Investigation of zinc whisker growth from electrodeposits produced using an alkaline non-cyanide electroplating bath

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a powerpoint presentation.

Metadata Record: https://dspace.lboro.ac.uk/2134/19323

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Investigation of Zinc Whisker Growth from Electrodeposits Produced Using an Alkaline Non-Cyanide Electroplating Bath

By Liang Wu

Co-authored by:
Dr Geoffrey D. Wilcox
Dr Mark A. Ashworth

Department of Materials, Loughborough University, UK
What is a Metallic Whisker?

- Crystalline metallic crystals
- Spontaneously grow from metal surfaces (Sn, Zn, Cd)
- Reported average grow rate ~ 250 µm per year
- 1 µm in diameter and a few millimetres in length

Able to form various shapes

- Straight
- Kinked
- Spiral
- Curved eruption

NASA Photo Gallery; nepp.nasa.gov/whisker/photos/index.html
NASA: “50 Electronic Failures occurred due to Whisker Growth from 1986 – 2006; ~10% of the Problems We Know About!”
Electronic Failures Caused by Zn Whiskers

<table>
<thead>
<tr>
<th>Year</th>
<th>Whiskers on</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>Local Power Range Monitoring Detectors</td>
<td>Dresden nuclear Power Station</td>
</tr>
<tr>
<td>1990</td>
<td>Rotary Switch</td>
<td>Apnea Monitors</td>
</tr>
<tr>
<td>1990</td>
<td>Local Power Range Monitoring Detectors</td>
<td>Duane Arnold Nuclear Power Station</td>
</tr>
<tr>
<td>1995</td>
<td>Framework</td>
<td>Telecom Equipment</td>
</tr>
<tr>
<td>1996</td>
<td>Chassis</td>
<td>Computer Routers</td>
</tr>
<tr>
<td>1998</td>
<td>Chassis</td>
<td>Computer Hardware</td>
</tr>
<tr>
<td>1999</td>
<td>Xsistor Package + Standoff</td>
<td>Missiles</td>
</tr>
<tr>
<td>1999</td>
<td>Chassis</td>
<td>Computer Routers</td>
</tr>
<tr>
<td>2001</td>
<td>Bus Rail</td>
<td>Space Ground Test Equipment</td>
</tr>
<tr>
<td>2003</td>
<td>Floor Tiles</td>
<td>Computer Data Centre in Canada</td>
</tr>
<tr>
<td>2004</td>
<td>Floor Tiles</td>
<td>Computer Data Centre in USA</td>
</tr>
<tr>
<td>2004</td>
<td>Floor Tiles</td>
<td>Computer Data Centre in Australia</td>
</tr>
<tr>
<td>2012</td>
<td>Floor Tiles</td>
<td>Computer Data Centre in North East England</td>
</tr>
</tbody>
</table>

Many long zinc whiskers on zinc coated steel [1]

Zinc-electroplated connector shell [2]
Electronic Failure Mechanisms

Type 1: Grown whiskers to bridge components

Type 2: Airborne whiskers settle on components

Type 1: A whisker grew and connected two diodes used in a nuclear power plant

Type 2: Whiskers formed inside an air-spaced capacitor and became airborne whiskers

Produce a bridge between components

Short circuiting, voltage variance and other signal disturbance

Electrical equipment failure
Objectives

- Observe Zn whisker growth
 - Growth rate and morphology
 - Growth mechanisms
- Characterise the Zn electrodeposits
 - Surface morphology
 - Grain size and structure
- Investigate the influence of some key parameters on whisker growth
 - Deposition current density
 - Deposit thickness
 - Post-electroplating thermal treatment

In relation to whisker growth
Experimental Approaches

- Electroplating bath
 - Alkaline cyanide-free zinc plating solution
 - pH ~ 10
 - Chemicals
Chemical	Amount
Zinc	11 g/l
Sodium hydroxide	130 g/l
Conditioner	30 ml/l
Brightener	1.5 ml/l
Purifier	1 ml/l
Initial additive	7 ml/l

- Sample geometry
 - Sample storage
 - Room temperature (~ 20°C)
 - Sample geometry
 - Mild steel substrate
 - Zn coating
 - ~ 5 µm thick (by electroplating)
 - ~ 1 mm thick
Effect of Deposition Current Density on Whisker Growth

- 5 µm thick coating deposited at different current densities
- SEM analysis 16 months after deposition

Number of whiskers/cm²

- Recommended current density range

Many whiskers were present on the 40 mA/cm² samples!
Effect of Deposition Current Density on Deposit Microstructure

Strange feature growths on low current density samples!
Effect of Deposition Current Density on Deposit Microstructure

As current density increases: grain diameter decreases and more columnar structure.
Effect of Deposit Thickness on Whisker Growth

- Deposited at 25 mA/cm² with different thicknesses
- SEM analysis 13 months after deposition

As deposit thickness increases
- Fewer filament-type whiskers
- Fewer eruption-type whiskers

Lower deposition current density & thicker deposit result in fewer whiskers!
Effect of Post-Electroplating Heat Treatment on Whisker Growth

- Deposited at 25 mA/cm²
- Thermal treated at different temps for 0.5h and then storage at room temperature
- SEM analysis after 14 months
Effect of Post-Electroplating Heat Treatment on Whisker Growth

- Deposited at 25 mA/cm²
- Thermal treated at different temps for 0.5h and then storage at room temperature
- SEM analysis after 14 months
Effect of Post-Electroplating Heat Treatment on Whisker Growth

- Deposited at 25 mA/cm²
- Thermal treated at different temps for 0.5h and then storage at room temperature
- SEM analysis after 14 months

Short period of heat treatment at high temp. markedly reduces whisker growth!

- 50 ºC
- 80 ºC
- 100 ºC
- 125 ºC
- 150 ºC

No whiskers!
Evolution of Whisker Growth at Room Temperature

5 µm alkaline zinc on mild steel electrodeposited at 25 mA/cm²

- Whiskers were present 4 weeks after deposition;
- 4 months after deposition, all the whiskers were growing associated with “nodules”.

Many larger eruptions and longer whisker filaments present!
Evolution of Whisker Growth at Room Temperature

5 µm alkaline zinc on mild steel electrodeposited at 25 mA/cm²

- Whiskers growing from the flat deposit surface were present 5 months after deposition;
- The presence of nodules markedly **shortens the incubation time.**

Many larger eruptions and longer whisker filaments present!
Periodic Analysis of Whisker Growth Associated with Nodules

Several specific nodules were monitored periodically.

A whisker grew associated with the staircase structure.

“Staircase structure” first appeared.

More whiskers grew associated with the staircase structure.
Staircase Structures

Staircase structures are pre-cursors to whisker growth associated with nodules.

Appear ~ 1 month after deposition

only present on the surface of nodules

2 µm

500 nm

250 nm

250 nm
Recrystallisation occurs Associated with Whisker Growth

1. Whiskers growing associated with the nodules

 Stored at RT for 6 months

 - A cavity was observed beneath the nodule
 - Columnar grain structure in the flat deposit layer and also in the nodule
 - Grains near whisker root were recrystallised

![Ion beam image](image)
5 µm
Pt
Zn whiskers
Flat Zn layer
Steel

![FIB cross-sectioned](image)
1 µm

![EBSD](image)
5 µm
Recrystallisation occurs associated with whiskers growing from nodules and the flat deposit surface.

2. Whiskers growing from the flat deposit surface

Stored at RT for 6 months
Summary

- Whisker growth from nodules was observed only 4 weeks after deposition; whilst whisker growth from the flat deposit surface was not observed until 5 months after deposition.

- The presence of nodules and subsequent development of staircase structures markedly reduced the incubation time for whisker growth.

- Lower deposition current density, thicker deposits & heat treatment for 0.5h at high temperatures resulted in fewer whiskers.

- Recrystallisation is associated with whisker growth from both nodules and the flat deposit surface.
Thank you for listening!

Any questions or comments?