Considering cogeneration and thermal storage within UK community context [Poster].

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a poster presented at UKES2015.

Metadata Record: https://dspace.lboro.ac.uk/2134/19967

Version: Accepted for publication

Publisher: Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Considering cogeneration and thermal storage within UK community context

F. Anvari-Azar, R. Blanchard, P. Rowley

Introduction
- Combined Heat & Power (CHP) generation is an efficient method of supplying a site’s demand [1].
- CHP has proven to be effective in applications where the intra-hourly and seasonal demand variation is minimal [2].
- Domestic demand have high load fluctuation and reaching an efficient CHP operation has proven to be challenging [4].
- The domestic demand vary considerably based on factors such as number & type of occupancy and building insulation level [3].

Aim & objectives
- To develop a CHP dispatch model which would control the unit considering high resolution stochastically generated heat and electricity demand data.
- To compare the outcome (CHP dispatch) for different generation and storage unit sizes.
- To compare the outcome between different sites: a site consisted of old non-insulated flats and another site consisted of PassivHaus flats.

Model description

![Input/output of CHP dispatch model](image)

Input
- Technical parameters:
 - CHP base & electricity capacity.
 - Boiler heat & electricity efficiency.
 - Minimum load factor.
 - Ramp rates.
 - Boiler capacity.
 - Thermal storage capacity.

Economic parameters
- Hourly electricity import & export cost & income.
- Quarterly natural gas cost.
- Annual maintenance cost.

Demand parameters
- Minutely electricity & heat demand data.

Output
- CHP electricity & heat output.
- Boiler heat output.
- Heat utilized by thermal storage.

![Simplified decision tree for CHP control strategy](image)

Fig. 5. Input/output of CHP dispatch model

Fig. 6. Simplified decision tree for CHP control strategy

![Supporting evidence](image)

Fig. 1. Comparison of generation efficiency[1]

Fig. 2. Overall efficiency distribution by cycle duration

Fig. 3. Correlation between heat efficiency and load factor

Fig. 4. Comparison of hourly and minutely electricity demand

Results

![Cumulative heat demand by its components for different sites](image)

Fig. 7. Cumulative heat demand by its components for different sites

![CHP dispatch for a winter day: 25 old flats, 15 kW ICE, 1 m³ TES](image)

Fig. 8. CHP dispatch for a winter day: 25 old flats, 15kW ICE, 1 m³ TES

![CHP dispatch for a winter day: 25 PassivHaus flats, 15 kW ICE, 1 m³ TES](image)

Fig. 9. CHP dispatch for a winter day: 25 PassivHaus flats, 15kW ICE, 1 m³ TES

![Generation sources for varying building: CHP & TES capacities](image)

Fig. 10. Generation sources for varying building: CHP & TES capacities

Conclusion & further work
- Data from the previous field trial indicates a strong correlations: between overall efficiency and load factor; overall efficiency and generation cycle (figure 3 & 4).
- In order to see the effect of varying domestic load factor on generation units, high resolution stochastic data is generated to represent the site demand (figure 5).
- The comparisons were all conducted by dividing the heat supply to its generation components and storage: CHP, boiler and thermal energy storage.
- When comparing the cumulative site heat demand, it is clear that the site consisted of PassivHaus flats space heating component is considerably smaller (figure 7). Therefore a more insulated site is likely to have a demand more consistent inter-seasonally. However, the heat demand peaks caused by domestic hot water usage (mostly in the morning) is covered by peak boilers in both cases.
- The high heat to power ratio of old flats pushes an electrically led CHP to be either undersized or oversized. Where in case of PassivHaus site TES has a higher utilisation rate since the heat to power ratio becomes lower (figure 10).
- Further work will includes annual analysis, calculating economic profitability and carbon emission savings.

References