Digital laser-dye patterning

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a leaflet for TRIP two textile research in process: an exhibition by the Textiles Research Group, School of the Arts, Loughborough University in Collaboration with the Estonian Academy of Arts, Tallin, Estonia, 10-15 August 2015.

Metadata Record: https://dspace.lboro.ac.uk/2134/19747

Version: Published

Publisher: Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
An exhibition by the Textiles Research Group
School of the Arts Loughborough University
in Collaboration with the Estonian Academy of Arts
Design and Architecture Gallery, Tallinn, Estonia
10th – 15th August 2015
Mon – Sat 12.00-18.00
www.lboro.ac.uk/departments/aed/
staff-research/research-groups/textiles/

Loughborough University
Janette Matthews

Janette Matthews' work demonstrates how she incorporates traditional folding techniques such as pleating. Fabric manufactured from natural fibres such as silk, is transformed through this application of digital technology with craft techniques including laser cutting, die-cutting and 3D modelling to produce for textiles. The study involves an exploration into textile structures, examining woven structures, lace and open weave constructions, threads and embroidered surfaces. The collection forms a study of textile structures, referencing anatomical and medical techniques.

Email: info@janettematthews.com

Laura Morgan

Laura Morgan designs and manufactures products which explore the potential of pattern, colour and 3Dimensional textile. She works with varying of materials, predominantly plastics, rubber and fabrics. Through experimenting with laser cutting, die cutting and 3D modelling to produce for textiles. The study involves an exploration into textile structures, examining woven structures, lace and open weave constructions, threads and embroidered surfaces. The collection forms a study of textile structures, referencing anatomical and medical techniques.

Email: L.Morgan@edeibecket.ac.uk

Rachel Philpott

Rachel Philpott is interested in developing adaptable, self-supporting 3D textile structures with shape memory properties. These textiles have transferrable applications in art and design, including apparel, interior, architecture and product design. This study involves an exploration into textile techniques used to manipulate a textile and the new materials used to achieve this.

Email: R.Phillpott@lboro.ac.uk

Kerry Walton

Kerry Walton’s research is inspired by ancient Egyptian mummies. His work explores the relationship between art and science, specifically the use of computer models to understand and depict the processes involved in creating a mummy. Kerry Walton is interested in the application of 3D printing technologies to create realistic models of ancient Egyptian mummies.

Email: K.Walton@lboro.ac.uk

Nithikul Nimkulrat

Nithikul Nimkulrat is interested in the relationship between art and technology. Her work explores the use of computational tools to create new forms of textile design. Nithikul Nimkulrat’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: nithikul.nimkulrat@lboro.ac.uk

Her work explores the relationship between art and science, specifically the use of computer models to understand and depict the processes involved in creating a mummy. Kerry Walton is interested in the application of 3D printing technologies to create realistic models of ancient Egyptian mummies.

Email: K.Walton@lboro.ac.uk

Chetna Prajapati

Chetna Prajapati’s work investigates the process of hand dyeing and dyeing procedures. Combined creative, surface effects with high-resolution imaging to produce a range of unique textile dyed garments. Her work explores the integration of art and science, specifically the use of computational tools to create new forms of textile design. Chetna Prajapati’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: c.prajapati@lboro.ac.uk

My research focuses on the use of new and industrial colouration techniques. Sustainability inform my current practice. Recent concerns include visual and material exploration of local fibre resources and textile traditions. This has focused around the use of flax textile production, specifically Nottingham lace. The samples for materials typically positioned outside of fashion design, architecture and design. The research presented explores the potential of enzymes for materials transformation, including alternative techniques and applications for materials. By studying the life cycle in its entirety, we can identify and develop materials alternatives that are more sustainable and environmentally friendly. The work aims to originate and explore a conceptual viewpoint: I am interested in the point where drawing no longer contributes to an accepted approach to drawing for textiles. The work explores the integration of art and science, specifically the use of computational tools to create new forms of textile design. Chetna Prajapati’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: k.akiwowo@lboro.ac.uk

Jan Shenton

Jan Shenton's work explores alternative textile coloration and dyeing procedures. Combined creative, surface effects with high-resolution imaging to produce a range of unique textile dyed garments. Her work explores the integration of art and science, specifically the use of computational tools to create new forms of textile design. Chetna Prajapati’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: j.shenton@lboro.ac.uk

Paula Gamble-Schwarz

Paula Gamble-Schwarz’s work investigates the process of hand dyeing and dyeing procedures. Combined creative, surface effects with high-resolution imaging to produce a range of unique textile dyed garments. Her work explores the integration of art and science, specifically the use of computational tools to create new forms of textile design. Chetna Prajapati’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: p.gamble-schwarz@lboro.ac.uk

Kerri Akiwowo

Kerri Akiwowo’s research investigates the process of hand dyeing and dyeing procedures. Combined creative, surface effects with high-resolution imaging to produce a range of unique textile dyed garments. Her work explores the integration of art and science, specifically the use of computational tools to create new forms of textile design. Chetna Prajapati’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: k.akiwowo@lboro.ac.uk

Janet Matthews

Janet Matthews’ work demonstrates how she incorporates traditional folding techniques such as pleating. Fabric manufactured from natural fibres such as silk, is transformed through this application of digital technology with craft techniques including laser cutting, die-cutting and 3D modelling to produce for textiles. The study involves an exploration into textile structures, examining woven structures, lace and open weave constructions, threads and embroidered surfaces. The collection forms a study of textile structures, referencing anatomical and medical techniques.

Email: info@janettematthews.com

Laura Morgan

Laura Morgan designs and manufactures products which explore the potential of pattern, colour and 3Dimensional textile. She works with varying of materials, predominantly plastics, rubber and fabrics. Through experimenting with laser cutting, die cutting and 3D modelling to produce for textiles. The study involves an exploration into textile structures, examining woven structures, lace and open weave constructions, threads and embroidered surfaces. The collection forms a study of textile structures, referencing anatomical and medical techniques.

Email: L.Morgan@edeibecket.ac.uk

Rachel Philpott

Rachel Philpott is interested in developing adaptable, self-supporting 3D textile structures with shape memory properties. These textiles have transferrable applications in art and design, including apparel, interior, architecture and product design. This study involves an exploration into textile techniques used to manipulate a textile and the new materials used to achieve this.

Email: R.Phillpott@lboro.ac.uk

Kerry Walton

Kerry Walton’s research is inspired by ancient Egyptian mummies. His work explores the relationship between art and science, specifically the use of computer models to understand and depict the processes involved in creating a mummy. Kerry Walton is interested in the application of 3D printing technologies to create realistic models of ancient Egyptian mummies.

Email: K.Walton@lboro.ac.uk

Nithikul Nimkulrat

Nithikul Nimkulrat is interested in the relationship between art and technology. Her work explores the use of computational tools to create new forms of textile design. Nithikul Nimkulrat’s research focuses on the development of new textile design techniques that utilize computer programming to generate new forms of textile patterns.

Email: nithikul.nimkulrat@lboro.ac.uk

ISBN: 978-1-907382-96-3