Real-time autonomous remote monitoring of AD

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: RADU, T. ... et al., 2015. Real-time autonomous remote monitoring of AD. Presented at: SUPERGEN Bioenergy Hub Annual Assembly 2015, Harpenden, UK, 19 November 2015.

Additional Information:

- This is a poster presentation.

Metadata Record: https://dspace.lboro.ac.uk/2134/19751

Version: Accepted for publication

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Monitoring and optimisation of small and medium size, remote anaerobic digesters is an outstanding issue. Continuous on-line monitoring of biogas quality and quantity, along with reactor pressure and oxygen levels (potential indicators of leaks) would enable control and management of decentralized digesters. Current monitoring systems at large digesters are bespoke and expensive precluding their use for smaller reactors.

We have identified a novel remote monitoring platform developed by Dublin City University (commercialised by Ambisense Ireland) for the on-line measurement of methane, carbon dioxide and pressure currently under test by the landfill industry. The instrument is autonomous (solar powered) and can be controlled remotely. The data is sent to the cloud via GSM transmissions, and accessible via an online portal. CO₂ and CH₄ are measured by modified infrared and pressure by piezoelectric sensors embedded in a chip.

Here, we are examining instrument's suitability for application in AD market by testing its performance at various biogas compositions, pressures and temperatures typical of the AD process range. Success in this proof of concept would lead to a further development of an expert machine control system, based on the monitor, to allow autonomous control and optimise performance of several digesters remotely.

Autonomous remote monitoring of: CH₄, CO₂, O₂, pressure

- Using autonomous wireless gas sensing platforms: reliable long term performance and reduction in component cost
- The data sent to the cloud via GSM transmissions, and is accessible via an online portal for remote monitoring by the facility management
- CO₂ and CH₄ sensing: high-accuracy infrared absorbance sensors
- Pressure sensing: piezoelectric sensors (critical for understanding gas flows)
- Oxygen sensor is an electrochemical cell
- The integrity of the sensors’ measurements are protected by use of pre-conditioning filters to remove water vapour, particulates and condensate
- Autonomous operation is achieved by custom-programmed microcontroller circuitry, which also manages data logging and remote transmission (GSM communications)
- Ambisense data shows good agreement with the hand held instrument for CH₄ and CO₂

ACKNOWLEDGEMENT: This research is funded by SUPERGEN Bioenergy Hub’s Small Grant Scheme and Engineering and Physical Sciences Research Council (EPSRC) grant EP/K000361
For further details please contact Tanja Radu at T.Radu@lboro.ac.uk or +44 (0)1509 23808