and polyanion (alginate) within the combined droplet.

Hollow chitosan beads were fabricated using the following procedure (Figure 8 e): (i) alginate beads were prepared by mixing together two W/O emulsions containing sodium alginate and CaCl₂ droplets; (ii) the produced alginate beads were coated with chitosan solution by mixing the resultant alginate beads with a W/O emulsion containing chitosan droplets; (iii) chitosan layer deposited onto the surface of alginate beads was crosslinked by mixing chitosan-coated alginate beads with the W/O emulsion containing tripolyphosphate in the aqueous phase droplets. Polyphosphate has twofold action: it is a crosslinker for chitosan and Ca²⁺ catcher for calcium alginate gel, which results in the dissolution of alginate core and formation of hollow chitosan particles.

7.1.5 Gel formation by heating
Chitosan beads were fabricated by reverse thermal gelation of the droplets containing quaternized chitosan and glycerol-2-phosphate (GP) (Table 5E). The gelation occurred at ~37°C due to hydrophobic interactions between chitosan chains that are not possible at room temperature due to protective hydration of the chains in the presence of GP (Wu et al., 2008).

W/O/W emulsions containing gelled water droplets were obtained by a three-stage process shown in Figure 9: (i) formation of W/O emulsion with submicron aqueous droplets by high-pressure homogenisation; (ii) thermal gelation of whey proteins within the aqueous droplets at 80°C; (iii) preparation of W/O/W emulsion by mixing the W/O emulsion with gelled water droplets and an external aqueous phase and homogenising this course emulsion by PME (Surh et al., 2007). The thermal gelation of whey protein isolate is a two-step process consisting of unfolding protein molecules and covalent cross-linking of unfolded protein chains, due to
formation of disulphide (S-S) bonds. The prepared W/O/W emulsion has improved stability and controlled release properties.

7.2 Integration of membrane emulsification and melt solidification

Membrane emulsification / melt solidification process involves ME above the melting point \(T_m \) of the dispersed phase followed by cooling the emulsion below the melting point. This approach was used for fabrication of solid lipid particles for oral drug delivery (Kukizaki, 2009c), low-melting-point metal particles for soldering microcomponents in microelectronics (Torigoe et al., 2011) and thermochromic liquid crystal particles for digital particle tracking thermography/velocimetry (Segura et al., 2013). Solid lipid microparticles are particles formed from lipids that are solid at room temperature, such as saturated fatty acids (palmitic acid, stearic acid and behenic acid) and mono-, di-, and triesters of glycerol and polyethylene glycol (PEG) (Table 6). The melting point of these lipids lies between 44 and 65 °C and ME must be carried out at the temperature which is at least 5°C higher than the melting point of the lipid to prevent membrane fouling.

Three different template emulsions used for fabrication of solid lipid particles using ME are O/W, W/O/W and S/O/W (Table 6). The O/W melt dispersion method was used to produce solid lipid microcarriers for encapsulation of lipophilic active ingredients (LAI), such as vitamin E (Laouini et al., 2014). LAI is first dissolved in a hot melted lipid and the solution is premixed with a hot aqueous surfactant solution and passed through the membrane multiple times (Figure 10). The produced O/W emulsion is rapidly cooled to the room temperature to solidify the dispersed lipid phase.

The W/O/W melt dispersion method was used to produce solid lipid microcarriers for encapsulation of hydrophilic active ingredients (HAI), such as vitamin B12. Following oral administration, HAI gradually releases from the carriers in the small intestine due to degradation of the solid lipid matrix by lipase. Kukizaki and Goto (2007c) developed a two-stage DME process to prepare first a W/O and then W/O/W emulsion using SPG membrane with a pore size of 0.3 and less than 1 μm, respectively (Figure 11). The droplet to pore size ratio was 3.3–3.4 in both cases. Finally, the W/O/W emulsion was cooled down to crystallise.
the lipid phase and convert the W/O/W emulsion into W/S/W dispersion. W/S microparticles were obtained by filtration of the W/S/W dispersion.

W/S microparticles contain a considerable amount of water (up to 40 wt%), because water droplets within the carrier remain intact after crystallisation of the oil phase. To improve microbiological stability of the solid lipid particles, the inner water was removed from the W/O emulsion by vacuum evaporation at 60°C to obtain a dispersion of HAI nanoparticles in the lipid melt (Figure 12) (Kukizaki and Goto, 2009). The presence of PGPR in the oil phase inhibited droplet coalescence and particle aggregation during vacuum dehydration, so the final size of PGPR-coated HAI nanoparticles in the S/O dispersion was 130 nm. This S/O dispersion was then dispersed in the aqueous surfactant solution by PME to form a hot S/O/W emulsion. The ratio of the mean size of microcarriers to the mean pore size was 1–1.5 (Kukizaki and Goto, 2009). Finally, the S/O/W emulsion was cooled to room temperature to obtain solid lipid microparticles with embedded nanoparticles of HAI.

7.3 Integration of membrane emulsification and spray drying

Ramakrishnan et al. (2013) produced fish oil microcapsules coated with maltodextrin by spray drying fish oil-in-water emulsions. Fish O/W emulsions stabilised with 2 wt% Tween 20, 1–10 wt% WPI or 1–10 wt% WPH were prepared by PME using nylon or nitrocellulose mixed esters (MCE) membrane. The emulsions were mixed with a wall material (maltodextrin) in 1:1 or 1:3 (oil to maltodextrin) mass ratio and spray dried. The oil encapsulation efficiency was higher when the emulsion was prepared by PME than using Ultra-Turrax®. Berendsen et al. (2015) prepared microcapsules containing procyanidin-rich extracts from W/O/W emulsions stabilised with WPI-polysaccharide soluble complexes using PME with SPG membrane. Before spray drying, W/O/W emulsions were mixed with maltodextrin in 1:3 (oil to maltodextrin) ratio. The highest encapsulation efficiency was achieved using multiple emulsion droplets stabilised with WPI-CMC complex.

7.4 Integration of membrane emulsification and organic solvent removal from droplets

Membrane emulsification was combined with solvent removal to produce synthetic biodegradable polymeric particles (Ito et al., 2011), nanoclusters (Chang and Hatton, 2012),
liquid-core/polymer-shell particles (Sawalha et al., 2008), Janus particles (Chang and Hatton, 2012), hemispherical particles (Yamashita et al., 2012), and quantum dot barcodes (Wang et al., 2013). The strategy used for solvent removal from the droplets was evaporation at room temperature, fast diffusion into large amount of water (Ito et al., 2011; Imbrogno et al., 2014; 2015) and pervaporation through polypropylene hollow fibers (Chang and Hatton, 2012).

7.4.1 Solvent removal from single emulsions

A. Synthetic biodegradable polymeric particles loaded with hydrophobic actives

Coherent particles were prepared by emulsifying an organic polymer solution in an aqueous surfactant solution by ME, followed by organic solvent removal from the oil phase (Figure 13a). Typical polymers used in the process are polylactide (PLA), poly(lactide-co-glycolic acid) (PLGA) and polylactide-co-poly(ethylene glycol) (PELA) and a volatile organic solvent was mainly ethyl acetate or dichloromethane (DCM) (Table 7A). In the absence of swelling, the diameter \(d_{part} \) of a particle formed after complete solvent removal from a droplet with an initial diameter of \(d_d \) can be calculated from the equation (Vladisavljević et al., 2012b):

\[
d_{part} = \left[\frac{x_{pol}}{(1-\varepsilon_{part})(\rho_d / \rho_{pol})}\right]^{1/3} d_d
\]

where \(x_{pol} \) is the mass fraction of polymer in the dispersed phase, \(\rho_{pol} \) is the polymer density, \(\varepsilon_{part} \) is the particle porosity, and \(\rho_d \) is the density of the dispersed phase. In repeated premix SPG ME, the particle size can be more than 10 times smaller than the membrane pore size (Table 7A), whereas in direct SPG ME, the particle size is typically larger than the membrane pore size. In order to produce PLGA particles with 100% yield by PME, the minimum pore size of SPG membrane has to be 0.5 \(\mu \)m (Ito et al., 2011). When the pore size of SPG membrane was reduced from 0.5 to 0.26 \(\mu \)m, no change in particle size was observed, but the yield of PLGA particles was very low due to pore clogging by the polymer (Ito et al., 2011).

Drug-loaded biodegradable particles were prepared by adding hydrophobic drugs such as rifampicin (Doan et al., 2011), haloperidol (Meyer et al., 2010) and paclitaxel (Wang et al., 2015) to the oil phase prior to ME. The drug loading, encapsulation efficiency and release profile are dependent on the polymer hydrophobicity. The highest loading and encapsulation efficiency of paclitaxel (PTX) was achieved with PLGA (5.2% and 70.5% respectively), followed by PLA (4.3% and 64.3%) and PELA (3.4%, 56.7%), which was attributed to the highest hydrophilicity of PLGA (Wang et al., 2015). During formation of PLGA particles,
PTX precipitates faster than PLGA forming nanoparticles that migrate towards the interior of the particle due to their high hydrophobicity. With further solvent evaporation, PLGA precipitates and forms a protective polymer layer around drug nanoparticles. On the other hand, PLA precipitates faster than PTX and the formed polymer network prevents the migration of PTX within the particle. As a result, the drug was uniformly distributed within PLA particles and less effectively encapsulated (Wang et al., 2015).

The encapsulation efficiency of rifampicin in PLGA particles produced by DME was 50–67% regardless of the particle size (Ito and Makino, 2004). For parenteral depot systems, the optimum particle diameter is 10–50 µm (Veldhuis et al., 2009). The particles smaller than 10 µm can easily be cleared from the injection site by phagocytosis and the particles larger than 50 µm require needles larger than 27 gauge, which may cause significant patient discomfort. PLGA particles within that size range can be produced by DME using both SPG and microsieve membranes (Gasparini et al., 2008; Veldhuis et al., 2009). The particle size of dry powder aerosols for pulmonary drug delivery should be less than 5 µm, and the particle size less than 2 µm is preferable for alveolar deposition (Bao and Zhao, 2010). PLGA particles smaller than 0.2 µm can be produced by PME with SPG membrane (Ito et al., 2011).

B. Liquid-core/polymer-shell particles

Liquid-core/polymer-shell particles were produced by combining PME to form O/W emulsion and solvent evaporation to induce phase separation within the oil droplets and formation of core/shell structure (Sawalha et al., 2008). As shown in Figure 13b, internal phase separation starts with the removal of volatile solvent from the drops containing a mixture of polymer, such as PLA, a volatile water-immiscible good solvent for the polymer such as DCM, and non-volatile water-immiscible non-solvent (‘oil’ e.g., a C6–C20 hydrocarbon). As solvent gradually evaporates, the drop shrinks and becomes increasingly more enriched in polymer and non-solvent. When the drop composition reaches the binodal boundary, the phase separation occurs within the drop (‘the internal phase separation’), leading to the formation of tiny droplets of polymer-enriched phase (which are rich in solvent and polymer) dispersed in a polymer-poor phase (mainly consisting of non-solvent). As the polymer is more hydrophilic than the non-solvent, polymer-enriched droplets migrate within the drop to the interface with the aqueous phase, where they fuse and spread to engulf the oil droplet (Loxley and Vincent, 1998). Further solvent removal causes the polymer to precipitate in the shell, forming a
coherent solid envelope around the oil. This method was used to prepare dodecane-core/PLLA-shell particles using a mixture of PLLA, DCM and dodecane as a dispersed phase (Sawalha et al., 2008) and hexadecane-core/Eudragit®-shell particles starting from the droplets composed of Eudragit FS 30D, hexadecane, and DCM (Table 7B) (Wagdare, 2011).

The presence of 25–30 wt% alcohol in the continuous phase during evaporation of DCM increases the rate of solvent removal from the droplets, as DCM is more soluble in alcohol-water mixtures than in pure water (Sawalha et al., 2008). As a result, the polymer solidifies more quickly and smaller and more uniform PLLA particles can be obtained. At higher alcohol concentrations in the continuous phase (>50% for methanol, >45% for ethanol and >35% for 2-propanol), DCM is completely miscible in the continuous phase, which results in nanoprecipitation of PLLA after mixing the two phases and formation of PLLA nanoparticles.

C. Janus particles and non-spherical particles

Polymeric Janus particles were formed using the method shown in Figure 13c, where an oil phase containing a 1:1 mixture of polymer 1 and polymer 2 (PMMA and P(St-co-BIEM) or PS and P(MMA-co-CMS), respectively) dissolved in toluene was emulsified using SPG membrane (Table 7C), which was then followed by solvent evaporation (Yamashita et al., 2008; Ahmad et al., 2008). Bifacial morphology is favoured when $S_1 < 0$, $S_2 < 0$, and $S_3 < 0$, where S_1, S_2, and S_3 are the spreading coefficients for polymer 1 rich phase, polymer 2 rich phase, and continuous phase, respectively. In the absence of interactions between the phases, spreading coefficients are given by:

\[
S_1 = \gamma_{23} - (\gamma_{12} + \gamma_{13})
\]

(15)

\[
S_2 = \gamma_{13} - (\gamma_{12} + \gamma_{23})
\]

(16)

\[
S_3 = \gamma_{12} - (\gamma_{13} + \gamma_{23})
\]

(17)

When $S_1 < 0$, $S_2 > 0$, and $S_3 < 0$, the particles adopt a core/shell morphology with polymer 1 as a core and polymer 2 as a shell, and when $S_1 > 0$, $S_2 < 0$, and $S_3 < 0$, polymer 1 will appear as a core and polymer 2 as a shell.

Hemispherical microparticles were produced by the cleavage of Janus PMMA/P(St-co-BIEM) particles in 9/1 (v/v) acetone/water solution for 5 s. The particle cleavage is a result of stress which occurs at the boundary between the two polymers due to uneven swelling of PMMA and P(St-co-BIEM) in the presence of acetone (Yamashita et al., 2008). In addition, the
polymer swelling weakens cohesive intermolecular forces between the two polymers due to reduced entanglement between PMMA and P(St-co-BIEM) chains at the interface. When the interfacial stresses caused by uneven swelling of the two hemispheres overcome cohesive forces between them, Janus particles split into two hemispheres, as shown in Figure 13c.

“Mushroom-like” PMMA/P(St-co-BIEM)-g-PDM Janus particles with pH-responsive PDM half-shells were fabricated by surface-initiated atom transfer radical polymerization (ATPR) of 2-(dimethylamino)ethylmethacrylate (DM) using spherical PMMA/P(St-co-BIEM) Janus particles with bromine end groups at one side of the surface as macroinitiator (Tanaka et al., 2010) (Figure 13c).

D. Composite core/shell particles

Composite PLGA particles coated with 50 nm-silica nanoparticles were fabricated by DME combined with solvent evaporation and layer-by-layer (LbL) electrostatic deposition (Ito et al., 2010). Due to the presence of terminal carboxyl groups on their surface, PLGA particles are negatively charged in aqueous solutions and can be coated with positively charged polymers and particles. The LbL electrostatic deposition involved adsorption of polycation poly(allylamine hydrochloride) (PAH) onto the surface of negatively charged PLGA particles, followed by deposition of negatively charged silica nanoparticles on the surface of positively charged PAH/PLGA composite particles (Figure 13d).

Composite PLGA particles coated with poly(ethyl 2-cyanoacrylate) (PE2CA) were prepared by DME combined with interfacial polymerisation and solvent evaporation (Lee et al., 2009). The dispersed phase composed of PLGA, ethyl 2-cyanoacrylate monomer, doxorubicin, and DCM (Table 7D) permeated through SPG membrane and the monomer was rapidly polymerized in contact with a continuous phase due to catalytic action of hydroxyl anions. After solvent evaporation, PE2CA formed a polymer shell around PLGA (Figure 13e), which enabled to reduce the initial burst release of doxorubicin from the particles.

7.4.2 Solvent removal from W/O/W or S/O/W emulsion

A. Ultrasound contrast agents

Ultrasound contrast agents (UCAs) are gas-filled capsules with a mean diameter of 2–5 μm composed of a gas core and biodegradable lipid, protein or polymer shell. They can be
injected into the blood flow to increase the backscattered signal from blood when insonified by ultrasound waves in Contrast Enhanced Power Doppler Sonography (Cosgrove, 2006). Targeted UCAs are UCAs containing adhesion ligands incorporated into their external surface, which allows binding to a specific cell type (Klibanov, 2007). Targeted UCAs can be retained on the endothelium at the site of pathology and used for molecular imaging or ultrasound-triggered targeted drug release (Böhmer et al., 2009). UCA particles were fabricated by combining two-step emulsification process (ultrasonication to obtain a primary W₁/O emulsion and ME to form a multiple W₁/O/W₂ emulsion) and solvent evaporation to solidify the droplets (Figure 14a and Table 8A). Ammonium bicarbonate can be added as a porogen in the internal water phase W₁ to enhance pore formation during solvent evaporation as a result of release of gas bubbles: \(\text{NH}_4\text{HCO}_3 \leftrightarrow \text{NH}_3 + \text{H}_2\text{O} + \text{CO}_2 \). The washed hardened particles were coated with mannitol and polysorbate to improve their biocompatibility, freeze dried to remove water from the core and loaded with a suitable high-molecular-weight gas, such as C₃F₈, C₄F₁₀ or SF₆ to improve their echogenicity. SEM images revealed that the prepared particles had core/shell morphology rather than matrix structure due to coalescence of internal voids during processing (Hou et al., 2009; Liu et al., 2014).

B. Synthetic biodegradable polymeric particles loaded with hydrophilic actives

Synthetic biodegradable polymeric particles have important applications in controlled delivery of hydrophilic protein/peptide drugs (Wang et al., 2015b). Biodegradable polymeric particles loaded with hydrophilic actives can be prepared by double emulsion-solvent evaporation method. The process starts with the preparation of W₁/O emulsion containing a hydrophilic active dissolved in the inner water phase (W₁) by ultrasonic or high-shear homogenisation. Ultrasonication results in smaller droplets which are more uniformly distributed in a polymer matrix after solvent evaporation as a result of release of gas bubbles: \(\text{NH}_4\text{HCO}_3 \leftrightarrow \text{NH}_3 + \text{H}_2\text{O} + \text{CO}_2 \). The encapsulation efficiency, loading capacity and release rate of the encapsulated proteins (insulin, BSA, antigens) depends on the hydrophobicity and amphiphilicity of the polymer matrix (Wu et al., 2015). The release rate of insulin from insulin-loaded PLA particles was very slow (less than 20% after 70 days) due to hydrophobicity and slow degradation rate of PLA, but it was much faster using PLA/PLGA blends instead of pure PLA (Liu et al., 2006). The encapsulation efficiency and loading capacity of biodegradable polymeric particles can be significantly improved by incorporating
an amphiphilic polymer in the polymer matrix. For example, the encapsulation efficiency of BSA-loaded PLGA particles prepared by PME was improved from 64 to 91% by adding phospholipids to the oil phase, which was attributed to the formation of protective lipid barriers at the W₁/O and O/W₂ interfaces upon solvent evaporation, preventing BSA from diffusing out of the particles (Ma et al., 2014). Similarly, the encapsulation efficiency of hepatitis B surface antigen in PLA particles was improved from 61 to 90% by replacing PLA with PLA-mPEG diblock copolymer, which was attributed to the stabilizing effect of the amphiphilic copolymer whose hydrophilic PEG segments were oriented towards the aqueous phase and hydrophobic PLA segments towards the interior of the particle (Wei et al., 2008). Moreover, particles formed from amphiphilic polymers gave a lower initial rapid release of incorporated hydrophilic actives, known as the burst effect. For example, PELA particles prepared by PME showed lower burst effect and more constant release of recombinant human growth hormone than PLA and PLGA particles, due to the more stable interface in the presence of amphiphilic PELA polymer (Wei et al., 2011). BSA-loaded PLHMGA particles prepared by cross-flow DME system using a microsieve membrane provided a continuous release of fluorescently labelled BSA at the site of administration over a period of 3 weeks after subcapsular renal injection (Kazazi-Hyseni et al., 2015).

C. Composite polymeric particles
Magnetic polymeric particles were fabricated by in-situ magnetization of internal water phase in W₁/O/W₂ emulsion prepared by a two-stage emulsification involving ultrasonication and PME. A multiple emulsion that was used as a template was composed of FeCl₂/FeCl₃ aqueous solution as the W₁ phase and a mixture of polymer, volatile organic solvent and surfactant as the oil phase (Table 8D and Figure 14b). In-situ coprecipitation of Fe²⁺ and Fe³⁺ ions within the inner droplets was initiated by adding ammonium hydroxide to the external water phase resulting in the diffusion of OH⁻ from W₂ through O into W₁: Fe²⁺ + 2Fe³⁺ + 8OH⁻ → Fe₃O₄ + 4H₂O. Finally, the magnetized droplets were solidified by evaporation of DCM from the oil phase (Yang et al., 2010). Magnetic polymeric particles can also be prepared by dispersing pre-fabricated magnetite nanoparticles in the oil phase prior to ME (Omi et al., 2001).

Quantum dot (QD) loaded polymeric microparticles (QD barcodes) were prepared by emulsifying a mixture of hydrophobic QDs, pre-formed polymer (PSMA or PS) and organic solvent (toluene or DCM) in an aqueous surfactant solution through SPG membrane (Wang et al., 2013; Han et al., 2015) (Table 8E). The emulsification step was followed by solvent
evaporation and surface functionalization of the particles in order to generate carboxyl groups, which are suitable for covalently immobilisation of antibodies. QD loaded PS particles stabilised by SDS were functionalised by exposing the negatively charged particle surface sequentially to PAH polycations and PAA polyanions (Figure 14c). After deposition of PAA, different antibodies can be covalently attached onto the particles via an EDC/NHS-mediated amidation reaction. Wang et al. (2013) generated a barcode library consisted of 12 barcodes using only one type of QDs through the combination of four intensity levels and three size levels. Different intensity levels were obtained using various concentrations of QDs in the oil phase prior to ME, while different size levels were achieved using SPG membranes with different pore sizes.

D. Nanoclusters

The main difference in the formulation of emulsion for production of nanoclusters and composite polymeric particles is that in the former case the oil phase does not contain any dissolved polymer, so that after solvent evaporation nanoparticles self-assemble into 3D aggregates, while in the latter case after solvent evaporation nanoparticles become embedded within the polymer matrix. Silica-coated nanoclusters with a mean size of 50–350 nm composed of magnetite nanoparticles were prepared by emulsifying a mixture of magnetite nanoparticles (≈10 nm) and hexane in an aqueous surfactant solution by ME, followed by pervaporation of hexane from nanoparticle-laden hexane droplets (Chang and Hatton, 2012). A silica layer was built-up on the surface of nanoclusters by ammonia-catalysed hydrolysis and condensation of TEOS (Figure 14d). The silica coating provides silanol groups for surface functionalization of nanoclusters with various organic ligands.

7.4.3 Solvent removal from O/O emulsion

Piacentini et al. (2013c) prepared porous polyethersulfone (PES) particles by DME and subsequent nonsolvent-induced phase separation in the formed oil-in-oil (O/O) emulsion. The O/O emulsion composed of a mixture of polymer (PES) and solvent (N,N-dimethylformamide, DMF) as a dispersed phase and a mixture of liquid paraffin, antisolvent (dodecane or isooctane) and oil-soluble surfactant as a continuous phase was prepared in the Dispersion Cell using a hydrophobic microengineered membrane. The displacement of solvent by nonsolvent immediately after droplet formation led to polymer precipitation inside the droplets and phase separation of initially homogeneous polymer solution into polymer-rich
and polymer-poor regions (Figure 15). The process is similar to the preparation of asymmetric polymeric membranes by the Loeb-Sourirajan phase inversion method (Strathmann and Kock, 1977). In this process, a casting solution composed of a polymer/solvent mixture is immersed into the nonsolvent coagulation bath. The displacement of solvent by antisolvent causes phase separation in the casting solution resulting in the formation of a porous polymer film.

7.5 Integration of membrane emulsification and suspension polymerisation

Suspension polymerisation is a process in which polymer is formed within monomer or monomer-solvent droplets, which are dispersed in a continuous phase that is a nonsolvent for both the monomer and the formed polymer (Slomkowski et al., 2011). The process differs from emulsion polymerisation in two main aspects: 1) the polymerisation initiator is located in the dispersed phase; 2) synthesised polymer particles have a diameter greater than 1 µm, whereas in emulsion polymerisation the particle size is typically about 0.1 µm. The ME-suspension polymerisation (MESP) method was used to prepare polymer particles with tuneable size, shape, internal morphology, and porosity (Omi et al., 1994). Suspension polymerisation was performed within O/W (Ma et al., 2003), W/O (Hu et al., 2011) or W/O/W emulsion prepared by ME (Ma et al., 2004) and was combined with droplet swelling method to synthesise particles from hydrophilic monomers (Omi et al., 1997; Vladisavljević and Williams, 2005).

7.5.1 Permanently porous particles

Permanently porous particles can find applications as ion-exchangers, adsorbents, packing in chromatography columns, hydrogen storage materials, and catalyst or enzyme supports. They have been fabricated by the MESP method using porogenic solvents to induce phase separation (Lee et al., 2010; Zhou et al., 2011; Sun et al., 2005). A binding selectivity of prepared porous particles toward specific analytes can be enhanced by molecular imprinting (Kou et al., 2012).

A. Permanently porous particles prepared using porogenic solvents only

When the dispersed phase consists only of monomer(s), crosslinker and polymerisation initiator, the produced particles are hard glassy transparent beads with very low surface area in the dry state of less than 10 m² g⁻¹ (Sherrington, 1998). These polymeric particles swell in a
thermodynamically good solvent and create a porous internal structure which is temporarily and disappears when the swollen particles are re-dispersed in a bad solvent. However, when the reaction mixture also contains a porogenic solvent at an appropriate level, the produced particles are hard but opaque, due to permanently porous structure with a high surface area ranging from \(~50\) to \(~1000\) \(\text{m}^2\) \(\text{g}^{-1}\) (Sherrington, 1998). The presence of porogen is not the only condition for creation of porous structure. Polymer particles prepared with insufficient amount of crosslinker are essentially nonporous, regardless of the presence of porogen.

Lee et al. (2010) prepared porous poly(styrene-co-divinylbenzene) particles using styrene (St) as a monomer, divinylbenzene (DVB) as a crosslinker and hexadecane (HD) as a porogen (Table 9A). In this process, polymer chains are initially fully soluble in the dispersed phase, but at a certain polymer concentration phase separation occurs and the reaction mixture separates into a polymer-rich phase and a porogen-rich phase (Figure 16a). Removal of the porogen from phase-separated particles yields porous beads whose total pore volume depends on the amount of porogen added in the dispersed phase (Sherrington, 1998). The point at which phase separation occurs depends on the nature of porogen, its compatibility with the polymer network and the concentration at which it is used. A porogen must be used at a concentration that exceeds the amount needed for the maximum swelling of the polymer since otherwise all porogen will be immobilised within the polymer network and phase separation will not occur. The resulting P(St-co-DVB) beads can exhibit either porous matrix or core/shell morphology depending on the amount of hexadecane used. Porous beads with a matrix structure shown in Figure 16a were formed when hexadecane was added at 20–30 wt% relative to total monomer (Lee et al., 2010). When hexadecane was used at higher concentrations (60–65 wt% relative to total monomer), particles with a core/shell morphology were formed due to rapid phase separation during polymerisation (Figure 18a) (Lee et al., 2010). Similar to that, Ma et al. (2003c) observed that a complete engulfing of hexadecane by polystyrene or poly(styrene-co-N,N-dimethylaminoethyl methacrylate) \([\text{P}(\text{St-co-DMAEMA})]\) was progressively easier when the amount of hexadecane in the dispersed phase gradually increased from 10 to 50 wt%.

In addition to the relative amount of porogen used, particle morphology can be controlled by the nature of the porogen. Hao et al. (2009) prepared porous PDVB particles with different morphologies using porogens with different molecular weight and chemical structure at the
fixed porogen to monomer mass ratio of 1:1. When a porogen with a poor compatibility with the polymer was used, such as heptane, phase separation occurred at low conversion of monomer and the prepared particles had a low surface area with a large proportion of macropores (>50 nm). When a porogen with a good compatibility with the polymer was used (e.g. toluene), phase separation occurred at much higher conversion and the particles had a high surface area with a majority of the pores in the micropore (<2 nm) and mesopore (20–50 nm) region. When a porogen had very poor compatibility with PDVB (e.g. hexadecane and liquid paraffin), phase separation rapidly occurred resulting in a porogen-core/polymer-shell particle morphology.

B. Hypercrosslinked particles

Surface area of porous polymer particles can be increased by post-polymerisation crosslinking of polymer chains (Urban et al., 2010). Hypercrosslinked P(St-co-DVB) particles with a surface area above 1300 m2 g$^{-1}$ were prepared by the MESP method and subsequent crosslinking of polystyrene with chloromethyl methyl ether (Zhou et al., 2011). A two-step crosslinking process involved chloromethylation of the benzene rings of polystyrene chains (activation step) followed by the Friedel-Crafts alkylation of chloromethylated polystyrene, resulting in the formation of methylene bridges between polymer chains (Figure 27b). Porous P(St-co-DVB) particles can be rendered hydrophilic by the attachment of hydrophilic polymers via Friedel-Crafts acylation (Li et al., 2013).

C. Molecularly imprinted polymer particles

Molecularly imprinted polymer (MIP) particles are particles synthesised by polymerisation in the presence of a template molecule that is extracted afterwards, thus leaving nanocavities in the polymer network which are complementary in shape, size and chemical functionality to the template molecule (Vasapollo et al., 2011). MIP particles are capable of rebinding the original template with high sensitivity and specificity and can be used in targeted drug delivery, molecular sensing, and highly selective separation and catalytic processes. Kou et al. (2012) fabricated submicron molecularly imprinted P(MAA-co-EGDMA) particles by PME using chloramphenicol (CAP) as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker and ethyl acetate as a porogen (Figure 17 and Table 9B). The first step was the formation of a complex between CAP and MAA in the dispersed phase liquid via self-assembly of monomer molecules around the template, followed by emulsification step by PME and polymerisation within the droplets.
in the presence of a large excess of EGDMA. After polymerisation and phase separation, the template and porogen were removed from the polymer by washing with methanol/acetic acid solution leaving behind cavities embedded in a porous polymer matrix. The prepared particles exhibited high selectivity and adsorption capacity for CAP compared to non-imprinted polymer particles prepared under the same conditions, but in the absence of CAP (Kou et al., 2012). Wolska and Bryjak (2014) fabricated 40-µm size molecularly imprinted P(MMA-co-EGDMA) particles by DME using bisphenol (BPA) as a template, methyl methacrylate (MMA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker and n-octane as a porogen (Table 19B). The prepared microspheres were used as highly selective sorbents for removal of BPA from aqueous solutions.

7.5.2 Liquid-core/polymer-shell and hollow capsules

Liquid-core/polymer-shell capsules were produced by combining ME with one-stage suspension polymerisation (Lee et al., 2010; Ma et al., 2003c), two-stage suspension polymerisation (Omi et al., 2000), interfacial polymerisation (Chu et al., 2003) or in-situ polymerisation (Pan et al., 2012; Liu et al., 2011). The prepared particles were investigated as potential candidates for encapsulation of phase change materials (Chaiyasat et al., 2009; Rahman et al., 2012) and self-healing agents (Liu et al., 2011). A liquid encapsulated within the shell can be evaporated or extracted to produce hollow polymer capsules providing excellent light scattering and thermal insulation properties that can be used as coatings, pigments, floating drug delivery systems, and catalyst supports (Liu et al., 2010).

A. One-stage suspension polymerisation

Ma et al. (2003c) prepared HD-core/PSt-shell or HD-core/P(St-co-DMAEMA)-shell particles by DME followed by one-stage suspension polymerisation using emulsion formulations given in Table 9C. A core/shell morphology with a polymer shell completely engulfing a HD core (Figure 18a) is favoured when the spreading coefficients are: \(S_1 = \gamma_{23} - (\gamma_{12} + \gamma_{13}) < 0 \), \(S_2 = \gamma_{13} - (\gamma_{12} + \gamma_{23}) > 0 \), and \(S_3 = \gamma_{12} - (\gamma_{13} + \gamma_{23}) < 0 \), where \(\gamma_{12} \) is the interfacial tension between the HD and polymer phase, \(\gamma_{13} \) is the interfacial tension between the HD and aqueous phase, and \(\gamma_{23} \) is the interfacial tension between the polymer and aqueous phase. When the monomer conversion was lower, a higher amount of residual monomer was present in the HD phase, resulting in a lower \(\gamma_{13} \) value and \(S_2 < 0 \), which led to incomplete engulfing
of HD and a half-moon particle morphology. The incorporation of hydrophilic DMAEMA units in the polymer network decreased the γ_{23} value and HD could be encapsulated completely even when the monomer conversion was low (Ma et al., 2003c).

B. Two-stage suspension polymerisation

Omi et al. (2000) prepared core/shell capsules with a heptane/benzene core and poly(MMA-co-EGDMA-co-2-EHA) shell by two-stage suspension polymerisation. Large seed droplets composed of a heptane/benzene (4:1) mixture, the initiator and a hydrophobic monomer (2-EHA) were prepared using SPG membrane and this emulsion was mixed with a fine emulsion composed of the droplets of hydrophilic monomers (MMA and EGDMA), prepared by traditional high shear methods. The oil phase of this fine emulsion was absorbed by the seed droplets (stage 1) and the swollen droplets were then polymerised (stage 2). The polymer was more hydrophilic than the porogen, resulting in phase separation with formation of a HP/Bz core and polymer shell (Figure 18b).

7.5.3 Nanoparticle-embedded polymeric microspheres

Nanoparticle-embedded composite polymeric microspheres find numerous applications in biomedicine, water treatment and purification, photovoltaic devices, drug delivery, and energy storage materials (Srivastava et al., 2014). They can be prepared from preformed polymers by ME-solvent evaporation method, as explained in Figure 14b or synthesised starting from monomers by the MESP method (Takeda et al., 2009; Zhou et al., 2012; Supsakulchait et al., 2003). Takeda et al. (2009) produced acrylate microspheres filled with titanium dioxide (TiO₂) using SPG ME and subsequent suspension polymerisation (Table 9D). A uniform distribution of TiO₂ particles in the acrylic monomer with very little agglomeration was achieved in a bead mill using a commercial hyperdispersant. The organic phase permeated through SPG membrane with a pore size of 2 µm with no pore clogging and almost 100% yield of TiO₂. When TiO₂ was dispersed in the organic phase using ultrasonic cleaner, a severe membrane clogging was observed due to significant agglomeration of TiO₂ in the suspension. Zhou et al. (2012) and Zhang et al. (2013) fabricated hypercrosslinked PDVB magnetic particles with a surface area above 1000 m² g⁻¹ by MESP and post-polymerisation crosslinking. Fe₃O₄ nanoparticles with a diameter of 10–15 nm prepared by coprecipitation of
ferrous and ferric ions in the presence of oleic acid could be homogeneously dispersed in the oil phase and passed through a 5-µm SPG membrane without any pore clogging.

7.6 Integration of membrane emulsification and polymerisation on droplet surface

7.6.1 Interfacial polycondensation

Interfacial polycondensation is characterized by wall formation at the surface of the droplets via polycondensation of two monomers, delivered from two different phases. A hydrophobic monomer is dissolved in organic solvent and injected through the membrane into an aqueous phase. A hydrophilic monomer is added to the aqueous phase and polymerization proceeds at the surfaces of the organic phase droplets. Chu et al. (2002) prepared termosensitive capsules with a porous PA shell and PNIPAM chains grafted on the surface of the pores to act as stimuli-responsive gates (Figure 19a). A starting O/W emulsion was prepared by injecting a mixture of TDS (hydrophobic monomer), benzene and xylene into an aqueous solution of PVA and SDS using SPG membrane (Table 10A). A buffer solution containing EDA monomer was then added to the emulsion and core-shell capsules were formed by interfacial polymerisation (Chu et al., 2002). The release rate of both NaCl and vitamin B12 from the prepared capsules was slow at 25 °C and fast at 40 °C, since the expended PNIPAM chains blocked the diffusion at low temperatures, while the collapsed chains opened the pore space for drug release at high temperatures. A positive thermoresponse (i.e., higher release rate at higher temperature) was attributed to low graft density of PNIPAM chains in the pores (small number of grafted chains per unit pore area).

7.6.2 In-situ polymerisation

In ISP (in-situ polymerisation), no reactants are included in the dispersed phase and the polymerization occurs exclusively in the continuous phase and on the continuous phase side of the interface, rather than on both sides of the interface, as is the case in interfacial polymerisation. Pan et al. (2012) prepared melamine-formaldehyde (MA-FA) capsules with a shell thickness of ~400 nm by emulsifying oil-based industrial precursor in an aqueous solution of monomers (FA and MA) in the Dispersion Cell using a microengineered nickel membrane, followed by ISP at 65°C (Table 10B and 19b). The prepared capsules were more
uniform that the capsules prepared using the same emulsion formulation in a high shear mixer. Liu et al. (2011) prepared melamine-urea-formaldehyde (MUF) core-shell capsules by emulsifying ENB-based self-healing agent in an aqueous solution of SDS and PVA, followed by mixing the emulsion with an aqueous solution of urea and MA-FA prepolymer and subsequent ISP at 86°C. The prepared capsules can be incorporated into a polymeric host material with the aim of releasing ENB monomer upon crack formation that can repair the crack and therefore autonomously heal the material. The self-healing process is based on ring-opening metathesis polymerisation caused by the capsule rupture (Wu et al., 2008b).

7.7 Integration of membrane emulsification and mini-emulsion polymerisation

In conventional emulsion polymerisation, micellar and homogenous nucleation dominate over droplet nucleation because the monomer droplets are large, which makes them ineffective in competing with monomer-swollen micelles for water-borne free radicals (Schork et al., 2005). In mini-emulsion polymerisation, polymer particles are predominantly formed by entry of free radicals from the aqueous phase into monomer droplets, because they are typically less than 0.5 µm in diameter. Small droplets not only compete effectively for radicals with micelles, but also cause the micelles to dissociate by providing a large interfacial area that must be occupied by surfactant molecules. Kong et al. (2010; 2013) fabricated porous silica nanocapsules loaded with Fe₃O₄ nanoparticles and camptothecin by combining mini-emulsion polymerisation, ME, and sol-gel processing. Nanodroplets with a mean diameter of 120 nm composed of 10-nm magnetite nanoparticles dispersed in octane were prepared by sonication and this miniemulsion was mixed with another emulsion made up of 4-µm styrene droplets prepared by SPG DME. After mixing, styrene from the large droplets diffused through the aqueous phase into nanodroplets until a swelling equilibrium was established.

The polymerisation was initiated by adding potassium peroxydisulfate (KPS), a water-soluble initiator, in the mixed emulsion and involved the following stages (Figure 20a): (i) Formation of free radicals in the aqueous phase by thermal dissociation of KPS: \(S_2O_8^{2-} \rightarrow 2SO_4^{2-} \). These radicals are too hydrophilic to enter the droplets; (ii) polymerisation of styrene in the aqueous phase resulting in oligomers of increasing molecular weight and hydrophobicity: \(nM + SO_4^{2-} \rightarrow M_nSO_4^{2-} \); (iii) Entry of oligoradicals into monomer-swollen nanodroplets, once their chain becomes sufficiently long. The probability for styrene droplets to be
nucleated is very low, because they are large compared to the size of nanodroplets, and hence their interfacial area is orders of magnitude smaller than that of the magnetite nanodroplets. The role of ME was to form uniform micron-sized styrene droplets without submicron-sized droplet fraction, so as to avoid nucleation of styrene droplets and formation of magnetite-free polymer particles. Therefore, in this process styrene droplets act only as monomer reservoirs and nanodroplets are nucleation sites where polymerisation occurs.

The further processing of magnetic polymer nanoparticles involved the following stages (Figure 20b): (i) formation of hydrophilic porous silica shell around the nanoparticles by the Stöber method based on the addition of TEOS and ammonia to the particle suspension; (ii) removal of polystyrene core by burning off the polymer at 400–500 °C; (iii) loading hollow nanocapsules with camptothecin, a hydrophobic anticancer drug that can be trapped inside the capsules due to surface repulsion from the hydrophilic shell. The drug release was triggered by remotely applying magnetic field which caused heat generation inside magnetite nanoparticles and increased drug diffusivity (Kong et al., 2013).

7.8 Integration of membrane emulsification and sol-gel polycondensation

Carbon gel is a porous carbon material that can be synthesized by aqueous polycondensation of phenolic substances with formaldehyde and subsequent drying and pyrolysis in an inert atmosphere (Al-Muhtaseb and Ritter, 2003; El-Khatat and Al-Muhtaseb, 2011). Yamamoto et al. (2008) fabricated carbon cryogel microspheres using direct SPG ME (Figure 21). The first step was the polymerisation of resorcinol (R) with formaldehyde (F) in water at room temperature in the presence of sodium carbonate as a catalyst. After 24 h, RF polymer chains were formed in the solution, tangling up into RF nanoparticles (~ 100 nm in diameter). The resulting solution (hydrosol) was injected through a hydrophobic SPG membrane to form aqueous droplets of the hydrosol in cyclohexane or cyclooctane. The emulsion was then cured in a sealed vial at 298–353 °C until the RF nanoparticles (nanoclusters) were cross-linked together to form a 3D network across the solution, resulting in a hydrogel. The gel particles were then washed with tert-butanol to exchange internal water held in the pores with tert-butanol in order to reduce shrinkage and cracking of the gel during drying. The organic gel particles were then dried under vacuum at room temperature or freeze dried and finally carbonized (pyrolyzed) in nitrogen at 1000°C to form porous carbon cryogel particles. Using
SPG membrane with a pore diameter ranging from 1 to 10 µm, it was possible to prepare carbon cryogel particles with a mean diameter between 1 and 12 µm (Yamamoto et al., 2008). Due to their high surface area, electrical conductivity, and chemical inertness, carbon aerogel particles are promising materials for catalytic applications (Moreno-Castilla and Maldonado-Hódar, 2005) and hydrogen and electrical energy storage (Biener et al., 2011).

Dragosavac et al. (2012b) prepared silica gel particles from sodium silicate by a DME-based sol-gel process in the Dispersion Cell. First, an acidified sodium silicate solution at pH 3.5 was injected through a microengineered nickel membrane into kerosene in the presence of oil-soluble surfactant. The resulting W/O emulsion was stirred at room temperature until the aqueous phase droplets turned into hydrogel particles by polycondensation of silicic acid. The hydrogel silica particles were washed with acetone, dried at room temperature and calcinated at 550°C to form porous silica gel particles with a surface area of 360−750 m² g⁻¹. It was possible to control the particle size over a wide range from 30 to 70 µm by the rate of stirring during ME. The particles were functionalised with 3-aminopropyltrimethoxysilane and used for chemisorption of copper (II) from aqueous solutions (Dragosavac et al., 2012c).

7.9 Integration of membrane emulsification and complex coacervation

Complex coacervation is a process during which two oppositely charged macromolecules react through associative electrostatic interactions to form a polymer-rich phase (coacervate) that is deposited around oil droplets forming a shell. Typical macromolecules used in the process are proteins derived from animal sources (gelatine, whey proteins, silk fibroin) and vegetables (soy and pea proteins), and polysaccharides such as gum arabic, pectin, chitosan, agar, alginate, carrageenan and sodium carboxymethyl cellulose (Xiao et al., 2014). Kage et al. (1997) encapsulated kerosene droplets by gelatine/acacia complex coacervation using SPG ME. Piacentini et al. (2013) prepared fish gelatine/gum arabic complex coacervates using the following steps (Figure 22): (i) Dispersion of oil in an aqueous solution of two mixed polymers (gelatine and gum arabic) using DME at a pH ≈ 5.4, which is above the isoelectric point (pl) of gelatine of 4.8; (ii) Complex coacervation as a result of electrostatic interactions between positively charged gelatine and anionic gum arabic caused by lowering the emulsion pH to 2.7−4.5; (iii) Shell formation due to deposition of the coacervates around the oil droplets; (iv) shell hardening triggered by the addition of a crosslinking agent (gyltaraldehyde).
The capsule size was varied over a wide range from 40 to 240 µm by controlling the shear stress on the membrane surface and the process was continuously operated using a pulsed cross flow ME system (Piacentini et al., 2013). The process can be used for encapsulation of flavours and essential oils in food, cosmetic, pharmaceutical and textile industries (Xiao et al., 2014).

7.10 Integration of membrane emulsification and interfacial layer-by-layer electrostatic deposition

Multilayer oil-in-water (M-O/W) emulsions are O/W emulsions consisting of oil droplets coated with multiple layers of emulsifier and/or biopolymer molecules (McClements, 2015; McClements et al., 2007). The surface charge, permeability to different species, digestibility, responsiveness to external triggers, and wettability of interfacial layers can be controlled to create M-O/W emulsions suitable for encapsulation and controlled release of bioactives (McClements et al., 2007) and coating applications (Nazir et al. 2012). M-O/W emulsions exhibit improved stability against lipid oxidation and environmental stresses, such as pH and ionic strength, heat treatment and freeze-thawing treatment (Gudipati et al., 2010).

M-O/W emulsions can be prepared by electrostatic LbL deposition of polyions onto the surface of oil droplets produced by ME. First, a “primary” emulsion is prepared containing oil droplets stabilised by charged emulsifier or biopolymer (Table 11). An oppositely charged polyelectrolyte is then added to the primary emulsion to form a “secondary” emulsion consisting of oil droplets coated by a two-layer interfacial membrane. This procedure can be repeated to form oil droplets coated by three or more interfacial layers. Gudipati et al. (2010) prepared a three-layer interfacial membrane around fish oil droplets consisting of negatively charged citric acid esters of mono- and diglycerides as a primary layer, cationic chitosan as a secondary layer, and anionic alginate as a tertiary layer (Figure 23a). The positively charged secondary emulsion (+56.3 mV) was more stable to transition metal-promoted lipid oxidation compared to negatively charged primary (−45.1 mV) and tertiary emulsions (−24.8 mV), which was attributed to electrostatic repulsion of positively charged transition metal ions from the droplet surface. However, lipid digestibility of M-O/W emulsions was progressively reduced as the number of coated layers increased (Gudipati et al., 2010). Nazir et al. (2012) prepared M-O/W emulsions suitable for applications in hair care products, consisted of silicon oil droplets coated with six interfacial layers. The multilayer coating was created by alternate
deposition of positively charged chitosan derivative (HTCC) and negatively charged alginate or positively charged quaternary ammonium compound (DDMAC) and glycerol.

The process flexibility is significantly improved by the fact that the charge of primary droplets can be modified after emulsification using the surfactant displacement technique. If the primary droplets are stabilised by non-ionic surfactant, it is often useful to increase the droplet charge by displacing the original surfactant with another charged surfactant. For example, non-ionic Tween 20 surfactant was displaced by SDS in order to deposit positively charged chitosan chains onto negatively charged surface of modified droplets (Figure 23b).

In order to deposit negatively charged biopolymer (alginate) onto the droplets, the primary emulsion must be prepared using a positively charged surfactant, which is a major problem in SPG ME, because cationic surfactants are deposited onto the negatively charged surface of SPG membrane. In order to overcome this problem, the primary emulsion can be prepared using an amphoteric surfactant at pH > pKi so that the surfactant will be negatively charged during SPG emulsification. After mixing the prepared emulsion with the anionic biopolymer, the pH of the emulsion is lowered to pH < pKi, which changes the net surfactant charge from negative to positive so that the biopolymer can be adsorbed to the droplet surfaces through electrostatic attraction. This strategy was used to prepare a primary emulsion stabilised by beta-lactoglobulin (BLG) at pH 7, which was above the isoelectric point of BLG of 5.2, so that the protein was negatively charged and did not interfere with SPG membrane. After the primary emulsion was mixed with an aqueous alginate solution, the pH was adjusted to 3.5 to change the protein charge and prompt alginate to adsorb on the droplet surfaces (Figure 23c).

7.11 Integration of membrane emulsification and interfacial particle self-assembly

A Pickering or Ramsden emulsion is an emulsion stabilised by colloidal particles adsorbed onto the interface between the two liquids (Chevalier and Bolzinger, 2013). The particles spontaneously adsorb on the interface, provided that the surface energy between the water and oil phase, γ_{ow} exceeds the difference in interfacial tensions between the particle and the water phase, γ_{pw} and between the particle and the oil phase, γ_{po}: $\gamma_{ow} > |\gamma_{pw} - \gamma_{po}|$. ME is an attractive method for the preparation of particle-stabilized emulsions, due to low shear environment that prevents desorption of particles from the interface. In addition, shear applied
during emulsification process may have a significant impact on the organisation of particles at
the interface and macroscopic properties and stability of Pickering emulsions (Destribats et al., 2013). For example, Pickering emulsions stabilised by soft microgel particles prepared under low shear stress environment exhibit a higher stability to flocculation than Pickering emulsions prepared under intense shearing. Pickering particles are significantly larger than surfactant molecules (100 nm to 20 µm compared to 0.4–5 nm), which leads to slower kinetics of adsorption at the interface and higher energy barriers to adsorption and thus, ME must be performed at low transmembrane flux to allow enough time for stabilisation of growing droplets prior to pinch-off. As long as the particle adsorption time is shorter than the droplet formation time it is possible to produce well controlled droplet sizes (Manga et al., 2012). Yuan et al. (2010) prepared O/W Pickering emulsions composed of ethyl acetate solutions stabilised by silica nanoparticles (80 or 800 nm) using a rotating membrane reactor with stainless steel membrane and cross-flow ME with a tubular multi-channel ceramic membrane. The droplet size was controlled within the range of 1–10 µm in the cross-flow system and 150–500 µm in the rotating ME system. Sabouni and Gomaa (2015) prepared O/W Pickering emulsions stabilized by metal organic frameworks (MOFs) nanoparticles (200 or 500 nm) using an oscillatory woven metal microscreen emulsification system.

Colloidosomes are permeable shells composed of colloidal particles that can be fabricated by immobilising Pickering particles at the interface and removing the core liquid afterwards (Dinsmore et al., 2005). Thompson et al. (2011) prepared sunflower oil-in-water Pickering emulsions via stirred-cell membrane emulsification using poly(glycerol monomethacrylate)-stabilized polystyrene latex particles. Colloidosomes were prepared by dissolving a polymer crosslinker (tolylene 2,4-diisocyanate-terminated poly(propylene glycol)) in the oil phase prior to injection through the membrane and cross-linking the latex particles from within the oil phase (Figure 24a). Sun et al. (2014) prepared Pickering O/W emulsions stabilised by poly(N-isopropylacrylamide-co-2-aminoethyl methacrylate hydrochloride) hydrogel particles via SPG membrane. The size of the emulsion droplets ranged from 10–50 µm and could be precisely controlled by the pore size of the membrane. The hydrogel particles were cross-linked at the interface by dissolving a natural crosslinking reagent (Genipin) in the oil phase.

Nan et al. (2014b) used premix SPG ME combined with polymer deposition method to prepare colloidosomes composed of alginate particles coated by chitosan (Figure 24b). The
first step was to dissolve 5 wt% PLGA into ethyl acetate and to inject this organic solution through SPG membrane into a suspension of chitosan-coated particles (230 nm). The resultant Pickering emulsion was transferred into large amount of water to remove solvent (ethyl acetate) and deposit PLGA onto the inner surface of the shell. The obtained colloidosomes were used for oral delivery of insulin and showed high drug encapsulation efficiency (up to 97%). Holdich et al. (2012) used similar method to prepare floating colloidosomes with photocatalytic activity using a mixture of cocoa butter and hexane as a dispersed phase and TiO₂ nanoparticles as Pickering particles.

8. Conclusions

Microporous membranes are increasingly used in lab-scale production of single and multiple emulsions including metal-in-oil, solid-in-oil-in-water, oil-in-oil, multilayer, and Pickering emulsions. These emulsions can be utilised as templates or precursors for fabrication of structured microparticles with a size ranging from tens of nanometres to several hundred microns. High encapsulation and loading efficiencies of encapsulated materials can be achieved due to mild hydrodynamic conditions.

Droplets generated by membrane emulsification can be transformed into solid particles by implementing a variety of different chemical and physicochemical processes after emulsification step, such as polymerisation (suspension, mini-emulsion, interfacial, and in-situ), ionotropic gelation, melt solidification, internal phase separation, layer-by-layer electrostatic deposition, particle self-assembly, complex coacervation, spray drying, sol-gel processing, pyrolysis, and molecular imprinting.

The examples of particles fabricated from droplets produced by membrane emulsification are ultrasound contrast agent and barcode particles for bioimaging and sensing, nanoclusters and synthetic biodegradable polymeric particles for biomedical applications, superparamagnetic porous nanoshells for remote-controlled drug release, molecularly imprinted and hypercrosslinked polymeric particles for advanced separation and catalysis, carbon aerogel particles for hydrogen and energy storage, low-melting-point metal particles for microsoldering, microgels for cell encapsulation, and liquid crystal particles for digital particle tracking. Synthesised particles can have versatile morphology (solid and hollow, matrix and core/shell, spherical and non-spherical, porous and coherent, composite and
homogeneous) and can be loaded with hydrophilic and hydrophobic actives, quantum dots, nanoparticles, phase change materials and high molecular weight gases to achieve controlled or triggered release and impart special optical, chemical, electrical, acoustic, thermal and magnetic properties.

The advantages of membrane emulsification routes for particle synthesis are in uniform particle size that can be controlled over a wide range, low shear environment during droplet generation, versatile methods of shear generation on the membrane surface and a wide range of membranes with various pore geometries, internal structure, and surface properties. Both direct (bottom-up) and premix (top-down) membrane emulsification methods were developed offering different production rates, droplet to pore size ratios and droplet size uniformities.
Table 1. Typical mixing ratios of raw materials in the production of SPG from Na$_2$O–CaO–Al$_2$O$_3$–B$_2$O$_3$–SiO$_2$ mother glass (Nakashima, 2002).

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shirasu</td>
<td>51</td>
</tr>
<tr>
<td>Limestone</td>
<td>23</td>
</tr>
<tr>
<td>Boric acid</td>
<td>22</td>
</tr>
<tr>
<td>Soda ash</td>
<td>4</td>
</tr>
</tbody>
</table>

*MgO (∼5 wt%) and ZrO$_2$ (∼3 wt%) can also be added.

Table 2. Composition of primary glass*, SPG*, and porous Vycor glass and Pyrex glass (Nakashima et al., 1992; Nakashima, 2002).

<table>
<thead>
<tr>
<th></th>
<th>Primary glass for SPG, wt%</th>
<th>SPG wt%</th>
<th>Vycor® glass wt%</th>
<th>Pyrex® glass wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>49</td>
<td>69</td>
<td>94–99.5</td>
<td>81</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>10</td>
<td>13</td>
<td>0–0.5</td>
<td>2</td>
</tr>
<tr>
<td>CaO</td>
<td>17</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B$_2$O$_3$</td>
<td>16</td>
<td>7</td>
<td>0.2–6.0</td>
<td>13</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>5</td>
<td>5</td>
<td>< 0.1</td>
<td>4</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>1</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Based on the proportions of raw materials given in Table 1.
Table 3. Properties of commercial isotropic (symmetric) SPG membrane (Vladisavljević et al., 2005; Nakashima, 2002; Kukizaki, 2009b; Nakashima et al., 1992).

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Tubes or flat discs</td>
</tr>
<tr>
<td>Thickness, δ_m</td>
<td>0.4−1 mm</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>200−280 MPa</td>
</tr>
<tr>
<td>Mean pore diameter, d_p</td>
<td>0.04−40 μm</td>
</tr>
<tr>
<td>Porosity, ε</td>
<td>50−60 %</td>
</tr>
<tr>
<td>True density</td>
<td>2000−2500 kg m$^{-3}$</td>
</tr>
<tr>
<td>Zeta potential at pH=3−10 and C$_{NaCl}$= 1−100 mol m$^{-3}$</td>
<td>−15−(−45) mV</td>
</tr>
<tr>
<td>Pore tortuosity, ξ</td>
<td>1.25−1.4</td>
</tr>
<tr>
<td>Number of pores per unit cross-sectional area, N / A_m</td>
<td>$10^9−10^{14}$ m$^{-2}$</td>
</tr>
<tr>
<td>Specific pore volume, V_p / m_m</td>
<td>0.5−0.6 dm3 kg$^{-1}$</td>
</tr>
<tr>
<td>Hydraulic resistance, R_m</td>
<td>$10^8−10^{12}$ m$^{-1}$</td>
</tr>
</tbody>
</table>
Table 4. Microparticles fabricated by integration of DME and PME using SPG membrane and various secondary reactions/processes.

<table>
<thead>
<tr>
<th>Product</th>
<th>Example</th>
<th>Secondary reaction/process after DME or PME</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic particles</td>
<td>Silica nano- or micro-particles</td>
<td>Polymerisation of silicic acids by interfacial or internal reaction</td>
<td>Kandori et al. (1992)</td>
</tr>
<tr>
<td>Liquid crystal particles</td>
<td>Thermochromic liquid crystal particles</td>
<td>Melt crystallization in O/W emulsion</td>
<td>Segura et al. (2013)</td>
</tr>
<tr>
<td>Carbon particles</td>
<td>Carbon cryogel</td>
<td>sol–gel polycondensation followed by freeze-drying and carbonization</td>
<td>Yamamoto et al. (2010)</td>
</tr>
<tr>
<td>Metal particles</td>
<td>Solder metal microparticles</td>
<td>Solidification of liquid metal in M/W or M/O emulsion</td>
<td>Torigoe et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Silver nanoparticles</td>
<td>Reduction of silver ions in W/O microemulsions</td>
<td>Kakazu et al. (2010)</td>
</tr>
<tr>
<td>Solid lipid particles</td>
<td>W/S microcarrier</td>
<td>Melt crystallization in W/O/W emulsion</td>
<td>Kukizaki and Goto (2007c)</td>
</tr>
<tr>
<td></td>
<td>S/S microcarrier</td>
<td>Melt crystallization in S/O/W emulsion</td>
<td>Kukizaki (2009c)</td>
</tr>
<tr>
<td></td>
<td>Coherent particles</td>
<td>Melt crystallization in O/W emulsion</td>
<td>D’oria et al. (2009); Li et al. (2011)</td>
</tr>
<tr>
<td>Ca-alginate</td>
<td>Crosslinking of sodium alginate with Ca(^{2+}) in W/O emulsion</td>
<td>Liu et al. (2003); You et al. (2001); Akamatsu et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Chitosan</td>
<td>Crosslinking of chitosan with glutaraldehyde in W/O emulsion</td>
<td>Wang et al. (2005); Wei et al. (2010); Yue et al. (2011); Akamatsu et al. (2012)</td>
<td></td>
</tr>
<tr>
<td>Gel micro- and nano-particles</td>
<td>Crosslinking of chitosan with glutaraldehyde in O/W/O emulsion</td>
<td>Wei et al. (2013)</td>
<td></td>
</tr>
<tr>
<td>HTCC/GP</td>
<td>Thermal gelation in W/O emulsion</td>
<td>Wu et al. (2008)</td>
<td></td>
</tr>
<tr>
<td>Alginate/chitosan</td>
<td>Coalescence of Na-alginate droplets with Ca(^{2+}) droplets and particle coating with chitosan</td>
<td>Zhang et al. (2011)</td>
<td></td>
</tr>
<tr>
<td>Agarose</td>
<td>Helix-coil transition induced by cooling</td>
<td>Zhou et al. (2007; 2008; 2009)</td>
<td></td>
</tr>
<tr>
<td>Protein microspheres</td>
<td>Albumin</td>
<td>Heat or chemical denaturation of albumin in W/O emulsion</td>
<td>El-Mahdy et al. (1998); Muramatsu and Kondo (1995); Muramatsu and Nakauchi (1998)</td>
</tr>
<tr>
<td>Composite organic-inorganic particles</td>
<td>Polymer particles with embedded TiO(_2)/Fe(_3)O(_4) nanoparticles or quantum dots</td>
<td>Solvent evaporation from oil phase in S/O/W emulsion</td>
<td>Supsakulchai et al. (2002; 2002b); Omi et al. (2001); Wang et al. (2013); Yang et al. (2010); Zhou et al. (2012)</td>
</tr>
<tr>
<td>Coherent polymer micro- or nano-spheres</td>
<td>Polymeric particles coated with silica nanoparticles</td>
<td>Solvent evaporation followed by electrostatic layer-by-layer deposition</td>
<td>Ito et al. (2010)</td>
</tr>
<tr>
<td>Coherent PLA and PLGA spheres</td>
<td>PST, P(St-co-DVB), P(St-co-MMA), PUU-VP, etc.</td>
<td>One-stage suspension polymerization in O/W emulsion</td>
<td>Yuyama et al. (2000); Omi et al. (1994); Nuisin et al. (2000); Ma et al. (2003)</td>
</tr>
<tr>
<td>Coheren PLA and PLGA spheres</td>
<td>PST-PAM composite</td>
<td>One-stage suspension polymerisation in W/O/W emulsion</td>
<td>Ma et al. (2004)</td>
</tr>
<tr>
<td>Synthetic biodegradable polymer particles</td>
<td>P(AAm-co-AA) and PNAAMPS hydrogel</td>
<td>One-stage suspension polymerisation in W/O emulsion</td>
<td>Nagashima et al. (1998); Hu et al. (2011)</td>
</tr>
<tr>
<td>PMMA microspheres and large P(St-co-DVB) spheres</td>
<td>Solvent evaporation from oil phase droplets in O/W emulsion</td>
<td>Omi et al. (1995; 1997)</td>
<td></td>
</tr>
<tr>
<td>PUU, PSt-PMMA,</td>
<td>Solvent evaporation from oil phase droplets in O/W emulsion</td>
<td>Yuyama et al. (2000b); Ma et al. (1999; 1999b; 1999c)</td>
<td></td>
</tr>
<tr>
<td>Coherent PLA and PLGA spheres</td>
<td>Coherent PLA and PLGA spheres</td>
<td>Solvent evaporation from oil phase droplets in O/W emulsion</td>
<td>Ito et. (2011); Yue et al. (2012); Kanakubo et al. (2010)</td>
</tr>
<tr>
<td>PLA or PLGA capsules for hydrophilic actives, DFB loaded PLA capsules</td>
<td>PLA or PLGA capsules for hydrophilic actives, DFB loaded PLA capsules</td>
<td>Solvent evaporation from oil phase in W/O/W emulsion</td>
<td>Liu et al. (2005; 2005b; Doan et al. (2011); Hou et al. (2009)</td>
</tr>
<tr>
<td>mPEG-PLA capsules for hydrophilic actives</td>
<td>mPEG-PLA capsules for hydrophilic actives</td>
<td>Solvent extraction from oil phase in W/O/W emulsion</td>
<td>Wei et al. (2008; 2011)</td>
</tr>
<tr>
<td>Core/shell and hollow particles</td>
<td>P(St-co-DMAEMA), P(St-co-DVB), PDVB</td>
<td>One-stage suspension polymerisation and internal phase separation in O/W emulsion</td>
<td>Ma et al. (2001; 2002; 2003b); Lee et al. (2010); Hao et al. (2009)</td>
</tr>
<tr>
<td>Polymer-supported palladium catalyst</td>
<td>Polymer-supported palladium catalyst</td>
<td>One-stage suspension polymerisation, internal phase separation and ligand exchange</td>
<td>Liu et al. (2010; 2010b)</td>
</tr>
<tr>
<td>P(St-co-DVB-co-MAA)</td>
<td>Two-stage suspension polymerisation and internal phase separation in O/W emulsion</td>
<td>Wang et al. (2012)</td>
<td></td>
</tr>
<tr>
<td>ENB-P(M-co-U-co-F) core-shell capsules</td>
<td>ENB-P(M-co-U-co-F) core-shell capsules</td>
<td>In situ polymerization</td>
<td>Liu et al. (2011)</td>
</tr>
<tr>
<td>Chitosan</td>
<td>Chitosan</td>
<td>Crosslinking of chitosan shell onto alginate particles and core dissolution</td>
<td>Akamatsu et al. (2010)</td>
</tr>
<tr>
<td>Molecularly imprinted P(MMA-co-EGDMA) particles</td>
<td>Molecularly imprinted P(MMA-co-EGDMA) particles</td>
<td>Molecular imprinting using CAP as a template molecule</td>
<td>Kou et al. (2012)</td>
</tr>
<tr>
<td>PGPR-PE2CA core/shell particles</td>
<td>PGPR-PE2CA core/shell particles</td>
<td>Solvent evaporation followed by interfacial polymerization</td>
<td>Lee et al. (2009)</td>
</tr>
<tr>
<td>Description</td>
<td>Material Details</td>
<td>Preparation Method</td>
<td>Reference(s)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Hollow porous silica nanocapsules</td>
<td>One-stage suspension polymerisation, followed by sol-gel process and calcination</td>
<td>Kong et al. (2010; 2012; 2013)</td>
<td></td>
</tr>
<tr>
<td>One-stage suspension polymerisation</td>
<td></td>
<td>Interfacial polymerisation</td>
<td>Chu et al. (2002; 2003)</td>
</tr>
<tr>
<td>Two-stage suspension polymerisation</td>
<td></td>
<td>Suspension polymerisation in W/O emulsion</td>
<td>Si et al. (2011); Wang et al. (2013b)</td>
</tr>
<tr>
<td>Janus particles</td>
<td>P(MMA-co-CMS)-b-PDMAEMA or PS/P(MMA-co-CMS)-b-PDMAEMA or PS/P(MMA-co-CMS)</td>
<td>Solvent evaporation, followed by internal phase separation and atom transfer radical polymerisation</td>
<td>Tanaka et al. (2010); Ahmad (2008)</td>
</tr>
<tr>
<td>PMMA/P(St-co-BIEM)</td>
<td>Solvent evaporation followed by internal phase separation</td>
<td>Yamashita et al. (2012)</td>
<td></td>
</tr>
<tr>
<td>Complex coacervate microcapsules</td>
<td>gelatin/acacia microcapsules</td>
<td>Complex coacervation in O/W emulsion</td>
<td>Kage et al. (1997)</td>
</tr>
<tr>
<td></td>
<td>cold water fish gelatine/gum Arabic microcapsules</td>
<td>Complex coacervation in O/W emulsion</td>
<td>Piacentini et al. (2013)</td>
</tr>
<tr>
<td>Non-spherical particles</td>
<td>hemispherical polymeric particles</td>
<td>Cleavage of Janus particles by dispersion in acetone-water or THF-water solution</td>
<td>Yamashita et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>“Mushroom-like” polymeric particles</td>
<td>Selective polymerisation on one half of Janus particle</td>
<td>Tanaka et al. (2010)</td>
</tr>
<tr>
<td>3D nanoclusters</td>
<td>Clusters containing silica-encapsulated magnetite nanoparticles</td>
<td>Solvent pervaporation and coating of clusters with silica</td>
<td>Chang and Hatton (2012)</td>
</tr>
</tbody>
</table>
Table 5. Gel microbeads fabricated by integration of membrane emulsification and physical gelation process (DP – dispersed phase, CP – continuous phase, XL – crosslinking agent).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Emulsion formulation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Internal gelation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, cross-flow nickel membrane, $d_p=2.9−5.2$ µm</td>
<td>Calcium alginate beads ($d_{part}=44−146$ µm)</td>
<td>DP: 0.5−2% (w/v) sodium alginate and 25 mM CaCO$_3$ in 0.9% (w/v) NaCl in water CP: 0.5−2% (v/v) Span 80 in paraffin oil XL: glacial acetic acid</td>
<td>Liu et al. (2003)</td>
</tr>
<tr>
<td>DME, stirred cell nickel microengineered membrane, $d_p=5−20$ µm</td>
<td>P(NIPAM)-coated alginate beads ($d_{part}=55−650$ µm)</td>
<td>DP: 1.5 wt% sodium alginate + 0.5−5 wt% CaCO$_3$ in water CP: 1% wt Span 80 in Miglyol 840 XL: glacial acetic acid</td>
<td>Hanga and Holdich (2014)</td>
</tr>
<tr>
<td>B. External gelation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, internal pressure SPG microkit $d_p=2.9$ µm</td>
<td>Calcium alginate beads ($d_{part}=4$ µm) loaded with lidocaine HCl, 4-acetamidophenol or sodium salicylate</td>
<td>DP: 2 wt% sodium alginate + drug (drug:alginate = 0.1−1:1) in water CP: 6 vol% Span 80 in isooctane XL: aqueous CaCl$_2$ solution</td>
<td>You et al. (2001)</td>
</tr>
<tr>
<td>DME using 0.5−19.6 µm SPG membrane, external pressure microkit</td>
<td>Chitosan beads ($d_{part}=0.4−14$ µm)</td>
<td>DP: 1−2 wt% chitosan + 1 wt% acetic acid + 0.9 wt% NaCl in water CP: 4 wt% PO-500 in liquid paraffin/petroleum ether (7.5, v/v) XL: toluene saturated with glutaraldehyde</td>
<td>Wang et al. (2005)</td>
</tr>
<tr>
<td>DME using 1.1−11.9 µm SPG membrane, internal pressure microkit</td>
<td>Chitosan beads ($d_{part}=0.75−9.5$ µm)</td>
<td>DP: 1 wt% chitosan + 2 wt% acetic acid in water CP: 1 wt% TGCR in kerosene XL: 25 wt% glutaraldehyde in water</td>
<td>Akamatsu et al. (2010b)</td>
</tr>
<tr>
<td>Repeated PME using 1.4−9.0 µm SPG membrane</td>
<td>Chitosan beads ($d_{part}=0.3−1.85$ µm)</td>
<td>DP: 0.3−1 wt% chitosan + 1 wt% acetic acid in water CP: 2−8 wt% PO-500 in liquid paraffin/petroleum ether (1:2, v/v) XL: Toluene saturated by glutaraldehyde</td>
<td>Lv et al. (2009), Ma et al. (2010)</td>
</tr>
<tr>
<td>DME, internal pressure SPG microkit $d_p=3$ µm</td>
<td>Hemoglobin-albumin spheres ($d_{part}=3.9−4.9$ µm)</td>
<td>DP: 10% (w/v) bHb + 0−20% (w/v) in PBS CP: 1.0 wt% TGCR in kerosene XL: 25% (w/v) glutaraldehyde in water</td>
<td>Lai et al. (2015)</td>
</tr>
<tr>
<td>C. Cooling of emulsion to room temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME using 4.7−19.6 µm SPG membrane, external pressure microkit</td>
<td>Agarose beads ($d_{part}=15−60$ µm)</td>
<td>DP: 4 wt% agarose + 0.9 wt% NaCl in water CP: 1−6 wt% PO-500 in liquid paraffin/petroleum ether (7/5, v/v) Emulsification temperature: 55−70°C</td>
<td>Zhou et al. (2007)</td>
</tr>
<tr>
<td>DME using 23.1−29.8 µm SPG membrane, stirred system with 1-12 membrane tubes</td>
<td>Agarose beads ($d_{part}=83−190$ µm, minimum span=0.65)</td>
<td>DP: 2−10 wt% agarose + 0.9 wt% NaCl in water CP: 4 wt% PO-500 in liquid paraffin/petroleum ether (7/5−12/0, v/v) Emulsification temperature: 65°C</td>
<td>Zhao et al. (2014)</td>
</tr>
</tbody>
</table>
Repeated PME using 10.2 µm SPG external pressure microkit

| DP: 2–14 wt% agarose + 0.9 wt% NaCl in water |
| CP: 4 wt% PO-500 in liquid paraffin/petroleum ether (7/5, v/v) |
| Emulsification temperature: 60°C |

Zhou et al. (2008)

Repeated PME, external pressure SPG microkit, $d_p = 5.7–19$ µm or PE membrane, $d_p = 11.8–25.6$ µm

| DP: 10 wt% agarose + 0.9 wt% NaCl in water |
| CP: 4 wt% PO-500 in liquid paraffin/petroleum ether (7/5, v/v) |
| Emulsification temperature: 60°C |

Zhou et al. (2009)

D. Mixing two emulsions and droplet merging

<table>
<thead>
<tr>
<th>DME using 1.1–11.9 µm SPG membrane, internal pressure microkit</th>
<th>Hybrid chitosan/alginate beads ($d_{\text{part}} = 1–4.4$ µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP1: 1 wt% chitosan + 1 wt% CaCl$_2$ + 2 wt% acetic acid in water</td>
<td></td>
</tr>
<tr>
<td>DP2: 2 wt% sodium algin late in water</td>
<td></td>
</tr>
<tr>
<td>CP: 1 wt% TGCR in kerosene</td>
<td></td>
</tr>
</tbody>
</table>

Akamatsu et al. (2010b)

<table>
<thead>
<tr>
<th>DME using 1.1–5.4 µm SPG membrane, internal pressure microkit</th>
<th>Chitosan beads ($d_{\text{part}} = 0.8–1.5$ µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP1: 1 wt% chitosan + 2 wt% acetic acid in water</td>
<td></td>
</tr>
<tr>
<td>DP2: 10 wt% sodium hydroxide in water</td>
<td></td>
</tr>
<tr>
<td>CP: 1 wt% TGCR in kerosene</td>
<td></td>
</tr>
</tbody>
</table>

Akamatsu et al. (2010b); Park et al. (2004)

<table>
<thead>
<tr>
<th>DME using 12 µm SPG membrane, internal pressure microkit</th>
<th>Hollow chitosan beads ($d_{\text{part}} = 2.1–4.4$ µm) with very thin shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP1: alginate beads coated with chitosan gel in water</td>
<td></td>
</tr>
<tr>
<td>DP2: 3 wt% TPP in water</td>
<td></td>
</tr>
<tr>
<td>CP: 3 wt% Span 85 in hexane</td>
<td></td>
</tr>
</tbody>
</table>

Akamatsu et al. (2010)

<table>
<thead>
<tr>
<th>PME using 1.4, 2.8, and 5.2 µm SPG membrane</th>
<th>Alginate particles ($d_{\text{part}} = 300–400, 500–700, and 1000–1300$ nm, resp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP1: 1 wt% alginate in water</td>
<td></td>
</tr>
<tr>
<td>DP2: 5 mol L$^{-1}$ CaCl$_2$ in water</td>
<td></td>
</tr>
<tr>
<td>CP: 4 wt% PO-5S in liquid paraffin/petroleum ether (1/2, v/v)</td>
<td></td>
</tr>
</tbody>
</table>

Nan et al. (2014)

E. Thermal gelation

<table>
<thead>
<tr>
<th>DME using 2.8–15.4 µm SPG membrane, external pressure microkit</th>
<th>quaternized chitosan/glycerophosphate (HTCC/GP) beads ($d_{\text{part}} = 7–53$ µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP: 3.5 wt% HTCC + 8 wt% GP in 0.1 M lactic acid solution</td>
<td></td>
</tr>
<tr>
<td>CP: 1–4 wt% PO-500 in liquid paraffin/petroleum ether (7/5, v/v)</td>
<td></td>
</tr>
</tbody>
</table>

Vu et al. (2008)

<table>
<thead>
<tr>
<th>PME using 8 µm SPG membrane</th>
<th>W/O/W emulsions with gelled internal water droplets ($d_{\text{part}} = 10.5$ µm after 5 passes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP: W/O emulsion containing 15 wt% WPI in 5 mM phosphate buffer as the dispersed and 8% PGPR in corn oil as the oil phase</td>
<td></td>
</tr>
<tr>
<td>CP: 0.5 wt% Tween 20 in 5 mM phosphate buffer</td>
<td></td>
</tr>
</tbody>
</table>

Surh et al. (2007)
Table 6. Microparticles fabricated by membrane emulsification integrated with solidification of melted droplets (DP – dispersed phase, CP – continuous phase).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Emulsion formulation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME, cross-flow SPG, $d_p = 0.2$–1 µm</td>
<td>Gelucire 44/14 ($T_m = 44$ °C, $d = 50$–130 nm) or Compritol 888 ($T_m = 69$–74 °C, $d_{part} = 560$–760 nm) particles</td>
<td>DP: Gelucire 44/14 melt at 65 °C or Compritol 888 melt at 80 °C CP: 0.125 wt% Tween 20 or 1.26 wt% Pluronic F68 in water Method: O/W melt dispersion</td>
<td>D’Oria et al. (2009)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 5.4$–14.8 µm</td>
<td>Trimyristin particles ($T_m = 56$–57 °C, $d_{part} = 55$–650 µm) with embedded solid nanoparticles</td>
<td>DP: S/O dispersion at 60 °C (S: vitamin B12 nanoparticles (d=132 nm), O: 5 wt% PGPR in trimyristin melt) CP: 1% wt Tween 40 in water Method: S/O/W melt dispersion</td>
<td>Kukizaki (2009c)</td>
</tr>
<tr>
<td>DME using 0.3–9.9 µm SPG membrane</td>
<td>Tripalmitin particles ($T_m = 65$ °C, $d_{part} = 3.1$–32.8 µm) with embedded water droplets</td>
<td>DP: W/O emulsion at 70 °C (W: 1 wt% vitamin B12 + 0.22 % (w/v) NaCl in water, O: 10 wt% TGCR in tripalmitin melt) CP: 1 wt% DGCS + 0.22 % (w/v) NaCl in water Method: W/O/W melt dispersion</td>
<td>Kukizaki and Goto (2007c)</td>
</tr>
<tr>
<td>PME, packed bed of glass beads, $d_{bead} = 30$–90 µm</td>
<td>Glyceryl palmitostearate ($T_m = 56$ °C, $d_{part} = 1.5$–2.1 µm) particles</td>
<td>DP: 7 wt% vitamin E in glyceryl palmitostearate melt at 65 °C CP: 2 wt% Tween 80 in water Method: O/W melt dispersion</td>
<td>Laouini et al. (2014)</td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, $d_p = 5.5$ µm</td>
<td>Termochromic liquid crystal particles ($T_m = 45$–47 °C, $d_{part} = 16$ µm)</td>
<td>DP: Termochromic liquid crystal melt at 55°C CP: 5 % poloxamer 188 in water</td>
<td>Segura et al. (2013)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 5.5$–20.2 µm</td>
<td>Solder particles containing 4.7% Bi, 22.6% Pb, 8.3% Sn, 5.3% Cd, and 19.1% In ($T_m = 46.8$ °C, $d_{part} = 8.4$–11.5 µm)</td>
<td>DP: Alloy melt at 55°C CP: 5 wt% TGCR in toluene Method: M/O melt dispersion</td>
<td>Torigoe et al. (2011)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 20.2$ µm</td>
<td>Solder particles containing 63% Sn and 37% Pb ($T_m = 183$ °C, $d_{part} = 9.3$ µm)</td>
<td>DP: 63Sn/Pb melt at 200°C CP: 5 wt% TGCR in lubricating oil Method: M/O melt dispersion</td>
<td>Torigoe et al. (2011)</td>
</tr>
</tbody>
</table>
Table 7. Microparticles fabricated by integration of membrane emulsification and solvent removal from O/W emulsion (d_p – pore diameter, d_{part} – particle diameter).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Emulsion formulation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Coherent particles from biodegradable synthetic polymers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, Dispersion cell, metallic microengineered membrane, $d_p = 10 \mu m$</td>
<td>PCL particles ($d_{part} = 15-32 \mu m$, span = 0.51–0.6)</td>
<td>DP: 8–30 % (w/v) PCL in DCM CP: 1 wt% PVA or 2 wt% SDS + 2 wt% Tween 80 in water saturated with DCM</td>
<td>Imbrogno et al. (2014)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 0.5–2 \mu m$</td>
<td>PLGA particles ($d_{part} = 0.15–0.30 \mu m$, CV = 15–30%)</td>
<td>DP: 10–50 mg mL$^{-1}$ PLGA in acetone CP: 1 wt% PVA</td>
<td>Ito et al. (2011)</td>
</tr>
<tr>
<td>Repeated (n=3) PME, external pressure SPG microkit, $d_p = 5.9–19.9 \mu m$</td>
<td>RIF-loaded PLGA particles ($d_{part} = 0.64–5.51 \mu m$)</td>
<td>DP: 3–30 wt% PLGA + 1–3 wt% RIF in EA CP: 3% (w/v) PVA + 8.5 vol% EA in water, pH = 4</td>
<td>Doan et al. (2011)</td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, $d_p = 0.5–3.6 \mu m$</td>
<td>RIF-loaded PLGA particles ($d_{part} = 1.3–9 \mu m$)</td>
<td>DP: 100 mg mL$^{-1}$ PLGA + 7.5 mg mL$^{-1}$ RIF in DCM CP: 2% (w/v) PVA in water</td>
<td>Ito and Makino (2004)</td>
</tr>
<tr>
<td>Repeated (n=5) PME, SPG microkit, $d_p = 2.8 \mu m$</td>
<td>PLA particles as vaccine adjuvants ($d_{part} = 820 \text{nm}$)</td>
<td>DP: 40 mg mL$^{-1}$ PLA in DCM CP: 1.9 % (w/v) PVA in water</td>
<td>Zhang et al. (2014)</td>
</tr>
<tr>
<td>B. Liquid-core/polymer-shell capsules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PME (n=1–15), glass fiber syringe membrane, $d_p = 1 \mu m$</td>
<td>DD core/PLLA shell capsules ($d_{part} = 0.35–5 \mu m$)</td>
<td>DP: 0.6 wt% PLLA + 9.1 wt% DD in DCM CP: 0.3% PVA + (30 wt% MeOH or 30 wt% EtOH or 25 wt% PrOH) in water</td>
<td>Sawalha et al. (2008)</td>
</tr>
<tr>
<td>DME, silicon nitride microsieve membrane, $d_p = 5 \mu m$</td>
<td>HD core/Eudragit shell capsules ($d_{part} = 15–34 \mu m$)</td>
<td>DP: 2–4 wt% Eudragit FS 30D + 2–15 wt% HD in DCM CP: 1% SDS in water at pH 5</td>
<td>Wagdare et al. (2011)</td>
</tr>
<tr>
<td>C. Janus particles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, SPG membrane, $d_p = 3.9 \mu m$</td>
<td>Janus PMMA/P(St-co-BIEM) particles ($d_{part} = 4–5 \mu m$)</td>
<td>DP: 3.8 wt% PMMA + 3.8 wt% /P(St-co-BIEM) in toluene CP: 57.8 mM SDS in water</td>
<td>Yamashita et al. (2008)</td>
</tr>
<tr>
<td>DME, SPG membrane, $d_p = 3 \mu m$</td>
<td>Janus PS/P(MMA-co-CMS) particles ($d_{part} = 3–4 \mu m$)</td>
<td>DP: 3.8 wt% PS + 3.8 wt% P(MMA-co-CMS) in toluene CP: 5 g L$^{-1}$ SDS in water</td>
<td>Ahmad et al. (2008)</td>
</tr>
<tr>
<td>D. Polymer-core/polymer-shell capsules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, $d_p = 1.9 \mu m$, $\Delta p = 20 \text{kPa}$</td>
<td>DOX-loaded PLGA-core/PE2CA-shell particles ($d_{part} = 1.4–1.9 \mu m$)</td>
<td>DP: 0–5 wt% PLGA + 0–5 wt% E2CA + 0.05 wt% DOX in DCM CP: 10 mg mL$^{-1}$ SDS in water at pH 2.5</td>
<td>Lee et al. (2009)</td>
</tr>
</tbody>
</table>
Table 8. Microparticles fabricated by integration of membrane emulsification and solvent removal from W1/O/W2 or S/O/W emulsion (dp – pore diameter, d_{part} – particle diameter).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Emulsion formulation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Ultrasound contrast agent (UCA) particles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, cross flow SPG membrane, dp=1.1 μm</td>
<td>PLA UCA particles (d_{part} =1.99–3.58 μm)</td>
<td>W1: 2.5 wt% of ammonium bicarbonate in water O: 2.5 % (w/v) PLA + 1 % (w/v) Span 80 in DCM W2: 1% PVA (w/v) + 0.5% (w/v) SDS in water</td>
<td>Hou et al. (2009)</td>
</tr>
<tr>
<td>PME (n=1–5), SPG membrane, dp = 5.2–7.2 μm</td>
<td>PLLA, PLGA, PEG-b-PLLA, and PEG-b-PLGA UCA particles (d_{part} =2.0–5.2 μm)</td>
<td>W1: water O: 5–12.5 % (w/v) PLLA or PLGA or PEG-b-PLGA or PEG-b-PLLA in DCM W2: 0.1–1% PVA (w/v) in water</td>
<td>Liu et al. (2014)</td>
</tr>
<tr>
<td>B. Synthetic biodegradable polymeric particles loaded with hydrophilic actives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeated (n=3) PME, external pressure SPG microkit, dp = 5.9–19.9 μm</td>
<td>PLGA particles loaded with RIF & RIF-HPβCD complex (d_{part} =2.08–8.43 μm)</td>
<td>W1: 18 mg mL^{-1} RIF + 0.066 M HPβCD in 50 mM borate buffer, pH 9 O: 3–30 wt% PLGA + 2 wt% RIF in EA W2: 3% (w/v) PVA + 8.5 vol% EA, pH = 4</td>
<td>Doan et al. (2011)</td>
</tr>
<tr>
<td>Repeated (n=5) PME, dp = 0.8–30 μm</td>
<td>PLGA-lipid particles loaded with BSA (d_{part} =0.1–3 μm)</td>
<td>W1: 60 mg mL^{-1} BSA in water O: 2% (w/v) lipid/PLGA mixture (0–100 wt% lipid in mixture) in DCM W2: 0.1% (w/v) PVA</td>
<td>Ma et al. (2014)</td>
</tr>
<tr>
<td>Repeated PME (n=5), SPG membrane, dp = 0.8 μm, Δp = 2 MPa</td>
<td>PLGA-lipid particles loaded with ovalbumin (d_{part} =215 nm)</td>
<td>W1: 100 mg mL^{-1} ovalbumin in water O: 2.0% (w/v) lipid/PLGA (1:3) mixture in Chl W2: 0.1% (w/v) PVA in water</td>
<td>Ma et al. (2014b)</td>
</tr>
<tr>
<td>Repeated PME (n=5), SPG membrane, dp = 0.8 μm, Δp = 2 MPa</td>
<td>PLGA-lipid particles loaded with ovalbumin (d_{part} =558 nm, PDI = 0.045)</td>
<td>W1: 40 mg mL^{-1} ovalbumin in water O: 2.0 wt% HSPC/PLGA (1:2) mixture in DCM W2: 0.1% (w/v) PVA in water</td>
<td>Ma et al. (2014c)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, dp = 5.2 μm</td>
<td>PELA particles loaded with HBsAg (d_{part} =1.1–1.4 μm)</td>
<td>W1: 1.5 mg mL^{-1} HBsAg in water O: 50 mg mL^{-1} PELA (PLA–PEG–PLA or PLA–mPEG) in EA W2: 1% (w/v) PVA + 1% (w/v) NaCl in water</td>
<td>Wei et al. (2008)</td>
</tr>
<tr>
<td>DME, cross-flow microsieve membrane, dp = 20 μm</td>
<td>PLGA particles loaded with blue dextran (d_{part} =40–76 μm)</td>
<td>W1: 50 mg mL^{-1} blue dextran in water O: 10–30 wt% PLGA in DCM W2: 2–6% (w/v) PVA + 1.6 % DCN (+ 1 % NaCl) in water</td>
<td>Kazazi-Hyseni et al. (2014)</td>
</tr>
<tr>
<td>PME, SPG membrane, dp = 50.2 μm</td>
<td>PLGA particles loaded with exenatide (d_{part} =22–23 μm)</td>
<td>W1: 30 mg mL^{-1} exenatide in water O: 10% (w/v) PLGA in DCM W2: 2% (w/v) PVA + 0.5% (w/v) NaCl in water</td>
<td>Qi et al. (2014)</td>
</tr>
<tr>
<td>Repeated PME (n=8), SPG membrane, dp = 2.8 μm</td>
<td>PLGA particles loaded with ovalbumin (d_{part} =591 nm, PDI=0.17)</td>
<td>W1: 100 mg mL^{-1} ovalbumin in water O: 50 mg mL^{-1} PLGA in ethyl acetate W2: 1.5% (w/v) PVA + 0.9% (w/v) NaCl in water</td>
<td>Zhang et al. (2014b)</td>
</tr>
</tbody>
</table>
C. Nanoclusters

<table>
<thead>
<tr>
<th>DME, external pressure SPG microkit, (d_p = 0.1-0.3 , \mu\text{m})</th>
<th>Nanoclusters of magnetite nanoparticles ((d_{\text{part}} = 50-350 , \text{nm}))</th>
<th>DP: 3 wt% magnetite nanoparticles (~10 nm) coated with oleic acid + 97 wt% hexane</th>
<th>Chang and Hatton (2012)</th>
</tr>
</thead>
</table>

D. Composite polymeric particles prepared from W/O/W emulsion

PME, SPG membrane	P(St-co-HEMA) particles (\(d_{\text{part}} = 10-80 \, \mu\text{m} \)) loaded with magnetite nanoparticles	W\(_{2}\): 0.72–1.6 mol L\(^{-1}\) FeCl\(_3\)·6H\(_2\)O + 0.36–0.8 mol L\(^{-1}\) FeCl\(_2\)·4H\(_2\)O in water	Yang et al. (2010)
---	---	Q: 0.6 wt% P(St-co-HEMA) + 0.25 wt% Span 85 or 0.025–0.11 wt% PO 310 in DCM	
		W\(_{2}\): 1% PVA (w/v) + 1% (w/v) Na\(_2\)SO\(_4\) + 0.2% (w/v) Tween 20 in water	

E. Composite polymeric particles prepared from S/O/W emulsion

DME, external pressure SPG microkit, \(d_p = 1-4.9 \, \mu\text{m} \)	PSMA particles (\(d_{\text{part}} = 1-7 \, \mu\text{m} \)) loaded with QDs	DP: Hydrophobic QDs + 7.2 wt% PSMA in toluene	Wang et al. (2013)
---	---	CP: 0.5 wt% SDS in water	
DME, internal pressure SPG, \(d_p = 15 \, \mu\text{m} \)	PS particles (\(d_{\text{part}} = 24 \, \mu\text{m} \)) loaded with QDs	DP: 1 mg mL\(^{-1}\) CdSe/ZnS QDs + 10% (w/v) PS in DCM	Han et al. (2015)
		CP: 1 wt% SDS in water	
DME, external pressure SPG microkit, \(d_p = 1.4-9.5 \, \mu\text{m} \)	P(St-co-AA), P(St-co-BA) or SBR particles particles (\(d_{\text{part}} = 6-75 \, \mu\text{m} \)) loaded with Fe\(_3\)O\(_4\) nanoparticles	DP: 12–17 wt% Fe\(_3\)O\(_4\) nanoparticles + 3–10 wt% P(St-co-AA) or 1.3 wt% SBR or 1.3–3 wt% P(St-co-BA) in toluene	Omi et al. (2001)
		CP: 1.6 wt% PVA + 0.1 wt% SDS in water	
Table 9. Examples of polymeric particles prepared by integration of membrane emulsification and suspension polymerisation (d_p – membrane pore diameter, d_{part} – particle diameter).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Emulsion formulation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Permanently porous particles prepared using porogenic solvent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, internal pressure SPG microkit, $d_p = 1.6 \mu m$, $\Delta p = 28$ kPa</td>
<td>Porous P(St-co-DVB) particles ($d_{\text{part}} = 4.2 \mu m$, CV=18–19%)</td>
<td>DP: 57–62 wt% DVB + 19–21 wt% St + 0.8 wt% AIBN +16–23 wt% HD CP: 10 mg mL$^{-1}$ PVP + 0.5 mg mL$^{-1}$ SDS + 0.5 mg mL$^{-1}$ HQ in water</td>
<td>Lee et al. (2010)</td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, $d_p = 1–10 \mu m$, $\Delta p = 6–80$ kPa</td>
<td>Porous P(St-co-DVB) particles ($d_{\text{part}} = 3.5–40 \mu m$, CV=13–17%)</td>
<td>DP: 2.6 wt% DVB + 47.4 wt% St + 49 wt% HP + 1 wt% BPO CP: 2–5 mg mL$^{-1}$ PVA + 0.1–0.5 mg mL$^{-1}$ SDS + 0.2–0.3 mg mL$^{-1}$ Na$_2$SO$_4$ + 0.2–0.4 mg mL$^{-1}$ MB in water</td>
<td>Zhu et al. (2011)</td>
</tr>
<tr>
<td>B. Permanently porous particles prepared by molecular imprinting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PME ($n=5$), external pressure SPG microkit, $d_p = 1.4 \mu m$, $\Delta p = 20$ bar</td>
<td>Imprinted Poly(MAA-co-EGDMA) particles ($d_{\text{part}} = 0.3–0.8 \mu m$)</td>
<td>DP: CAP + MAA + EGDMA (1:2:20 molar ratio CAP:MAA:EGDMA) + AIBN + EA CP: 1.5 wt% PVA in water</td>
<td>Kou et al. (2012)</td>
</tr>
<tr>
<td>DME, Dispersion Cell, $d_p = 20 \mu m$, span = 1–1.3</td>
<td>Imprinted Poly(MMA-co-EGDMA) particles ($d_{\text{part}} = 40 \mu m$)</td>
<td>DP: 3 wt% BPA + MAA + EGDMA (4:6 mass ratio MMA:EGDMA) + AIBN + n-octane CP: 1 wt% PVA + 2 wt% NaCl in water</td>
<td>Wolska et al. (2014)</td>
</tr>
<tr>
<td>C. Liquid-core/polymer-shell particles prepared using porogenic solvent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, $d_p = 1.4 \mu m$</td>
<td>HD-core/P(St-co-DMAEMA)-shell capsules ($d_{\text{part}} = 5.5–7.4 \mu m$, CV=8.2–10%)</td>
<td>DP: 48–87 wt% St + 10–50 wt% HD + 2.2 wt% DMAEMA + 0.5 wt% ADVN CP: 4.4 mg mL$^{-1}$ + 0.4 mg mL$^{-1}$ NaNO$_2$ + 0.4 mg mL$^{-1}$ Na$_2$SO$_4$ + 0.3 mg mL$^{-1}$ SDS in water</td>
<td>Ma et al. (2003c)</td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, $d_p = 1.4 \mu m$</td>
<td>HD-core/PSt-shell capsules ($d_{\text{part}} = 7–7.4 \mu m$, CV=6.7–7.1%)</td>
<td>DP: 50–65 wt% St + 35–50 wt% HD + 0.5 wt% ADVN CP: 4.4 mg mL$^{-1}$ + 0.4 mg mL$^{-1}$ Na$_2$SO$_4$ + 0.3 mg mL$^{-1}$ SDS in water</td>
<td>Ma et al. (2003c)</td>
</tr>
<tr>
<td>D. Composite particles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, cross-flow SPG, $d_p = 2 \mu m$, $\Delta p = 8$ kPa</td>
<td>Polymer particles loaded with 15 nm TiO2 nanoparticles ($d{\text{part}} = 10 \mu m$, CV=18%)</td>
<td>DP: 0.94 wt% TiO$_2$ + 0.75 wt% Solsperse* + 92 wt% NP-GDMA + 5.4 wt% HD + 0.94 wt% BPO CP: 45 wt% PVA + 0.2 wt% SDS in water</td>
<td>Takeda et al. (2009)</td>
</tr>
</tbody>
</table>
Table 10. Examples of liquid-core/polymer-shell particles fabricated by integration of membrane emulsification and polymerisation on the droplet surface (d_p – membrane pore diameter, d_{part} – particle diameter).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Emulsion formulation</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Interfacial polycondensation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DME, external pressure SPG microkit, d_p = 2.5 µm, Δp = 20 bar</td>
<td>Porous PA capsules with PNIPAM chains grafted in the pores (d_{part} = 4 µm)</td>
<td>DP: 1.5 M TDC in benzene/ xylene (2:1 v/v) CP: 17.3 mM SDS + 40. 6 mM PVA</td>
<td>Chu et al. (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. In situ polymerisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion Cell, ringed nickel membrane d_p = 15 µm, 1080 rpm</td>
<td>Industrial precursor-core/FA-MA shell capsules (d_{part} = 57 µm, CV=21%, span = 0.68)</td>
<td>DP: Industrial precursor CP: 1.2 wt% FA + 1.2 wt% MA + 0.7 wt% PAM-AA-Na in water at pH = 4.3</td>
<td>Pan et al. (2012)</td>
</tr>
<tr>
<td>DME, internal pressure SPG microkit, d_p = 10 µm, Δp = 2 kPa</td>
<td>ENB-core/MUF-shell capsules (d_{part} = 46 µm, span = 0.71)</td>
<td>DP: ENB CP: 0.3 wt% SDS + 4.5 wt% PVA in water</td>
<td>Liu et al. (2011)</td>
</tr>
</tbody>
</table>
Table 11. Preparation of multilayer O/W emulsions by ME and LbL electrostatic deposition. A primary emulsion containing droplets coated with ionic surfactant was prepared by ME and modified by sequential adsorption of oppositely charged biopolymers (d_p – membrane pore diameter, ζ – zeta potential of n-layer emulsion droplets; for primary emulsion $n = 1$).

<table>
<thead>
<tr>
<th>Process</th>
<th>Product</th>
<th>Primary emulsion</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PME (n=1–4), SPG high-speed kit, $d_p = 10, \mu m$, $\Delta p=150–200, kPa$</td>
<td>Two-layer sunflower O/W emulsion stabilised by WPI-CMC or WPI-(WPI-CMC)</td>
<td>DP: sunflower oil
CP: 1 wt% WPI in 0.01 M acetic acid at pH = 3.8
$\phi_i = 0.2$, $\xi_1 = +54, mV$</td>
<td>Berendsen et al. (2014)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 4, \mu m$</td>
<td>Two-layer corn O/W emulsion ($d_{1,2} = 6.6, \mu m$) stabilised by BLG-alginate</td>
<td>DP: corn oil
CP: 5 wt% BLG in 5 mM phosphate buffer at pH = 7.0
$\phi_i = 0.2$, $\xi_1 = -32, mV$</td>
<td>Li and McClements (2014)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 3, \mu m$</td>
<td>Two-layer fish O/W emulsion ($d = 12.9, \mu m$) stabilised by SDS-SBCS</td>
<td>DP: fish oil
CP: 0.25% (w/v) SDS at pH = 6
$\phi_i = 0.09$, $\xi_1 = -101, mV$</td>
<td>Chatterjee and Judeh (2015)</td>
</tr>
<tr>
<td>PME (n=5), external pressure SPG microkit, $d_p = 8, \mu m$, $\Delta p = 100, kPa$</td>
<td>Three-layer corn O/W emulsion stabilised by Tween 20-SDS-chitosan</td>
<td>DP: corn oil
CP: 0.5 wt% Tween 20 + 100 mM acetic acid + 10 mM NaCl (pH = 3.0)
$\phi_i = 0.2$, $\xi_1 = -12, mV$</td>
<td>Vladisavljević and McClements (2010)</td>
</tr>
<tr>
<td>PME, external pressure SPG microkit, $d_p = 8, \mu m$</td>
<td>Three-layer fish O/W emulsion ($d_{1,2} = 5.3–5.7, \mu m$) stabilised by Citrem-chitosan-alginate</td>
<td>DP: fish oil
CP: 0.5 wt% Citrem in 100 mM acetate buffer at pH = 3.5
$\phi_i = 0.05$, $\xi_1 = -45, mV$</td>
<td>Gudipati et al. (2010)</td>
</tr>
<tr>
<td>DME, SPG microkit, $d_p = 5.3, \mu m$</td>
<td>Six-layer silicone O/W emulsion ($d_{1,2} = 15.5, \mu m$) stabilised by 3 successive HTCC-alginate or DDMAC-glycerol layers</td>
<td>DP: silicone oil
CP: 1.5 wt% Brij-35 + 0.5 wt% Triton X-405 in deionized water
$\phi_i = 0.16$, $\xi_1 = -33, mV$</td>
<td>Nazir et al. (2012)</td>
</tr>
</tbody>
</table>
Abbreviations and trade names

Chemicals and materials: AA, acrylic acid; AB, antibody; AIBN, 2,2-azobisisobutyronitrile; ADVN, N,N’-azobis(2,4-dimethylvaleronitrile); APTES, (3-aminopropyl)-triethoxysilane; APTMS, (3-aminopropyl)-trimethoxysilane; bHb bovine hemoglobin; BSA, bovine serum albumin; HAPI, Hydrophilic active principle ingredient; API, active principle ingredient; BLG, β-lactoglobulin; Bz: benzene; BPA, bisphenol A; BPO, benzoyl peroxide; Brij-35, polyoxyethylene (10) lauryl ether; DMAEMA, dimethylaminoethyl methacrylate; CAP, chloramphenicol; Chl, cholesterol; CMS, carboxymethyl cellulose; Citrem (DuPont), citric acid esters of monoglycerides; CMS, chloromethylstyrene; CTAB, cetyltrimethyl-ammonium bromide; DCM, dichloromethane; DD, dodecane; DDMAC, diallyl dimethyl ammonium chloride; DFB, decalfluorobutane; DGCs, decaglycerin condensed stearic acid ester; DOX, doxorubicin, DVB, divinylbenzene; E2CA, ethyl 2-cyanoacrylate; EA, ethyl acetate; EDA, ethylenediamine; EDC, ethyl(dimethylaminopropyl) carbodiimide; EGDMA, ethylene glycol dimethacrylate; 2-EHA, 2-ethylhexyl acrylate; ENB, 5-ethylidene-2-norbornene; EtOH, ethanol; Eudragit FS 30D, poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid); formaldehyde, FA; GP, α-β- glycerophosphate; HAI, hydrophilic active ingredient; HBsAg, hepatitis B surface antigen; HD, hexadecane; HP, n-heptane; HPβCD, (2-hydroxypropyl-β-cyclodextrin; HQ, hydroquinone; HSPC, hydrogenated phosphatidylcholine; HTCC, N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride; MA, melamine; MAA, methacrylic acid; MB, methylene blue; methacrylic acid; MeOH, methanol; MA-FA, melamine-formaldehyde; MUF, melamine-urea-formaldehyde; MMA, methyl methacrylate; mPEG, poly(monomethoxypoly ethylene glycol); NHS, N-Hydroxysuccinimide; NIPAM, N-isopropylacrylamide; NPGDMA, neopentyl glycol dimethacrylate; PA, polyamide; PAA, poly(acrylic acid); PAH, poly(allylamine hydrochloride); PAM, polyacrylamide; PO-5S, hexaglycerol penta oleate; PAM-AA-Na, poly(acrylamide-co-sodium acrylate); PAH, poly(allylamine hydrochloride); ODS, octadecyldimethylchlorosilane; PBS, phosphate-buffered saline; PCL, polylactactone; PDM, poly(2-dimethylaminoethyl methacrylate); PDVB, polydivinylbenzene; PE2CA, poly(ethyl 2-cyanoacrylate); PEG, poly(ethylene glycol); PGPR, polyglycerol polyricinoleate; PLA, polylactic acid or polylactide; PLGA, poly(lactic-co-glycolic acid); PLHMGa, poly(lactic-co-hydroxymethyl glycolic acid); PLLA, poly(L-lactic acid); P(M-co-U-co-F), PMMA, poly(methyl methacrylate); PNIPAM, poly(N-isopropylacrylamide); PNaAMPS, poly(sodium 2-(acrylamido)-2-methylpropanesulfonate);
PO 310, tetracyglycerol pentaoealate; PP, polypropylene; PPC, poly(propylene carbonate); PrOH, 2-propanol; PS, polystyrene; P(St-co-BIEM), poly(styrene-2-(2-bromoisobutyryloxy)ethyl methacrylate); P(St-co-HEMA), poly(styrene-co-2-hydroxyethyl methacrylate); PSMA, poly(styrene-co-maleic anhydride); PUU, polyurethaneurea; PVA, polyvinylalcohol; PVP, Poly(vinyl pyrrolidone); QD, quantum dot; RF, resorcinol-formaldehyde; RIF, rifampicin; Solsperse®, dispersant (Lubrizol); SA, stearic acid; SBCS, N-stearoyl O-butylglyceryl chitosan; SDS, sodium dodecyl sulfate; Span 80, sorbitan monooleate; Span 85, Sorbitane trioleate; SPG, Shirasu porous glass; St, styrene; SU-8, negative photoresist from Shell Chemical; TEOS, tetraethylorthosilicate; TDC, terephthaloyl dichloride; TGCR, tetracyglycerol condensed ricinoleate; THF, tetrahydrofuran; TMS, trimethylchlorosilane; TPP, tripolyphosphate; Triton X-405, octylphenol ethoxylate; Tween 20, polyoxyethylene (20) sorbitan monolaurate; Tween 80, Polyoxyethylene (20) sorbitan monooleate; UCA, ultrasound contrast agent; VP, vinyl polymer; WPH, whey protein hydrolysate; WPI, whey protein isolate.

Other: ATRP, atom transfer radical polymerisation; CFD, computational fluid dynamics; DME, direct membrane emulsification; DRIE, deep reactive ion etching; ISP, in situ polymerisation; LIGA, Ger. LIthographie, Galvanoformung, Abformung (lithography, electroplating, and moulding), MESP, membrane emulsification-suspension polymerisation; PECVD, plasma-enhanced chemical vapor deposition; PME, premix membrane emulsification; RIE, reactive ion etching; UCST, upper critical solution temperature.

Symbols

- \(A_m \) Cross-sectional area of membrane
- \(a \) Ratio of mean droplet size in pre-mix to mean pore size
- \(Ca \) Capillary number
- \(D_{h,p} \) Hydraulic pore diameter
- \(d_d \) Droplet diameter
- \(d_p \) Mean pore diameter
\(d_{\text{part}}\) Particle diameter
\(E_a\) Activation energy for spinodal decomposition
\(F_{ca}\) Capillary force
\(F_d\) Drag force
\(J\) Transmembrane flux
\(K\) Proportionality constant in Eq. (1)
\(K', K'_1\) Proportionality constant between pore diameter and droplet diameter
\(K''\) Proportionality constant in Eq. (10)
\(m_m\) Mass of dry membrane
\(N\) Total number of pores in membrane
\(n\) Exponent in Eq. (10)
\(Q\) Volume flow rate
\(P\) Pressure
\(P_{\text{cap}}\) Capillary pressure
\(R\) Universal gas constant (8314 kJ kmol\(^{-1}\) K\(^{-1}\))
\(R_m\) Hydraulic resistance of membrane
\(S\) Spreading coefficient
\(r_p\) Pore radius
\(T\) Temperature
\(T_m\) Melting point
\(T_1\) Initial temperature of mother glass
\(T_2\) Temperature of glass phase separation
\(T_g\) Glass transition temperature
\(t\) Time
\(U\) Velocity
\(V_c\) Continuous phase volume
\(V_p\) Total pore volume in membrane
\(x\) Mass fraction
\(\gamma_{ij}\) Interfacial tension between phase \(i\) and phase \(j\)
\(\delta_m\) Membrane thickness
$$\varepsilon$$ Membrane porosity

$$\varepsilon_{\text{part}}$$ Particle porosity

$$\phi$$ Volume fraction

$$\eta$$ Viscosity

$$\rho$$ Density

$$\xi$$ Pore tortuosity

$$\theta$$ Contact angle

$$\tau_w$$ Shear stress on surface

Subscripts

c Continuous phase
cr Critical
d Dispersed phase
e Emulsion
i Acid insoluble phase
o Oil phase
aq Aqueous phase
p Pore
pol Polymer
s Acid soluble phase
1 Polymer 1 rich phase or porogen rich phase
2 Polymer 2 rich phase or polymer rich phase
3 Aqueous phase
References

Zhang, W., Wang, L., Liu, Y., Chen, X., Li, J., Yang, T., An, W., Ma, X., Pan, R. and Ma, G.
Figure captions

Figure 1. Schematic diagram of two principal membrane emulsification processes.

Figure 2. Spinodal decomposition of glass induced by cooling mother glass from an initial temperature T_1 to temperature T_2 lying in the spinodal region (within the spinodal line). To prevent phase separation via nucleation, a transition from the stable to the spinodal region of the phase diagram must proceed quickly or through the upper critical solution temperature (UCST).

Figure 3. Chemical modification of SPG surface by treatment with organosilane compounds: (a) Hydrophobic treatment with monochlorosilanes (Kai et al., 2006); (b) Introduction of amino groups by amino trialkoxysilanes to render the surface positively charged.

Figure 4. A diagram of a typical experimental set-up for cross flow DME using tubular SPG membrane. During start-up, valve 1 must be open to remove any trapped air from the module (Nakashima et al., 1994).

Figure 5. Commercial membrane emulsification micro kits available by SPG Technology Co., Ltd (Sadowara, Japan): (a) External-pressure type for DME; (b) External-pressure type for PME; (c) Internal-pressure type for DME. The effective length of membrane tube is 10–15 mm.

Figure 6. Contact angles through water phase and phase pressures encountered in membrane emulsification: (a) Production of O/W emulsion ($\theta < 90^\circ$, $P_o > P_w$); (b) Production of W/O emulsion ($\theta > 90^\circ$, $P_o < P_w$). The contact angle θ is the angle measured through the water phase, where a water/oil interface meets a membrane surface ($\gamma_{mw} =$ interfacial tension between membrane wall and water phase, $\gamma_{mo} =$ interfacial tension between membrane wall and oil phase, $\gamma_{wo} =$ interfacial tension between water and oil phase).

Figure 7. Mean droplet size, d_d in DME (dashed lines) and PME (solid lines) versus mean pore size, d_p and transmembrane flux, J: (1) d_d vs. J in shear-controlled DME; (2) d_d vs.
J in interfacial-tension driven DME; (3) d_d vs. d_p in interfacial-tension driven DME under dripping regime; (4) d_d vs. J in PME, 5) d_d vs. d_p in PME.

Figure 8. The main strategies used to crosslink droplets produced by ME in order to form solid or hollow gel microbeads.

Figure 9. Production of W/O/W emulsions containing biopolymer-gelled water droplets by high-pressure homogenisation, thermal gelation within the inner aqueous phase and PME (Surh et al., 2007).

Figure 10. Production of solid lipid carrier by integration of PME at $T > T_m$ and crystalisation of oil phase in the obtained O/W emulsion at $T < T_m$.

Figure 11. Production of water-in-solid lipid (W/S) carrier by integration of two-stage DME at $T > T_m$ and crystalisation of oil phase in the obtained W/O/W emulsion at $T < T_m$.

Figure 12. Production of solid-in-solid lipid (S/S) carrier by PME at $T > T_m$ and crystalisation of oil phase in the obtained S/O/W emulsion at $T < T_m$.

Figure 13. Production of particles by membrane emulsification-solvent removal from O/W emulsion.

Figure 14. Production of particles by membrane emulsification-solvent evaporation from W$_1$/O/W$_2$ or S/O/W emulsion.

Figure 15. Preparation of porous polymer particles by solvent displacement induced phase separation (Pacentini et al., 2013c).

Figure 16. Preparation of permanently porous polymer particles by membrane emulsification and subsequent processing: (a) Phase separation using a liquid solvent (porogen); (b) Post-polymerisation cross-linking (Zhou et al., 2011).
Figure 17. Preparation of molecularly imprinted polymer particles by membrane emulsification (Kou et al., 2012).

Figure 18. Preparation of liquid-core-polymer-shell particles by membrane emulsification - suspension polymerisation.

Figure 19. Preparation of liquid-core-polymer-shell particles by membrane emulsification followed by emulsification on the surface of the droplets: (a) interfacial polycondensation (IP) (Chu et al., 2002) and (b) in-situ polymerisation (ISP) (Pan et al., 2012).

Figure 20. Preparation of porous silica nanoshells loaded with magnetite nanoparticles and hydrophobic drug by membrane emulsification, miniemulsion polymerisation and sol-gel processing (Kong et al., 2013).

Figure 21. Preparation of carbon cryogel particles by sol-gel polycondensation of resorcinol with formaldehyde, combined with DME, freeze drying and pyrolysis (Yamamoto et al., 2010).

Figure 22. Preparation of complex coacervates by membrane emulsification (Piacentini et al. 2013).

Figure 23. Preparation of multilayer oil-in-water (M-O/W) emulsions by membrane emulsification: (a) Citrem-chitosan-alginate three-layer emulsion prepared by PME and LbL electrostatic deposition (Gudipati et al., 2010); (b) Tween 20-SDS-chitosan two-layer emulsion with cationic droplets prepared by PME, surfactant displacement and LbL electrostatic deposition (Vladisavljević and McClements, 2010); (c) BLG-alginate two-layer emulsion with anionic droplets prepared by PME and LbL electrostatic deposition with step-wise change in pH after mixing BLG-stabilized emulsion with alginate (Li and McClements, 2014).

Figure 24. Preparation of colloidosomes by membrane emulsification and subsequent processing: (a) Covalent cross-linking (Sun et al., 2014); (b) Internal polymer deposition (Nan et al., 2014b).
Figure 1

(a) Direct membrane emulsification (DME)

(b) Premix membrane emulsification (PME)

Pure dispersed phase

Pre-mix
Figure 2

Temperature

T_1 T_2 T_g

Interconnected type pores

Droplet type pores

Mass fraction of acid insoluble phase

X_s X_1 X_i
(a) Hydrophobic treatment with monochlorosilanes (TMS and ODS)

\[
\text{Cl-Si(CH}_3\text{)}_2\text{R} \quad \text{TMS: } R = \text{CH}_3 \\
\text{ODS: } R = \text{C}_{18}\text{H}_{37}
\]

(b) Introduction of positive charge with amino trialkoxysilanes (APTMS and APTES)

\[
\text{RO} \quad \text{RO} \quad \text{RO} + \text{H}_2\text{O} \\
\text{APTMS: } R = \text{CH}_3 \\
\text{APTES: } R = \text{C}_2\text{H}_5
\]

Figure 3
Figure 4

Compressed gas

Dispersed phase

Continuous phase

Membrane module

Vent
Figure 5

(a) Continuous phase

(b) Pre-mix

(c) Continuous phase

Figure 5
(a) Hydrophilic membrane
($\theta < 90^\circ$)

\[\gamma_{mw} = \gamma_{mo} + \gamma_{wo} \cos \theta \]

Water phase

Oil phase

(b) Hydrophobic membrane
($\theta > 90^\circ$)

\[\gamma_{mo} = \gamma_{mw} + \gamma_{wo} \cos \theta \]

Oil phase

\[\gamma_{mo} \]
Figure 7

Droplet size, d_d

Transmembrane flux, J

Pore size, d_p
Figure 8.

(a) Internal gelation

\[\text{pH} > 6.5 \quad \text{H}^+ \]

\[\text{Ca}^{2+} \Rightarrow \text{CaCO}_3 \text{ or Ca-EDTA} \]

(b) External gelation

\[\text{pH} < 6.5 \]

\[\text{Ca}^{2+} \]

(c) Emulsion cooling

Agarose droplet

cooling

(d) Droplet coalescence

1

2

(e) Simultaneous core dissolution and shell crosslinking

Chitosan

Droplet merging

TPP

Chitosan shell
Figure 9
Figure 10

Aqueous phase → Stirring → O/W premix

LAI+ melted lipid phase

T > T_m → PME → O/W emulsion

T < T_m

Cooling → Filtration → O/W carrier

O/W carrier

solid lipid

LAI

1

2
Figure 11

W/O emulsion

1. HAI + water
 - DME 1
 - W/O emulsion
 - DME 2
 - W/O/W emulsion

2. Melted lipid phase
 - Outer water phase
 - Cooling
 - Filtration
 - W/S carrier

3. Solid lipid

T > T_m

T < T_m

HAI

Melted lipid

1. HAI
2. Melted lipid
3. Solid lipid
Figure 12
(a) Coherent particle

DME or PME \[\text{polymer} + \text{solvent} \rightarrow \text{solvent removal} \rightarrow \text{polymer enriched in solvent} \rightarrow \text{complete solvent removal} \rightarrow \text{polymer} \]

(b) Liquid-core/polymer-shell particle

DME or PME \[\text{polymer} + \text{oil} + \text{solvent} \rightarrow \text{solvent} \rightarrow \text{polymer-poor phase} \rightarrow \text{polymer-rich phase} \rightarrow \text{oil} \rightarrow \text{polymer} \]

(c) Janus and non-spherical particles

DME or PME \[\text{polymer 1} + \text{polymer 2} + \text{solvent} \rightarrow \text{solvent removal} \rightarrow \text{PMMA} \rightarrow \text{PSt-co-BIEM} \rightarrow \text{polymer 1} \rightarrow \text{Acetone} \rightarrow \text{stress} \rightarrow \text{ATPR} \rightarrow \text{polymer 2} \rightarrow \text{polymer 3} \rightarrow \text{polymer} \]

(d) Composite polymer-inorganic core/shell particle

DME \[\text{PLGA} + \text{solvent} \rightarrow \text{PLGA} \rightarrow \text{PAH} \rightarrow \text{PLGA} \rightarrow \text{silica NPs} \rightarrow \text{PLGA} \rightarrow \text{polymer} \]

(e) Composite polymer-polymer core/shell particle

DME \[\text{PLGA} + \text{monomer} + \text{solvent} \rightarrow \text{Interfacial polymerisation} \rightarrow \text{PLGA} \rightarrow \text{PLGA-rich phase} \rightarrow \text{solvent removal} \rightarrow \text{PLGA} \rightarrow \text{polymer} \]

Figure 13
(a) Ultrasound contrast agent (UCA) particle

(b) Magnetite polymer particle prepared by *in-situ* magnetization

(c) Quantum-dot (QD) embedded barcode particle

(d) Silica-coated nanoparticle (NP) cluster

Figure 14
Figure 15

1. O/O emulsion
 - Solvent + polymer
 - Antisolvent oil phase
 - DME

2. Phase separation
 - Phase-separated particles
 - Antisolvent removal

3. Porous polymer particle
Figure 16

(a) Phase separation

DME → monomer + porogen + crosslinker → polymerisation → polymer → phase separation → polymer-rich phase → porogen removal → porogen-rich phase → pore

(b) Hypercrosslinking

chloromethylation: ZnCl₂ → CH₂-O-CH₂Cl → CH₂-O-CH₂Cl

alkylation: FeCl₃ → ClCH₂-CH₂Cl → ClCH₂-CH₂Cl
Figure 17

Polymerisation

Template/porogen removal

Cavity

Pore

Self-assembly

Polymer matrix

Template removal

Monomer + porogen + crosslinker

Template

PME
(a) One-stage suspension polymerisation

DME ➔ monomer + porogen + crosslinker ➔ polymerisation ➔ polymer ➔ polymer-rich phase ➔ phase separation ➔ porogen-rich phase ➔ porogen removal ➔ void

(b) Two-stage suspension polymerisation

High shear homogeniser ➔ hydrophilic monomers ➔ swelling ➔ swollen droplet ➔ polymerisation ➔ polymer-rich phase ➔ phase separation ➔ porogen-rich phase ➔ porogen-rich phase

Figure 18
(a) Interfacial polycondensation (IP) and graft polymerisation (GP)

DME → \(TDC + \text{solvent} \) → IP → freeze drying → GP → drug loading

(b) In situ polymerisation (ISP)

DME → \(\text{Oil-based industrial precursor} \) → ISP → FA-MA

Figure 19
(a) Mini-emulsion polymerisation

Ultrasound homogeniser → DME → Styrene (M) + co-stabiliser → Fe$_3$O$_4$ → $K_2S_2O_8$ → heating → $nM + SO_4^{-} \rightarrow M_nSO_4^{-}$

NH_4OH → polymerisation
Figure 21
DME → oil

\[\text{pH} < pI \]

oil → coacervate deposition → oil

\[\text{cross-linking} \]

polyamphoteric (protein)

\[\text{pH} < pI \quad \text{pH} > pI \]

polyanion (polysaccharide)

complex formation

Figure 22
(a) Three-layer emulsion

REPEATED PME

Citrem-stabilized droplet

primary emulsion

add chitosan

secondary emulsion

add alginate

 tertiary emulsion

(b) Two-layer emulsion prepared by surfactant displacement

REPEATED PME

Tween stabilized droplet

primary emulsion

add SDS and dilute

secondary emulsion

add chitosan

cationic droplet

(c) Two-layer emulsion prepared by two-step mixing

BLG-stabilized droplet

add alginate

lower pH

electrostatic attraction

Figure 23
(a) Colloidosomes prepared by DME and internal cross-linking of Pickering particles

(b) Colloidosomes prepared by PME and polymer deposition onto Pickering particles