Loughborough University
Browse
Knowles AIAA 2015.pdf (1.36 MB)

Bifurcation study of a dynamic model of a landing gear mechanism

Download (1.36 MB)
journal contribution
posted on 2016-02-29, 13:45 authored by James KnowlesJames Knowles
This paper presents a new modelling approach for the analysis of landing gear mecha- nisms. By replacing the mechanism's rotational joints with equivalent high-sti ness elas- tic joints, numerical continuation methods can be applied directly to dynamic models of landing gear mechanisms. The e ects of using elastic joints are considered through two applications | an overcentre mechanism, and a nose landing gear mechanism. In both cases, selecting a su cient sti ness for the elastic joint is shown to provide accurate con- tiuation results. The advantages of this new modelling approach are then demonstrated by considering the unlocking of a nose landing gear with a single uplock/downlock mechanism, when subjected to di erent orientations and magnitudes of gravitational loading. The un- locking process is shown to be qualitatively insensitive to changes in both load angle and load magnitude, ratifying the robustness of a previously-proposed control methodology for unlocking a nose landing gear with a single uplock/downlock mechanism.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Journal of Aircraft: devoted to aeronautical science and technology

Citation

KNOWLES, J.A.C., 2016. Bifurcation study of a dynamic model of a landing gear mechanism. Journal of Aircraft, 53 (5), pp. 1468-1477.

Publisher

© American Institute of Aeronautics and Astronautics

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2016

Notes

This is the accepted version of a paper that was subsequently published in the serial, Journal of Aircraft. The definitive version is available at: http://dx.doi.org/10.2514/1.C033730

ISSN

1533-3868

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC