Protection and energy management of zero net electric energy clusters of buildings

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: PANDEY, G. ... et al, 2015. Protection and energy management of zero net electric energy clusters of buildings. 4th Students’ Conference on Engineering and Systems, SCES2015, 6th-8th November 2015, Allahabad, India.

Additional Information:

- © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Metadata Record: https://dspace.lboro.ac.uk/2134/20505

Version: Accepted for publication

Publisher: The IEEE Student Branch, MNNIT Allahabad (© IEEE)

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Protection and Energy Management of Zero Net Electric Energy Clusters of Buildings

Gaurav Pandey, SN Singh
Department of Electrical Engineering
Indian Institute of Technology Kanpur
gpiitk@gmail.com, snsingh@iitk.ac.in

Bharat Singh Rajpurohit
School of Electrical & Computer Sc.
Indian Institute of Technology Mandi
Himachal Pradesh
bsr@iitmandi.ac.in

Francisco M. Gonzalez-Longatt
School of Electronic, Electrical and Systems Engineering
Loughborough University, UK
F.Gonzalez-Longatt@lboro.ac.uk

Abstract—This paper proposes the protection and energy management schemes for a smart dc micro-grid capable of 100% autonomous zero net energy in the cluster of buildings to facilitate a low-carbon sustainable electricity supply system. The proposed model comprises of house clusters with an autonomous communication developed for the residential area. Voltage droops and slope compensation peak current mode control techniques are employed for the bidirectional synchronous boost converter stages for energy storage systems (ESSs). The zone relaying device pertaining to dc protection is incorporated under set of rules related to current differential and overt current relaying schemes. The bidirectional converter stage for house clusters plays a pivotal role in stand-alone operation. In case a battery pack is laid off from any house cluster, the dc bus voltage still be stabilized due to the proximity bidirectional converter stages of other house clusters or community battery bank. The houses in the cluster comprise of permanent magnet synchronous generator (PMSG), solar photovoltaic (PV), battery bank and variable load. The proposed model is simulated on MATLAB/ Simulink environment and suffices the real time stochastic nature of wind, solar and load.

Index Terms—Distributed generators, Energy storage systems, Peak current mode, State of charge.

I. INTRODUCTION

Due to various concerns such as climate change, system security and economy globalization, the dc micro grid is becoming viable option for meeting the ever-increasing electric demand. Governments around the world are putting serious efforts to become decarbonised economies as a part of a national climate change mitigation strategy. The transition to a decarbonised economy involves three main aspects [1]: (i) developing energy efficiency measures, (ii) developing renewable energy capabilities and (iii) to deal with adaptation needs arising due to climate change.

The protection and energy management are the two important issues in the dc micro grids. The dc fault protection schemes can be classified into unit and non-unit protection schemes [2]. The non-unit protection does not consider the bounded zones and operates on the concept of violation of threshold. The protection schemes such as over current, over voltage, and the derivate of current and voltage are involved in non-unit fault detection and can act as a backup protection. The unit protection only protects the bounded zones and works well when grading in over current relays doesn’t achieve a satisfactory operation in fault detection due to the complexity in the network. The common practice is to use a differential protection as its operation is less affected by various impedance and fault current value. Fault characterization mechanism is analyzed in two stages [3].

The topologies for dc distribution reported in [4], mainly contains radial type and ring type. The path of power flow is certain in radial type and power flow control is also controllable but the reliability is very low. Secondly, the ring type configuration whereby power flow has two paths and thus resulting in increased fault tolerance, are used in small-scale system like aircraft where continuity of power supply is essential. When a ground fault occurs, the dc link voltage between the positive and negative poles loses a balance and overvoltage at the healthy line will appear due to the dc link capacitors rapid discharge to the ground with very short time constant. This leads to overvoltage at the un-faulted line, which is observed to detect the ground faults. Therefore, TT and TN-S grounding types are the better choices while designing the protection scheme [2].

In this paper, an energy management in a stand-alone dc micro grid is proposed. Voltage droop and slope compensation peak current mode control technique are employed for the bidirectional synchronous boost converter stages for energy storage systems (ESSs). The considered smart dc micro-grid is capable of 100% autonomous zero net energy in the cluster of buildings to facilitate low-carbon sustainable electricity supply system. The houses in the cluster comprise of permanent magnet synchronous generator (PMSG), solar photovoltaic (PV), battery bank and variable load. For successful operation of a dc micro-grid system, a suitable protection system must be designed. In this work, a protection system is developed. The effectiveness of the proposed energy management and protection system is demonstrated on a test system.

II. PROPOSED SYSTEM CONFIGURATION

In the present work, the ring topology as shown in Fig. 1 is considered to connect the house clusters, community load and community battery bank considering the fault tolerance and the continuity of power supply. The variable load of each house cluster comprises of critical and interruptible loads and
can be laid off according to the deficit of power as per the state of charge (SoC) of the battery pack.

PMSG and thus, affects the diode rectifier output. To regulate the dc voltage of buck converter, the duty cycle is adjusted such that machine adjusts its electromagnetic torque to achieve the MPPT.

The solar photovoltaic of 3.5 kW is cascaded with the boost converter and operating under incremental conductance (IC) MPPT control and analyzed in detail [7].

III. ENERGY MANAGEMENT CONTROL SCHEME

Battery converter stage is used for the power balance, cycle by cycle slope compensation for the duty cycle more than 50\% and to stabilize the coupling voltage of the dc bus in stand-alone system. The control strategy realized is shown in Figs. 3 and 4, and they are explained later section. In order to deal with instability issue for duty cycle greater than 0.5, an additional inverted ramp with slope \(m_p \) is taken into consideration to check the difference of perturbation occurring in the inductor current and the steady state expected inductor current.

The inductor current transforms from rising slope \(m_1 \), falling slope \(m_2 \) and inverted slope \(m_o \), and the steady-state condition can be derived.

Without perturbation, the peak current can be directly derived as

\[
i_p = m_o d T_s = I_o + m_p d T_s
\]

(1)

\[
I_o = i_p - (m_2 - m_o)(1 - d_p) T_s
\]

(2)

Now with the perturbation of \(\Delta I_o \), the above equations can be written as

\[
i_p - m_o d T_s = I_o + m_p d T_s + \Delta I_o
\]

(3)

\[
I_o = i_p - (m_2 - m_o)(1 - d_p) T_s + \Delta I_o
\]

(4)

In both the cases, switching period is same, so it is written as:

\[
d T_s + (1 - d_p) T_s = d_p T_s + (1 - d_p) T_s
\]

(5)

where \(T_s \) is the switching period; \(d_p \) is the perturbed duty cycle and \(I_o \) is the average inductor current.

Solving for the subinterval from (1)-(4) and putting the values in (5), the current error shifts after \(n \) cycles and the impact of inverted slope compensated ramp can be seen on the steady state by following relation:

\[
\Delta i_s = \left(\frac{m_o - m_2}{m_0 + m_o} \right) T_s \Delta I_o
\]

(6)

For the stable operation of current loop, the following relationship needs to be fulfilled as mentioned in [8]:

\[
\left| \frac{m_o - m_2}{m_0 + m_o} \right| < 1
\]

(7)
The salient feature of combining multiple house clusters with community bank as it makes the dc voltage regulated even after some battery packs are laid off due to undercharge or overcharge condition. The violation of $\text{SOC} \leq 0.2 \leq \text{SOC} \leq 0.8$ and $V_{\text{battery}} \leq 48 \leq V_{\text{battery}} \leq 54$ relay setting and the control of dc bus is taken by the other bidirectional controllers in standalone condition.

IV. PROTECTION SCHEME

The dc link capacitor discharges during fault having initial voltage $V_f(0)$. The role of low impedance connecting cables represented by R-L circuit is incorporated to study the severe short circuit condition having pre-fault inductor current represented by $i_L(0)$. The dotted portions show the homogenous equation analysis under natural response of the circuit as follows:

$$ L \frac{di_L(t)}{dt} + Ri_L(t) + \frac{1}{C} \int_0^t i_L(\tau) d\tau = 0 $$

On taking laplace and arranging the terms, we get the fault response as follows

$$ i(s) = \frac{i_L(0) s + (V_f(0)/L)}{s^2 + (R/L) s + (1/LC)} $$

Taking characteristic equation in account and fault response is calculated for the under-damped and over-damped system as follows:

$$ i(t) = \frac{V_f(0) e^{-\alpha t}}{Lw_d} \sin(w_d t) ; \ W_o^2 > \alpha^2 $$

$$ i(t) = \frac{V_f(0) (e^{-\alpha t} - e^{-\beta t})}{L(s - s_2)} ; \ W_o^2 < \alpha^2 $$

The next control loop is of the voltage control loop, which will regulate the dc bus voltage operation using charging/discharging of battery pack having compensator transfer function $G_{p}c=\frac{1}{\tau c}\frac{1}{1+\tau c}$ which is designed and tuned using bode-plot and pole-zero plot. Further, it will provide reference inductor current taking into account the inverted saw tooth which is compared with feedback inductor current and fed to set-reset latch. A clock-pulse having switching period T is provided at the set input causing the latch output Q to be high and turning on the switch having gate pulse G and reset the latch when ‘$i’$ sensed is greater than ‘$i_r’$. The battery initially replenishes charge at constant current according to the nominal battery charging current. Once it reaches to gassing voltage [9], the charging will be done through constant voltage and subsequently reaches to the fully charge voltage i.e. floating charge.

Fig. 4. Bidirectional Control Scheme for Power Sharing and Voltage Regulation

In Fig. 4, the outer droop control loop is incorporated for the current sharing having virtual resistance R_d and the characteristic shown in Fig. 5. The value of virtual resistance is calculated as per current sharing concept [4], [12].

Fig. 5. Voltage-current droop characteristic.

$$ V_{\text{out.ref}} = V_{\text{grid.ref}} - i_{L,k} (R_{d,k} + R_{\text{tab,k}}) \quad (8) $$

$$ \Delta V_d = V_{\text{grid.ref}} - V_{\text{out.ref}} = i_{L,k} (R_{d,k} + R_{\text{tab,k}}) \quad (9) $$

From (13) and (14), the virtual resistance can be calculated by the symmetry as follows:

$$ i_{L,k} = \frac{1}{(R_{d,1} + R_{\text{tab,1}})} : \frac{1}{(R_{d,2} + R_{\text{tab,2}})} : \frac{1}{(R_{d,\text{com}} + R_{\text{tab,\text{com}}})} \quad (10) $$

where $i_{L,k}$, $R_{d,k}$ and $R_{\text{tab,k}}$ are the inductor current, the virtual resistance and the cable resistance for the bidirectional converter for house-1, house-2 and community.

To minimize the voltage deviation, the virtual resistance is designed such that it fulfills:

$$ R_{d,k} \leq \frac{\Delta V_{\text{ref, max}}}{i_{\text{fullload}}} $$

Fig. 6. DC fault analysis

The dc link capacitor discharges during fault having initial voltage $V_f(0)$. The role of low impedance connecting cables represented by R-L circuit is incorporated to study the severe short circuit condition having pre-fault inductor current represented by $i_L(0)$. The dotted portions show the homogenous equation analysis under natural response of the circuit as follows:

$$ L \frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int_0^t i(\tau) d\tau = 0 $$

Fig. 7. Zone protection in ring configuration of house 1.
In the present configuration as shown in Fig 7, the unidirectional converter stages relate to wind generator and solar PV and bidirectional converter stages relate to the battery side. At the unidirectional converter stage, the direction of current flow can easily be investigated but the direction at the bidirectional converter stages is dependent on the charging and discharging of the battery. Thus the direction of current flow at the node connection is bidirectional. The ZRD rules for each converter stage is decided by the differential current measurement at the positive and negative pole and then comparison is made to the smaller threshold (say 1A) and according to the set points of various zones, tripping of circuit breaker is done.

\[
ZRD \text{ Rule: } i_{\text{diff}} = |i_p| - |i_n| \tag{15}
\]

where, \(i_p\) is the positive pole of the converter and \(i_n\) is the negative pole of the converter.

V. SIMULATION RESULTS

To show the effectiveness of the proposed approach, the energy management is carried out under normal operating condition whereas the dc protection scheme is tested for the L-G fault. The various rating of the DGs and battery packs are given in Appendix A.

A. Energy Management

In this case, nominal wind speed is varied from 4m/s to 12m/s and solar irradiation is varied till 1000 watt/m² as per the availability of sunlight in day time. The wind power, solar PV power, dc link voltage profile are same for the two house clusters, and therefore, represented through a single waveform. However, variable load is made such that it suffices the real time profile of a residential load ranges from 2kW to 10kW for both the house clusters. The community load changes from 2.5kW to 3kW. Variations of loads, wind power and PV output are shown in Figs. 8(a)-8(c).

![Variation of load, wind and PV output power](image1)

From 0:00 to 6:30 hrs and 18:00 to 24:00 hrs, the solar PV power is zero due to non-availability of sunlight and therefore, load demand is supplied only by wind generator and battery packs. During 7:00 to 18:00 hrs, the solar PV power ranges from 0 to 3.3kW and wind power is reduced to the minimal value of 2kW to 3kW. The power balance is shown in Figs. 9(a)-9(c).

![Simulation result at normal operating mode](image2)

The partial shading is caused by nearby objects or cloudy weather. For the duration of 7:30 to 8:30hrs and 12:30 to 14:00 hrs, the current sharing concept is explained in Appendix B. The battery pack voltages is analyzed under such stress conditions and voltage observed as 51.4, 50.4 and 51.6V.

B. DC Protection

Case 1: Line to ground (LG) fault at the wind generator of House 1 linking unidirectional converter stage occurred at 1.2 s as shown in Fig. 10(a). The over current relay set-point is fixed at 58 A which is two times the rated current. The simulated waveform for the circuit breaker tripping (CBw) and the response on dc bus voltage are shown in Fig. 10(b). The CBw is tripped at 1.208 s and the wind generator is isolated from the rest of the system. The dc bus voltage takes 0.02 s to recover 230 V that is the 5 % off 220 V.

![L-G Fault Detection and Isolation of the Wind Generator](image3)
Case 2: In this case, House-1 ring is considered and L-G fault is applied at 1.2 s before the battery converter stage. The battery side circuit breaker zone tripping involves circuit breakers (2, 10, 11) and thus, each ring linking circuit breaker is driven under two zones. In case, if any failure of circuit breaker takes place at bi-directional converters stage zone, the fault can still be isolated by the proximity circuit breakers overlapped by the adjacent zones as shown in Figs. 11(a)-(c).

VI. CONCLUSION

This paper addresses the stand-alone operation of small home clusters joined together to a dc bus. The community battery bank is used to avoid sudden charging/discharging of home cluster battery packs. For the effective controller design, the dc bus voltage is used as signaling reference to all the converters droop control loop and further, it gives reference to outer voltage loop control, which suffices the buck and boost modes for charging and discharging. To avoid instability issues of peak current mode control, the slope compensation technique is used. The dc protection covers the zone protection relaying by the set of rules pertaining to over current and current differential relaying under fault analysis is done.

APPENDIX A

<table>
<thead>
<tr>
<th>TABLE A.1: WIND, PV AND DC BUS RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating of wind turbine generator</td>
</tr>
<tr>
<td>Rating of Solar PV</td>
</tr>
<tr>
<td>DC bus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE A.2: BATTERY RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery(Home1,Home2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Community Battery</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE A.3: TRANSFER FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_v (H1,H2,Com.)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE A.4: VIRTUAL RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd(Home1)</td>
</tr>
<tr>
<td>Rd(Home2)</td>
</tr>
<tr>
<td>Rd(community)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE A.5: DC CABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
</tr>
<tr>
<td>H1,H2-Battery Side</td>
</tr>
<tr>
<td>Community Battery</td>
</tr>
</tbody>
</table>

APPENDIX B

Calculation of virtual resistance for +4.0 V deviation in dc bus, from (15) supposing the community battery current is 90A at peak demand duration in 9:00 to 10:00 hrs.. The virtual resistance can be calculated as follows.

For community battery pack:

\[216=220-90(R_{d,com}+0.009) \]

\[R_{d,com}=0.035444 \]

Total peak current is 200 A and it needs to be shared among the three battery packs, hence using the symmetry in (18), the virtual resistance for house clusters bidirectional converter is $R_{d,1}=R_{d,3}=0.05990$ for 55 A for each case.

REFERENCES

