Rectification of Brownian particles with oscillating radii in asymmetric corrugated channels

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This paper is published in the journal, Acta Physica Polonica A, the definitive version is available at: http://dx.doi.org/10.12693/APhysPolA.128.159.

Metadata Record: https://dspace.lboro.ac.uk/2134/19570

Version: Published

Publisher: © Polish Academy of Sciences. Institute of Physics

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
1. Introduction

Rectification is the process of turning the unbiased fluctuations in a system into the directed transport of particles. One means by which this is accomplished is by the use of ratchets. A ratchet is a device that is capable of transporting particles in a periodic structure with non-zero macroscopic velocity, although on average no macroscopic force is acting. This is achieved through the breaking of temporal and/or spatial symmetry [1–4].

Interest in rectification partly stems from its potential application on the nanoscale where Brownian motion predominates, yet it can deliver directed transport of biological probes and nanodevices, as well as, particle separation. However for practical implementation to be achieved, it is apparent that chamber and particle geometry must be considered.

With respect to chamber geometry, it is known that in a variety of biological systems particles move in constrained geometries, such as cavities or channels which act as traps. When particles diffusing between such cavities are surrounded by smooth channels connected by narrow pores they are confined in each cavity by an entropic rather than an energetic potential [5, 6]. In such cases a Fokker–Planck or Langevin equation can be used to model the diffusion dynamics of these particles in two and three dimensions. At low values of the driving force, approximate solutions can then be obtained by reducing the problem to Brownian diffusion in an effective 1D periodic potential using a Fick–Jacobs kinetic equation with a spatially dependent diffusion function and a 1D entropic barrier replacing the geometric constraints. However, at higher values of the driving force the model parameters of the average particle current and the effective diffusion coefficient diverge from their actual values. This occurs because the assumption of transversely uniform density distribution introduced in the Fick–Jacobs approximation to eliminate transverse coordinates, is no longer valid at strong driving forces. A general estimate of the criteria under which the Fick–Jacobs equation applies is that \[\max(\tau_y/\tau_x, \tau_y/\tau_{\text{drift}}) \ll 1, \]
where \(\tau_y, \tau_x, \tau_{\text{drift}} \) are the time scales associated with the diffusion in the transverse direction over distance \(\Delta y \), the diffusion in the axial direction and the drift (ballistic) motion respectively [7–9]. Examples of when the 1D reductionist approach has proved inadequate include geometric stochastic resonance (gSR) in a double cavity and Brownian motion in septate channels [5, 6, 10, 11]. There are therefore limits to the applicability of the 1D reductionist approach. For sharper boundaries and/or larger driving forces, we must consider alternative approaches such as the Euler algorithm of the Langevin equation in two dimensions as we have used below [5, 6, 10, 12–16]. Fortunately, spatial asymmetry is not necessary for rectification, time-asymmetric drives have been numerically and experimentally demonstrated to produce rectification obviating the need for finely constructed channels [17–19].

With respect to particle geometry, we have already demonstrated that in the case of gSR, the elongation aspect ratio \(b/a \) of an elliptical particle and its length \(b \) relative to pore width \(\Delta \) could both be optimised to promote gSR [10]. Furthermore, an elliptical particle with elongation aspect ratio \(b/a \), where \(a \ll b \), and subject to a direct drive \(F_0 \) and alternating drive \(F_{\text{ac}} \) diffusing in a highly spatially symmetric channel, has been shown to demonstrate absolute negative mobility (ANM) that could be optimised for drive and particle parameters. This could not be achieved for non-extensive particles [20–22]. These findings have practical implications, as it is much easier to control the fabrication of nanoparticle shape than of the chambers through which they pass.

Interest in particle shape and its effect upon stochastic dynamics is increasing in part due to the potential applications of the Janus particles. These particles are nanoparticles composed of two or more different surfaces whose individual physical and/or chemical properties are distinct and consequently interact differently with the surrounding medium [23]. Their asymmetry of...
design gives the Janus particles unique properties of interaction and a wide variety of potential future applications. These applications include: stabilisation of liquid/liquid and liquid/gas interfaces, nanoprobes [24, 25], biosensors [26], drug delivery, “lab on a chip” devices, tailored substrate wettability [27] and programmable nanostructures capable of self-assembly and reconfiguration to name but a few [23].

2. Model and results

In our model we considered an overdamped Brownian circular particle with an oscillating radius freely diffusing in a 2D suspension fluid confined in an asymmetric corrugated channel with reflecting walls as shown in Fig. 1. The overdamped dynamics of the particles were modelled by the Langevin equation [38, 39]:

\[
\frac{dr}{dt} = -A(t)e + \sqrt{D}\xi(t),
\]

where \(r \) was the position vector of the particle, \(A(t)e \) was the driving force, \(e = (e_x,e_y) \) was the unit vector, \(D \) was the noise intensity and \(\xi(t) = [\xi_x(t),\xi_y(t)] \) was the zero mean Gaussian white noise with autocorrelation function \(\langle \xi_i(t)\xi_j(t') \rangle = 2\delta_{ij}\delta(t-t') \) with \(i,j = x,y \). We used \(A(t) = F\text{sgn} (\cos(\pi t/t_{max})) \) with simulation time \(t_{max} \) and \(\text{sgn}(z) = 1 \) for \(z > 0 \) and \(\text{sgn}(z) = -1 \) for \(z < 0 \). Thus the ac force \(A(t) \) pushed the system to the left during the first half time of simulation and to the right during the second half time of simulation resulting in no average dc drive. Therefore, the average velocities reported in Figs. 2 and 3 below originated from the rectification mechanism. The particle had a fixed internal component of radius \(R_1 = a \) and an oscillating external component of radius \(R_2 = b|\cos(\omega t)| \), where \(a \) and \(b \) were constants and \(|R_2| < R_1 \). Equation (1) was numerically integrated using an Euler algorithm. The number of time steps used was \(10^9 \) (time step was \(10^{-4} \) and simulation time was \(10^5 \)) [39, 40].

![Fig. 1. Brownian particle with oscillating radii freely diffusing in a 2D asymmetric corrugated channel. For Figs. 2 and 3 we used the following channel parameters: \(Y_L = X_L = 1, \Delta = 0.1 \).](image1)

![Fig. 2. Average velocity of a single circular particle of constant radius \(R(t) = R_1 \) (\(R_2 = 0 \)) as a function of driving force \(F \) for several values of \(R_1/\Delta = 0.5 \) (solid), 0.8 (dash-dot), 0.95 (dash-dash), 0.99 (dot-dot) with pore size \(\Delta = 0.1 \) (see Fig. 1).](image2)

Figure 2 shows rectification of a single circular particle of constant radius \((R(t) = R_1, R_2 = 0) \) for several temperatures and a range of DC driving forces. At low driving forces, the rectified velocity increased as \(F^2 \) and then linearly increased. This behaviour is quite different from the usual rectification peak in 1D. Note that at weak drives rectified velocity can have a more complicated behaviour which is now under investigation and will be reported later.
Figure 3 shows rectification of a self-oscillating particle with a radius composed of a fixed internal component of radius \(R_1 = 0.9\Delta \) and an oscillating external component of radius \(R_2 = 0.03\cos\omega(t) \) for fixed temperature \(D = 0.1 \) and a range of angular speeds of oscillation. The particle had a minimum radius of \(0.09 \) and a maximum of \(0.12 \), in a corrugated channel where the pore width was \(\Delta = 0.10 \). This led to a gating mechanism whereby maximal rectification could be achieved when there existed an average time \(t_\omega \) which the particle needed to pass a channel cell (note that this time was controlled by driving amplitude \(F \) and noise) and the particle’s period of oscillation \(t_\omega \), where \(t_\omega = 2\pi/\omega \); that is when \(t_\omega \approx n\omega t_0 \) and \((n = 1, 2, 3, \ldots) \). The oscillation in each curve for \(\omega \) occurred because with increased driving force the value of \(t_\omega \) fell successively in and out of commensurability with \(t_\omega \) leading to varying amplitude of rectification. When \(t_\omega \approx t_\omega \) the particle as “seen” by successive pores most closely resembled a particle of constant radius and thus its rectification most closely resembled that of a particle of constant radius, too. It is apparent then that differential rectification of populations of Brownian particles freely diffusing in asymmetric corrugated channels can be achieved by means of differing angular frequencies of oscillation and used to achieve particle separation. This will be of interest to those seeking to achieve controllable and directed transport of self-oscillating particles on the nanoscale such as that of self-propelled Janus particles.

3. Conclusion

We have demonstrated rectification for a self-propelled Brownian particle in a series of asymmetric corrugated channels. Rectification could be optimised for temperature, as expected, and frequency \(\omega \) of radial oscillation by matching the mean noise and driving force induced escape time \(t_\omega \) with the period of oscillation \(t_\omega \). This mechanism can be used for separation of self-oscillating particles according to their self-frequencies (for instance living and dead cells or bacteria) on the nanoscale.

Acknowledgments

S.E.S. was partially supported by Ministry of Science of Montenegro, under Contract No. 01-68.

References

