Incidence of metabolic risk factors among healthy obese adults: 20-year follow-up

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Metadata Record: https://dspace.lboro.ac.uk/2134/19096

Version: Published

Publisher: © 2015 The Authors. Published by Elsevier, Inc. on behalf of the American College of Cardiology.

Rights: This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Please cite the published version.
Incidence of Metabolic Risk Factors Among Healthy Obese Adults

20-Year Follow-Up

There is growing evidence that obese adults without metabolic risk factor clustering (the so-called “healthy obese”) progress to unhealthy obesity over time (1). However, the pathophysiological changes underlying the long-term transition into an unhealthy obese state have not been well characterized. To inform clinical management of healthy obesity, we aimed to identify the metabolic risk factors responsible for this transition, as well as the timing of their onset.

Repeat clinical data were drawn from the Whitehall II cohort study of British adults. We grouped participants as normal-weight (body mass index [BMI] 18.5 to 24.9 kg/m²), overweight (BMI 25 to 29 kg/m²), or obese (BMI ≥ 30 kg/m²), and as healthy (2) if they were free of any the following characteristics: high-density lipoprotein cholesterol < 1.03 mmol/l (men) and < 1.29 mmol/l (women); blood pressure ≥ 130/85 mm Hg or antihypertension medication use; fasting plasma glucose ≥ 5.6 mmol/l or diabetic medication use; triglycerides ≥ 1.7 mmol/l; and homeostatic model-assessed insulin resistance > 2.83 (baseline 90th percentile value). Participants provided written

FIGURE 1 Incidence of Metabolic Risk Factors Among Initially Healthy Obese Compared With Initially Healthy Normal-Weight Adults Over 20 Years (n = 1,120)

Results are incidence ratios and 95% confidence intervals (CI) for having each metabolic risk factor at follow-up, on the basis of Poisson regression models with robust error variances. Models are adjusted for age, sex, and ethnicity. Little difference in high-density lipoprotein cholesterol or triglycerides was observed between groups. Baseline healthy status is defined as having none of 5 metabolic risk factors (hypertension, low-density lipoprotein cholesterol, high triglycerides, insulin resistance, and high blood glucose).
Letters

872

normal-weight counterparts. That insulin resistance is an established indicator of future impaired glucose metabolism (5) may explain their much higher incidence of type 2 diabetes (relative risk near 4.0) (2) and slightly higher incidence of cardiovascular disease (relative risk near 1.2) (4), given that earlier onset of risk factors leads to a greater cumulated exposure and higher disease risk. Overall, our findings suggest that healthy obesity is strongly linked with future insulin resistance that subsequently causes cardiometabolic pathology.

*Joshua A. Bell, MSc
Mark Hamer, PhD
G. David Batty, DSc
Archana Singh-Manoux, PhD
Séverine Sabia, PhD
Mika Kivimäki, PhD

*Department of Epidemiology & Public Health
University College London
1-19 Torrington Place
London, United Kingdom WClE 6BT
E-mail: joshua.bell.11@ucl.ac.uk

http://dx.doi.org/10.1016/j.jacc.2015.06.014

© 2015 The Authors. Published by Elsevier, Inc. on behalf of the American College of Cardiology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please note: Mr. Bell is supported by an Economic and Social Research Council (ESRC) studentship. Dr. Hamer is supported by the British Heart Foundation (RE/10/005/28296). Dr. Singh-Manoux has received research support from the U.S. National Institutes of Health (NIH) National Institute of Aging (NIA) (RO1AG033996; R01AG034454). Dr. Sabia has received research support from the NIH NIA (RO1AG034454) and ESRC (ES/I022999/1). Dr. Kivimäki has received research support from the Medical Research Council (MR/K033593/1), the National Heart, Lung, and Blood Institute (RO1HL06100; the NIA (RO1AG034454); NordForsk (75021)); and an ESRC professorial fellowship (ES/I022999/1). The funders had no role in the study design; in the collection, analysis and interpretation of data; in writing of the report; or in the decision to submit the paper for publication. The developers and funders of Whitehall II do not bear any responsibility for the analyses or interpretations presented here. The authors declare that there is no duality of interest associated with this manuscript. Dr. Batty has reported that he has no relationships relevant to the contents of this paper to disclose. The authors thank all of the participating civil service departments and their welfare, personnel, and establishment officers; the British Occupational Health and Safety Agency; the British Council of Civil Service Unions; all participating civil servants in the Whitehall II study; and all members of the Whitehall II study team. The Whitehall II study team comprises research scientists, statisticians, study coordinators, nurses, data managers, administrative assistants and data entry staff, who make the study possible. Whitehall II data, protocols, and other metadata are available to bona fide researchers for research purposes. Please refer to the Whitehall II data sharing policy.

REFERENCES