Assessing individual benefits realization capability: an IT culture perspective

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/20149

Version: Published

Publisher: Association for Information Systems © the authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Assessing Individual Benefits Realization Capability: an IT Culture Perspective

Research-in-Progress

Kayode Odusanya
School of Business and Economics, Loughborough University, UK
k.odusanya@lboro.ac.uk

Crispin Coombs
School of Business and Economics, Loughborough University, UK
c.r.coombs@lboro.ac.uk

Neil F. Doherty
School of Business and Economics, Loughborough University, UK
n.f.doherty@lboro.ac.uk

Abstract

Information Technology (IT) culture comprises of the set of IT-related behaviors, values and assumptions that tacitly frame how individuals make effective use of IT resources. Since effective IT use is linked to the realization of benefits from IT investments, individuals’ IT cultures should therefore have significant effect on their benefits realization capabilities. The purpose of this study is therefore to investigate the role individual IT culture plays in predicting individual benefits realization capability. We adopt the use of a mixed data collection strategy and make both theoretical and practical contributions. We extend the discourse on the theory of IT culture as a useful tool to gather deeper insights into the Information System (IS) phenomena, using an individual-level analysis. In the context of IS practice, our findings will help inform business and IT leaders of the specific individual IT culture archetypes that are likely to foster benefits realization from IS/IT investments.

Keywords: Individual IT culture, IT Culture, Benefits Realization Capability, Benefits Realization
Assessing Individual Benefits Realization Capability

Introduction

Benefits realization from IS/IT investments is based on the principle that IT has no intrinsic benefits on its own, but that benefits are achieved only when individuals use IS/IT systems effectively (Ward and Elvin, 1999; Burton-Jones and Grange, 2012; Doherty, 2014). Most of these benefits have been shown to emerge during post-adoption phases of IS/IT investments – when individuals begin to routinize IS/IT into their work (Doherty et al. 2012). In IS research, the ability to realize benefits from IS/IT investments has been conceptualized only as an organizational capability (Ashurst et al. 2008). Existing research however indicates that individual benefits realization capabilities are critical antecedents of organizational benefits realization capabilities (DeLone and McLean, 2003; Ashurst et al. 2008). The ability of individuals to make effective use of IS/IT systems, increases organizational benefits capabilities and therefore, the likelihood of realizing intended benefits from IS/IT investments (Burton-Jones and Grange, 2012). Unfortunately, there is minimal research on individual benefits capability which in our view is a critical gap in the extant literature.

To provide a platform for our investigation of benefits realization at the individual-level, we draw on the theory of IT culture. IT culture has been conceptualized as a distinct set of IT-related behaviors, values, and underlying assumptions (Walsh and Kefi, 2008). For Leidner and Kayworth, (2006), it refers to the values attributed to IT by a group of individuals. An individual’s IT values are the result of IT-related behaviors and assumptions (Walsh, 2009), that become implicitly associated with the way users appropriate IS/IT within organizational settings. Since values have been shown to be linked to the concepts of needs and motivation (See Rokeach, 1973), individual IT culture can be assessed through measuring the extent to which an individual’s fundamental needs are satisfied through IT usage, and assessing their motivation to use IT (Walsh, 2014). A group of individuals sharing similar dispositions in this way are said to belong to the same IT culture archetype (Walsh and Kefi, 2008). These features present the basis we utilize to identify individuals’ IT cultures and investigate their benefits realization capabilities. The theory stresses the role that individual IT culture plays, and has been used to gain more insights into IS phenomena that may exist at individual-level. For example, IT culture has already been used to extend our knowledge of adoption and use of IS/IT (Von Stteten et al. 2011; Walsh, 2014).

Other studies have also highlighted the role culture plays in explaining varying individual behaviors and capabilities towards IS/IT use (Murray and Donegan, 2003; Gallivan and Srite, 2005; Leidner and Kayworth, 2006). However, to the best of our knowledge, none have focused on the benefits realization capability of individuals, during post-adoption phases. Consequently, this study seeks to address the following research question:

To what extent do individual IT cultures help to predict the individuals’ benefits realization capability?

This line of inquiry examines individual IT cultures with a view to understanding the role they may play in predicting the capabilities needed to realize benefits from IS/IT investments. The remainder of this research-in-progress paper is organized as follows: in the next section, we review the relevant literature, from which we then develop the hypotheses for our study. Next, we elaborate on the sample, data collection methods and tests to be used for our study. We then conclude with the anticipated theoretical and practical contributions of our study.

Literature Review

In this section, we explore: (1) Individual benefits realization capability (2) IT culture (3) Individual IT culture and Individual benefits realization capability.

Individual Benefits Realization Capability

Individuals play a critical role in the realization of organizational benefits from IS/IT investments (Lee et al. 2007). Organizations realize benefits from IS/IT investment when individuals make effective use of IS/IT resources. The varied capabilities of individuals to make effective use of IS/IT in an organization, has resulted in the continued underutilization of IS/IT resources below their “functional potential” – amounting to significant losses for the organization (Jasperson et al. 2005). As a result, managers need to continuously enhance the benefits realization capabilities of their employees, to facilitate the effective use of IS/IT resources, throughout their organization.
To develop individuals' benefits realization capability, a benefits orientation must first exist at the organizational level (Ashurst et al. 2008; Doherty et al. 2012). An organization’s benefits realization capability has been conceptualized by Ashurst et al. (2008) as the following four distinct competences: planning; delivery; review and exploitation. These competences allow organizations to execute strategic benefits-driven activities, which includes changing individuals’ attitudes and behaviors to effectively utilize new IS/IT for their work (Ashurst, 2011). They play an important factor as organizations bid to succeed with benefits-driven transformation and change. Furthermore, Doherty et al. (2012) has stressed the need to incorporate benefits realization activities into actual routines within organizations. The authors argue that since IS/IT investments are often part of a broader change, the realization of benefits requires an effective engagement with IT at all levels within the business. However, the way organizations can improve the benefits capabilities of individuals needs a more comprehensive understanding.

Understanding an individual’s benefits realization capabilities can aid change programs vital for the realization of organizational benefits (Coombs, 2015). This is because users may resist change-related activities arising from IS implementation, causing failure of new IT systems. According to Kim and KanKanhalli (2009), this results from varying user adaptations to new IS-related changes. Moreover, “Changing to a new way of working with a new system requires guidance and relevant resources for learning” (p. 573). We argue therefore, that a user’s adaptive capabilities play a key role in fostering change-related initiatives such as benefits realization activities. According to Barki et al. (2007), it helps individual users take actions that make the new IS/IT a better fit for their task-related activities. By so doing, users are able to engage in learning activities to improve job effectiveness and productivity. The ability of users to engage in such learning activities may depend on their ability to engage their individual cognitions to appropriate the new technology (See Jaspersen et al. 2005), and the managerial influences that stimulate these cognitions (Liang et al. 2007). This learning process facilitates increased knowledge capability for users and has been shown to engender business value within group settings (Nelson and Cooprider, 1996). These knowledge capabilities also capture their ability to apply knowledge and configure resources to exploit opportunities (Bhatt et al. 2005). Therefore, organizations with superior knowledge capabilities do better in building capabilities that offer benefits due to increased user competencies existing at individual-level. This may well explain the reason why some organizations are more likely to engage in benefits realization activities than others – a problem identified in Doherty et al. (2012).

Following from the above discussion, we provisionally define the individual benefits realization capability as ‘the ability of individuals to effectively utilize their IT resources in a way that facilitates the realization of value’. As such, it is composed of the following four dimensions:

- **Adaptation**: modifications that individuals make in order to better utilize IS/IT resources (Barki et al. 2007);
- **Learning**: individuals’ willingness to learn the system, to provide enhanced knowledge and use of the IS/IT system. Items here measure an individual’s past efforts/experiences to educate and undertake relevant training (Burton-Jones and Grange, 2012);
- **User ability**: the degree to which individuals have relevant skills to use the IS/IT system (Ng and Kim, 2009); and,
- **Knowledge**: the level of understanding individuals have of an IS/IT system to effectively utilize IS/IT (Staples et al. 2002).

Ashurst (2011) suggested that benefits realization capability involves changing attitudes and behaviors that define how individuals develop and use IS/IT. We take the view that these changing attitudes and behaviors are a reflection of different individual IT culture archetypes which we intend to investigate in our study. In the next section, we review literature concerning IT culture in IS research, and discuss insights regarding individual IT culture archetypes in extant literature.

IT Culture

IT culture (Walsh and Kefi, 2008; Walsh, 2009) has been conceptualized as the set of IT-related visible or audible behaviors, IT-related values and IT-related underlying assumptions of individuals. It has been used to represent “the set of IT related visible or audible behaviors, IT related values, and IT related underlying assumptions shared by a group” (Walsh et al. 2010). Within IS research, this conceptualization has been used to gain a richer understanding of how varying behaviors at the
Assessing Individual Benefits Realization Capability

Thirty Sixth International Conference on Information Systems, Fort Worth 2015

individual-level affect the use of the IS artefact within organizations (See Walsh, 2009; Walsh et al. 2010; Von Stetten et al. 2011; Walsh, 2014). The study on IT culture by Walsh and Kefi, (2008) and Walsh (2009) facilitated the development of an instrument to assess an individual's IT culture. In her study, Walsh (2009) uncovered varying individual IT culture profiles based on the users' fundamental needs satisfied through IT, and their motivation to use IT (p. 5). According to the study, behavior is determined from values and assumptions, while values result from individual and environmental needs with a strong motivational component (p. 2). The development of this theory could serve as the basis for future insightful studies that would investigate IS phenomena at individual level.

Walsh (2009) developed an instrument to assess individuals' IT culture using their fundamental needs satisfied through IT usage, IT motivation and IT needs. Empirical evidence from this study identified nine archetypal patterns of individual IT cultures coalesced into three attitudinal groups. The groups are:

- **Proactive attitudinal group:** individuals in this group participate in IT projects and are open to IT innovation. They all appear to have some intrinsic IT motivation (p. 9);
- **Passive attitudinal group:** individuals in this group only use IT when they are compelled to do so. They do not go beyond the mandatory use of IT adoption for the task (pp 9 – 10);
- **Refusal attitudinal group:** individuals in this group are averse to IT; "to them IT is considered a punishment which should be avoided at all cost" (p. 9).

More recently, Walsh et al’s (2010) study has portrayed how individual IT cultures can be identified and understood to facilitate acculturation of individuals from ‘less favorable’ to ‘more favorable’ IT profiles (Walsh et al. 2010, pp. 270 – 272). Another significant finding is that individuals embody a hybrid of cultural archetypes (See Table 1 for IT archetypes and their cultural dispositions) which could change based on their IT needs. According to Walsh (2009), IT needs emerge at three levels: situational IT needs: “the need for specific softwares in order to fulfil given tasks (but not all tasks) to be accomplished” (p. 4); contextual IT needs: “the need to use IT globally in some context(s)” (p. 4) and; global IT needs: “the need for IT in all aspects of one’s life” (p. 4). By understanding these changes, organizations can strategically influence the direction of an individual’s acculturation (p. 268). A further study by Walsh (2014) has outlined a strategic path to study individuals’ IT use based on their IT culture and IT needs. Using the categorization of IT needs as highlighted in Walsh (2009), Walsh (2014) showed how highly acculturated individuals may hinder the adoption of new IS/IT if their situational needs are not met (p. 162).

<table>
<thead>
<tr>
<th>Attitudinal groups</th>
<th>IT culture archetypes</th>
<th>Cultural dispositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proactive attitudinal group</td>
<td>Studious</td>
<td>This group possesses significant self-accomplishment IT needs and motivation to learn IT. They voluntarily partake in IT projects within organizations. (Walsh et al. 2010).</td>
</tr>
<tr>
<td></td>
<td>Interested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dangerous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passionate</td>
<td></td>
</tr>
<tr>
<td>Passive attitudinal group</td>
<td>Disciplined</td>
<td>Only mandatory involvement in IT. (Walsh et al. 2010)</td>
</tr>
<tr>
<td></td>
<td>Frightened</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disabused</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constrained</td>
<td></td>
</tr>
<tr>
<td>Refusal attitudinal group</td>
<td>Dodger</td>
<td>No involvement in IT; This group possess no IT need (Walsh 2009; Walsh et al. 2010)</td>
</tr>
</tbody>
</table>

Table 1: The attitudinal groups and their IT culture archetypes

Another study that utilized IT culture is Von Stetten et al.’s (2011) study, where the authors explored the role IT culture plays in IS adoption - using the case of a Social Network Site (SNS). Using the Technology Acceptance Model (TAM) to measure adoption behavior, the authors showed how the perceived usefulness and perceived ease of use of SNSs by individuals, serve as antecedents of their adoption. Furthermore, their study also studied the privacy concerns of individuals and showed that highly acculturated individuals exhibit higher levels of privacy concerns, although this did not hinder their adoption of SNSs. This study demonstrated that by framing individual groups based on their IT...
dispositions, IS managers and business leaders can not only understand the IS needs of individuals within their organizations, but also ensure those needs are met for every individual. The categorization of individuals according to their IT dispositions represents a group of individuals with a unique IT culture archetype (Leidner and Kayworth, 2006; Walsh and Kefi, 2008).

The studies reviewed above show how individual-level cultural studies can offer deeper insights into IS phenomena. They reflect significant insights that have been gleaned by utilizing IT culture to investigate IS/IT adoption and use at an individual-level of analysis. Notwithstanding, many gaps still exist partly because IT culture theory is only beginning to gain attention in IS research. Walsh et al. (2010) has advocated for more positivist studies to confirm the findings from existing studies. Such inquiries they argued will help improve discourse surrounding the use of IT culture theory in IS research. Also, we observe current studies overwhelmingly focus on implementation and adoption behavior with no insights on the role individual IT culture might play on post-adoption behavior. Such studies might help explain why some individuals possess higher cognitive efforts to effectively utilize IS/IT investments. Finally, Walsh (2009) has called for studies to examine the role individual IT culture might play in IS success models. We argue that individual IT culture may play a significant role in framing individuals’ benefits realization capability.

To date, no research has investigated the impact of individual IT culture on individual benefits realization capability. Our study attempts to fill this gap by showing how individual IT culture might influence the successful realization of benefits from IS/IT investments. Since benefits have been shown to emerge during post-adoption phases, we discuss the role individual IT cultures might play in post-adoption benefits management in the next section.

Individual IT Cultures and Benefits Realization Capabilities

Benefits realization has been defined as “the process of organizing and managing, such that the potential benefits arising from the use of IT are actually realized” (Ward and Elvin 1999, p. 197). The realization of benefits has been conceptualized as an organizational capability (Ashurst et al. 2008), facilitated by individuals who possess an ability to make effective use of IS/IT (Burton-Jones and Grange, 2012). However, individuals may hold different levels of cognitive capabilities that influence their ability to make effective use of their IS/IT resources (Jasperson et al. 2005). We argue that individual IT cultures may well shed light on the reasons why varying cognitive capabilities exist among individuals, and why some organizations are more likely to achieve benefits from IS/IT investments than others.

Studies examining sense-making surrounding IS/IT implementation within organizations have shown that individual users interpret changes and make sense of them based on their past experiences and identities (Weick et al. 2005). Individuals with past experiences of using a particular IT, increase their cognitive abilities to make effective use of the IT at a later experience. The behaviors of individuals during post-adoption phases are therefore a reflection of their cognitive intensity levels to appropriate the new situation based on past experiences and assumption (Jasperson et al. 2005). Another stream assessing individual-level factors in IS success is the way individuals assimilate routinized technology during post-adoption phases of IS/IT investments. Using the case of an ERP system implemented within an organization, Park et al (2007) offered empirical evidence to show that an individual’s assimilation rate affects her/his ERP usage performance: “individual users can assimilate and apply new knowledge more effectively when they have greater prior knowledge” (p. 309). Likewise, some individuals’ exhibit greater motivation to learn and accomplish mastery of new IS/IT compared to others. Such individuals will possess greater prior knowledge and ability to realize benefits from IS/IT investments. Motivation impacts an individual’s IT culture (Walsh, 2009) and IT usage (Walsh et al. 2010) and thus it has a significant effect on their benefits realization capability.

It is important to recognize that there is already a significant stream of existing literature which seeks to link IT capabilities to business value (Bharadwaj, 2000; Fink, 2011). For example, Bharadwaj (2000) found that underlying strengths in IT infrastructure, human IT resources and IT-enabled intangibles, provided a “rent generating resource that is not easily imitated or substituted” (p. 186). This body of research demonstrates the significant insights that can be derived from studies which seek to link organizational capabilities to value and performance. However, to date, these studies have typically been designed to explore organizational rather than individual behaviors and impacts.
In summary, this section has shown the relevance of individual IT culture through highlighting related studies to individual benefits capabilities. However, no research has investigated the impact of individual IT culture on individual benefits realization capability. Having offered a review of relevant literature, we proceed in the next section to develop the hypotheses for our study.

Hypotheses Development

To examine the impact individual IT cultures might play in predicting individual benefits realization capability, three attitudinal groups of individual IT culture – proactive, passive, and refusal – will be investigated separately in our study. These three attitudinal groups comprise different archetypal patterns as shown in table 1. Against this backdrop, we propose and discuss the following three ‘relative’ hypotheses, which are all specific cases of the more general hypothesis that individual IT culture is associated with individual benefits realization capability.

In their work, Walsh et al. (2010) found that individuals in the proactive group participate voluntarily in new IT projects. They show initiative, accomplish mastery of IS/IT systems to accomplish their goals, while also supporting IT implementation within organizations. This study argues that individuals in the proactive group have a positive effect on benefits realization capability for two reasons. First, individuals in the proactive attitudinal groups identify opportunities, take action on them, demonstrate initiative, persevering even in the face of setbacks (Bateman and Crant, 1993), and secondly, proactive individuals are more likely to gain satisfaction from learning and mastering new IS/IT (Walsh, 2009) which may well translate into increased mastery of, and benefits from, their systems. Consequently:

H1. An individual’s proactive attitude towards an IT is positively associated with her/his ability to realize benefits from it.

Individuals who fall into the passive attitudinal group (See Table 1) “must be compelled to use IT by their needs for affiliation (i.e. communication, socialization) and peer group conformity” (Walsh et al. 2010, p. 266). With regard to the impact on benefits realization capability, this study argues that individuals in the passive attitudinal group possess a lower benefits realization capability unless they are forced by important situational and contextual needs around them. For example, empirical evidence in Walsh (2014) has shown how the position held by these individuals within an organization, impacts their contextual IT needs and situational needs. Therefore:

H2. Individuals in the passive attitudinal group exhibit a lower benefits realization capability than those in the proactive attitudinal group.

Finally, individuals in the refusal attitudinal group have no fundamental needs towards IT (Walsh et al. 2010, p. 267). The authors portray how these individuals avoid the use of IT at all costs, do not experience any motivation whatsoever to use IS/IT, and as a result do not possess any situational, contextual or global need of IT. With regard to the impact on benefits realization capability, it should be the lowest compared to those in the pro-active and passive attitudinal groups. Individuals with low motivation exhibit little or no cognitive effort in IS/IT system use. Therefore,

H3. An individual’s refusal attitude towards IT group is negatively associated with her/his ability to realize benefits from it.

Taken together, the proactive, passive and refusal attitudinal groups represent different IT culture archetypes that may significantly affect an individual’s benefits realization capability. Although these three relative hypotheses might, at face value, all be fairly predictable, the absence of any prior research in this increasingly important domain provides a strong incentive for investigating them more fully. The research model for the set of hypotheses above is shown in Figure 1.
Research Methods

In this section, we elaborate the data collection techniques to be used for our study, after which, we introduce the study's constructs and measures, and the reliability and validity tests to be conducted.

Sample and Data collection

We adopt a three-stage mixed method approach, as recommended by Miles et al. (2013). The use of both qualitative and quantitative methods allows for a rich understanding of the factors that relate the individual IT cultures to their benefits realization capabilities. The data will be gathered from an organization at least six months post go-live into an IS/IT implementation, to capture their post-adoption experiences. Also, the organizations should have a wide range of employees interacting with the technology, to ensure that we can study a wide variety of individual IT cultures.

The first stage commences with the use of semi-structured, in-depth interviews with selected individuals within a variety of departments. The purpose of this phase will be to capture initial ideas on existing IT cultures of individuals within the organization. We will use the NVIVO software to code and analyze the data with the results of this process used to guide the design our questionnaire, which will allow us to test the proposed hypotheses derived from literature. Unlike the initial qualitative phase which will target only a few individuals, the questionnaire will be administered across the entire organization targeting members who are actively interacting with IS/IT. Although our study utilizes existing measuring instruments for the variables in our study, Structure Equation Modeling (SEM) will be used to assess the measurement model and test the structural model.

To facilitate a well-rounded investigation, we will conduct a final series of interviews (Miles et al. 2013, p 44), to help interpret and validate the findings of the SEM, and to investigate any new insights emerging from the previous stages. To offer a basis for generalizability of data arising from our study, ultimately data collection will be carried out across multiple organizations. It will provide an in-depth understanding of the complex relationships between different individual IT culture archetypes and their benefits realization capabilities existing within different organizations. The use of a multiple case study conducted in different settings therefore offers increased validity in the findings that emerge from our data.

Variables and Measures

From our review of literature, we found standard measures and validated instruments adaptable for our line of inquiry. We highlight those measures in this section.
Measures of Individual IT culture

Though the concept of individual IT culture is still relevantly novel in IS research, we found existing instruments that have already been validated. For our study, we adapted existing validated scales from Walsh (2014) to measure individual IT culture. This can be assessed using: the fundamental needs satisfied through IT usage, and their level of motivation to use IT. An individual's fundamental needs are assessed through: primary needs; power needs; affiliation needs and; self-accomplishment needs. An individual's IT motivation exists at either intrinsic or extrinsic or amotivational levels. As seen in our model, we make an implicit assumption that individuals will fall into one of these categories.

Measures for Individual Benefits Realization Capability

To measure individual benefits realization capability (our dependent variable), we adapted existing validated scales for our research. Unlike individual IT culture, we did not find a validated instrument to assess benefits realization capability at individual-level. As a result, we chose items which we felt best represented our proposition of benefits realization capability from existing IS research. We sought measures to assess this construct in existing literature.

Ashurst et al. (2008) has argued that one way of translating benefits realization capabilities to individual-level is by “decomposing it into a number of constituent practices, each of which is underpinned by the skills, knowledge and experiences of organizational employees”. Individuals with lower levels of experience are expected to have more problems in interacting with IS/IT systems than individuals with higher levels of experience. Using the case of an enterprise system implementation, Lauterback et al. (2014) offers empirical evidence that shows that an individual’s adaptation pattern of IS/IT systems vary based on the extent to which they exploit knowledge, communication and the physical and surface structures of the IS/IT systems. Burton-Jones and Grange, (2012) have also specified adaption and learning actions as drivers to increase effective use of IS/IT systems. As to the very best of our knowledge, the individual benefits realization capability has not been used in any prior quantitative studies, we will need to develop a completely new set of item measures.

At this point in time, we are envisaging using the broad construct groupings (as shown in Table 2) into which the measurement items, used to assess individual’s benefits realization capability, will be organized. However, we are planning to use MacKenzie et al’s (2011) ten step ‘scale development procedure’, to ensure that this critical process is undertaken in an appropriate manner.

<table>
<thead>
<tr>
<th>Construct (abbreviation)</th>
<th>Definition/description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation (IBRC1)</td>
<td>Modifications that individuals make in order to better utilize IS/IT resources (Barki et al. 2007)</td>
</tr>
<tr>
<td>Knowledge (IBRC2)</td>
<td>The level of understanding individuals have of an IS/IT system to effectively utilize IS/IT (Staples et al. 2002)</td>
</tr>
<tr>
<td>User competence (IBRC3)</td>
<td>The degree to which individuals have relevant skills to use the IS/IT system (Ng and Kim, 2009)</td>
</tr>
<tr>
<td>Learning (IBRC4)</td>
<td>Individuals’ actions to learn the system, towards improving knowledge and use of the IS/IT system. Items here measure an individual’s past efforts/experiences to educate and undertake relevant trainings to improve use of IS/IT (Burton-Jones and Grange, 2014).</td>
</tr>
</tbody>
</table>

Table 2: Formal definition of constructs for individual benefits realization capability

Reliability and Validity

Our quantitative data will be examined via Harman’s one-factor test (Podsakoff and Organ, 1986). This will test all the multi-item variables in our model to examine if Common Method Variance (CMV) will pose any serious variance to the true relationship among theoretical constructs in our model. We will also investigate the validity and reliability of all constructs. Composite reliability will be estimated to perform a Confirmatory Factor Analysis (CFA). Values will be assessed using Cronbach’s Alpha as a guide. Furthermore, the Average Variance Extracted (AVE) for each construct will be assessed (Fornell and Larcker, 1981). Discriminant validity – the degree to which measures of different
concepts are distinct (Bagozzi et al. 1991) – will be ensured by running an Average Variance Extracted (AVE) analysis. The square root of every AVE value belonging to each latent construct is assessed.

Next Steps, Possible Limitations and Expected Contributions

In this paper, we highlight the role the individual IT culture may play in predicting the benefits realization capability of individual stakeholders in an IS/IT implementation project. Our line of inquiry is driven by the continued underutilization and significant losses that have too frequently beset IS/IT investments. The benefits realization capability appears to offer organizations a valuable suite of tools and practice to help them face the enduring challenges of delivering meaningful value from their IS/IT investments (Ashurst et al, 2008). Moreover, in linking this increasingly important research construct to the relatively new and under-researched *individual IT culture* construct, we believe that we have identified a significant and potentially rewarding research opportunity. Our immediate next steps involve signing-up a willing case study organization, so that our measurement items can be validated and the design of the questionnaire finalized. Upon validation, we will conduct a pilot test which will allow us to observe the response rate and any challenges respondents may face when completing the questionnaire. Following the pilot, the edited questionnaire will be administered across a larger (target) sample.

In our conceptualization of individual benefits realization capability, four dimensions (adaptation, knowledge, user ability and learning) and their relationships were discussed. Additional research may however be necessary to refine this concept to suggest other implications for benefits realization from IS/IT investments. Despite this limitation, what matters according to Barki et al. (2007) is *“whether a given conceptualization can yield useful answers to interesting questions”*. Consequently, we believe potential findings from our study can make both theoretical and practical contributions. Theoretically, our work highlights the value of IT culture theory in understanding individual-level benefits realization capabilities. We also demonstrate the use of IT culture as a useful tool for investigating IS phenomena at individual-level within organizations. Furthermore, when Walsh (2009) developed a model to assess individuals’ IT cultures, three main avenues for future research were identified. Our study sheds light into one of these identified gaps: the role individual IT culture might play in IS success models (See Walsh 2009, p. 11). Alongside, we expect this study to make significant contributions in IS practice. Implications from our findings will help organizations act proactively to facilitate an IT acculturation that fosters the effective use of IS/IT resources, the recruitment of new staff, and the deployment of new IS systems.
References

Fornell, C., and Larcker, D. F. 1981. “Structural equation models with unobservable variables and measurement error: Algebra and statistics,” *Journal of Marketing Research*, pp. 382-388.

