Household water consumption: Insight from a survey in Greece and Poland

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: SHAN, Y. ...et al., 2015. Household water consumption: Insight from a survey in Greece and Poland. Procedia Engineering, 119(1), pp. 1409-1418.

Additional Information:

- This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 Unported Licence (CC BY-NC-ND). Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/4.0/. It was presented at the 13th Computer Control for Water Industry Conference, (CCWI 201).

Metadata Record: https://dspace.lboro.ac.uk/2134/20833

Version: Published

Publisher: © The Authors. Published by Elsevier

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
13th Computer Control for Water Industry Conference, CCWI 2015

Household Water Consumption: Insight from a Survey in Greece and Poland

Yixing Shan*, Lili Yang, Kim Perren, Yanmin Zhang

School of Business & Economics, Loughborough University, Loughborough, LE11 3TU, UK

Abstract

Determining the behavior of domestic water consumers can facilitate a more proactive approach to water demand management, and serves as the foundation for the development of any intervention strategies that seek to bring about sustained and substantial reductions in domestic water consumption. As part of the European Union (EU) funded project Integrated Support System for Efficient Water Usage and Resources Management (ISS-EWATUS), a household water consumption survey was administered to address the question of how water was used within the home in the EU. The survey was distributed by the University of Thessaly in Greece, and the Institute for Ecology of Industrial Areas in Poland. This paper represents the research output of the survey, including the analysis of three major elements pertinent to the behavior of domestic water consumers: end use behaviors; socio-demographic and property characteristics; and psychosocial constructs such as attitudes and beliefs.

Keywords: Household water consumption; Consumer behavior; Survey

1. Introduction

Population growth, expansion of business activity, urban development, water pollution, climate change and drought have contributed to increased water scarcity in many parts of the world. It is estimated that a fifth of the world’s population live in areas of physical water scarcity, where there is not enough water to meet all demands. One

* Corresponding author: Yixing Shan.
E-mail address: y.shan@lboro.ac.uk
第三的全世界人口不具有获取干净饮用水的权利。此外，四分之一的世界人口生活在经济水资源紧张的区域，而水资源的管理不善使其无法满足所需的用水量。

在欧盟，至少11%的人口和17%的领土受水资源紧张的影响。

水资源的减少在欧洲已经增加了近20%，在1976至2006间。在欧洲60%的大城市，地下水的使用速度超过了其补充的速度。

为了应对这一问题，欧洲委员会已经倡导建立一个水资源节约经济和推广可持续水使用文化的欧洲。

Integrated Support System for Efficient Water Usage and Resources Management (ISS-EWATUS) 是为了开发几个创新的信息和通信技术（ICT）方法，以利用欧盟未被开发的节水潜力。

在家庭层面，通过开发一个决策支持系统，为房主提供他们日常用水消耗的有意义和有效的呈现，从而促进用水量的减少。

在开发决策支持系统时，需要考虑“是什么”，“为什么”，和“如何”三个组成部分。元素“是什么”指出了家庭中关于其分解用水行为的信息。元素“为什么”指出了消费者日常用水实践的心理原因。元素“如何”指出了行为干预如何可以应用到家庭用水消费者基于“是什么”和“为什么”元素获得的信息。

本论文代表了在希腊和波兰进行的居民用水消耗的调研结果。通过收集居民自我报告的信息，如用水行为、社会-人口特征和心理社会构造（如态度和信念），该研究旨在建立家庭用水消耗行为的理论基础。在论文的后续部分，我们将首先介绍有关问卷设计的基础理论文献。然后将呈现和讨论所得的数据。

2. 理论背景

调查设计基于一个广泛文献综述。该综述表明收集居民用水行为、社会-人口特征和心理社会构造（如态度和信念）信息的必要性。

2.1. 用水行为

“用水”是指水在家庭中的使用位置，如厕所、淋浴和洗衣机。用水行为指示了家庭日常生活中用水需求的分解。这些信息可以帮助识别行为改变干预的合适目标。高质量的信息在这个领域是有限的，因为实验研究的结果通常以非同行评审的技术报告、案例研究和咨询服务的形式记录。

根据由能源节约信托[5]分析的数据，淋浴占英国家庭用水的四分之一。在荷兰，一个人口调查表明，主要的用水行为是洗澡（40%）、厕所（28%）和洗衣机（12%）。

北美洲住宅用水用途研究[7]表明，在独户住宅中，超过一半的用水用于户外活动（58.7%），如灌溉和游泳池的使用。对于室内用水用途，排名前三的活动是厕所冲洗（26.7%）、洗衣机使用（21.7%）和洗澡（16.8%）。

在澳大利亚，Beal, Stewart and Huang [8]估计了平均用水需求，基于非同行评审的报告、案例研究和咨询报告。这些数据基于在英国家庭中收集的持续用水的四分之一。在荷兰，一个人口调查表明，主要的用水行为是洗澡（40%）、厕所（28%）和洗衣机（12%）。

在北美洲，北美洲住宅用水用途研究[7]表明，在独户住宅中，超过一半的用水用于户外活动（58.7%），如灌溉和游泳池的使用。对于室内用水用途，排名前三的活动是厕所冲洗（26.7%）、洗衣机使用（21.7%）和洗澡（16.8%）。

在澳大利亚，Beal, Stewart and Huang [8]估计了平均用水需求，基于非同行评审的报告、案例研究和咨询报告。这些数据基于在英国家庭中收集的持续用水的四分之一。在荷兰，一个人口调查表明，主要的用水行为是洗澡（40%）、厕所（28%）和洗衣机（12%）。

在北美洲，北美洲住宅用水用途研究[7]表明，在独户住宅中，超过一半的用水用于户外活动（58.7%），如灌溉和游泳池的使用。对于室内用水用途，排名前三的活动是厕所冲洗（26.7%）、洗衣机使用（21.7%）和洗澡（16.8%）。
2.2. Socio-demographic and property-related characteristics

Socio-demographic characteristics include household size, educational level, income, age and gender. The theorised association between household income and engagement in water saving behaviours is ambiguous. A high income facilitates purchase of more efficient appliances; however, this saving may be negated by a reluctance to modify habits, for example, by delaying using the washing machine until a full load has accumulated.[11] By contrast, lower income households may be less likely to engage in efficiency (purchasing) measures but may have money-saving habits, such as only using a washing machine when there is a full load.

Grafton, Kompas and Ward [12] conducted a survey in ten countries (Australia, Canada, Czech Republic, France, Italy, Korea, Mexico, Netherlands, Norway and Sweden) and report that household size, educational level and income had positive and significant effects on household water consumption. This is supported by Gregory and Di Leo’s study [13] in Shoalhaven, Australia where these three factors (as well as the age composition of household members) had a significant influence on household water demand. Clarke and Brown [14] investigated factors that influence community receptivity to using alternative water sources (such as grey water) and water-saving technologies at the household level. They found that demographic characteristics had an impact on the ability and capability of individuals to acquire and apply household water saving and water recycling measures. Makki et al. [15] explored the predominant determinants of shower end use consumption, based upon the 200 households in Australia. They found that the presence of females and children (and teenagers, in particular) was associated with increased shower water usage.

The property characteristics rubric covers house size and the presence or absence of a garden, pool or water meter. A plurality of studies argue that outdoor uses (e.g., garden irrigation, cleaning driveways, filling swimming pools, etc.) are more discretionary than indoor usage; consequently, they are often the primary target for strategies to change water consumption behaviors.[16][17] Syme et al. [18] report that block size, swimming pool ownership and the centrality of the garden in the lifestyle of a household had a significant impact on external water use.

2.3. Psychological constructs

It has been widely acknowledged in the literature that psychological constructs, such as attitudes and beliefs, are essential determinants of consumers’ actual behaviour.[19][20] Specific to water consumption, Corral-Verdugo et al. [21] conducted research in urban areas of Mexico and found that general environmental beliefs affected specific beliefs regarding the use of water, and these in turn correlated with the measure of water consumption. Gilg and Barr’s study [22] of 1265 households in Devon, UK indicated that committed environmentalists and main stream environmentalists were most likely to engage in energy and water saving activities regularly. In the exploration of the relationship of knowing or having the knowledge on how to conserve water and whether this translational into actual behaviour, Middlestadt et al. [23] found that students who were exposed to a curriculum of water conservative behaviours more regularly performed these behaviours. In CSIRO’s investigation of water end use in Perth, Australia, attitudinal variables were found to affect outdoor water consumption.[24] In most recent research on 132 detached households in the Gold Coast, Australia, Willis et al. [25] found that residents with very positive environmental and water conservation attitudes consumed significantly less water than those with only moderately positive conservation concern.

3. Methods

Following the theoretical background reviewed in the literature, the questionnaire consisting of 43 questions was designed, covering above three major categories of characteristics of household water consumers. The questionnaire was then distributed by the University of Thessaly (Greece) and the Institute for Ecology of Industrial Areas (Poland). In Greece, to achieve the best possible diversity, a ‘paper and pencil’ approach was applied whereby water company residential customers were approached when they came to pay their water bills. In Poland, a link to the web-hosted survey was circulated among Institute employees and employees of the partner water company in
Sosnowiec. In total, there are 77 cases from Greece, and 41 from Poland. The data collection period was November and December 2014.

4. Results and Discussions

4.1. Socio-economic and property characteristics

As illustrated in Table 1, in both countries, the majority of respondents were aged between 25 and 44. Regarding educational status, respondents from Poland were almost exclusively highly educated while those from Greece had greater diversity. The difference possibly reflects the different approaches to data collection in Greece and Poland. In addition, around half of the Polish respondents who disclosed their household income, were above the national average level (3647 PLN).[26]

As depicted in Figure 1, the household size of respondents from Greece and Poland had a mean number of 3.60 and 2.81, respectively. The figures at national level are 2.80 in Greece, and 2.76 in Poland.[26][27]

The respondents’ property ownership, types, ages, and water related facilities (i.e., garden, swimming pool, and water meter) were recorded.

As illustrated in Figure 2, 48 per cent of the respondents from Greece and 83 per cent from Poland had owned their properties. This figure at national level is 74.3 per cent in Greece and 65.3 per cent in Poland.[26][27] Property types are mostly detached houses in Greece and apartments in Poland. The majority of properties are aged between 6 years to 54 years both in Greece and Poland, excluding unknown responses.

In terms of essential water-related facilities such as garden, swimming pool and water meter, our data (Figure 1) suggested that nearly half of the respondents from Greece have a garden, but most do not have a swimming pool. In
Poland, there are similar distributions regarding gardens and swimming pools, but there is almost universal water meter coverage.

4.2. Water end use behaviors

As one major activity of household water consumption, responses on household shower frequency, shower time and shower length were collected (Figure 3 & 4). The data model suggested that male adults and children took shorter showers than female adults, and children took fewer showers per week than adults, both in Greece and in Poland. This is in contrast to the literature [8][15], which argues that the presence of teenagers significantly increases the volume of water consumed for showers.
Most household members take a shower during the evening. Most have not tried to take shorter showers at all; this indicates the potential for a water conservation intervention.[28]

As another major source of household water consumption, water end use behaviors relating to gardening, was collected (Figure 5). The data suggested that the frequency of gardening during summer time was quite diverse, both in Greece and in Poland. A large proportion of ‘other’ responses indicated that many households watered their gardens on a non-regular basis. Irrigation systems for gardening were exclusively traditional; no sprinkler was identified. A small minority of respondents collected rain water for gardening, which suggests another potential for water conservation intervention in the future.

One inefficient water use practice is running water continuously without collecting it in a sink or bowl. The responses suggested that three major occasions when this occurs are waiting for hot water during winter, hand-washing dishes, and brushing teeth, (Figure 6). They could be primary targets of future behaviour intervention.

Previous literature has also addressed the association between water efficient technology and reduced water demand at the household level.[25][29][30][31] Our data on the household application of water saving appliances suggests that respondents from Poland have many more water saving appliances than those in Greece (Figure 6). This may be associated with the greater coverage of water meters and the higher socio-economic status of the respondents.

4.3. Conservation attitudes

Finally, information was collected on respondents’ perceived daily water consumption and their motivation for using water efficiently as well as attitudes towards different ways of conserving water.

The data suggested that most respondents estimated their personal water consumption to be low with 82 per cent of Greek respondents and 63 per cent of Polish respondents choosing one of the two lowest water usage options provided (Figure 7).

The data also suggested that three major motivations to use water efficiently at home are to save water, to help the environment, and to save money (Figure 7). This information may inform the direction and focus of future behaviour intervention, especially related to the knowledge intervention dimension. In addition, the different order of these three major motivations between respondents of Greece and Poland may reflect their different distributions of water meter installation as illustrated in Figure 7. The installation of water meters makes monetary water
consumption sensitive to the actual water usage. Respondents from Poland (where water meters were almost universal) chose saving money as the most widely acknowledged motivation for using water efficiently. In contrast, most of the responding households in Greece have not installed a water meter; they were less likely to choose this rationale for saving water. The literature has indicated that price structuring may have a direct influence on household water use.[32][33]

Attitudes towards different strategies for water conservation intervention, i.e. knowledge, mandatory water restrictions and adjusted water prices, were measured through three separate statements (Figure 7). The data suggested that most of the respondents would be responsive to all three intervention strategies.

4.4. Bivariate analysis

The literature has suggested that larger families are usually more water efficient on a per capita basis due to economies of scale.[8][34] Accordingly, shower end uses, as one of the essential indicators of water efficiency, were compared between different household sizes in our data model.

Household sizes were dichotomized into two groups by their mean values (Figure 8). Household shower length was indexed through the arithmetic average of shower length of household members, in which each shower length category (‘less than 5’, ‘6 to 10’, ‘11 to 15’, ‘16 to 20’, ‘other’) was replaced with an ordinal scale from 0 to 4 in the calculation. The household shower frequency was indexed through the arithmetic average of shower frequency of household members, in which each shower frequency category (‘0’, ‘1 to 2’, ‘3 to 5’, ‘6 to 9’, ‘10 to 14’) was
replaced with an ordinal scale from 0 to 4 in the calculation. Household shower end use, as a general indicator of household water efficiency for showers, was further indexed through multiplication of the household shower length index and household shower frequency index.

The comparison suggested that data from Poland supported the argument from the literature; households of above average size were more efficient in terms of shower length and general shower end uses. However, data from Greece generally contradicted this claim, with smaller households being more efficient users of water through shower use. This controversy may be attributed to the fact that we were measuring shower end use efficiency solely rather than the overall efficiency of household water consumption.

The literature has also reported higher water consumption per capita for higher income homes.[35] Accordingly, the household shower length index, household shower frequency index, and household shower end use index, were compared among different household income levels in our data model. As depicted in Figure 8, household income categories were dichotomized into two groups by their median levels. The comparison suggested that data from Greece supported the above argument, with higher income households consuming more water via shower use. By contrast, among the Polish households, lower income households used more water by showering. This inconsistency of results between Greece and Poland, again, is attributed to the fact that we were measuring the shower water consumption solely rather than the overall household water consumption per capita. In addition, around half of the Polish respondents refused to provide their household income.

Finally, it has been argued that responsiveness of demand to changes in price is greater for home owners than renters in California, US.[33] Accordingly, household ownerships were dichotomized into two groups (owners vs. renters), and their water conservation attitudes towards adjusted water charges were compared, where the five categories of attitudes were scaled in order (‘Not at all important’ -> 0, ‘Not important’ -> 1, ‘Don’t know’ -> 2, ‘Fairly important’ -> 3, ‘Very important’ -> 4). As depicted in Figure 7, data from Poland supported the argument, where home owners were more inclined towards price change of water than the home renters. Data from Greece suggested a minimum difference. Maybe it is due to the contested role of price on household water consumption as water use has also been found to be unresponsive to pricing in Brisbane, Australia.[36]

Fig. 7. Conservation Attitudes

![Fig. 7. Conservation Attitudes](image_url)
5. Summary & Conclusion

This study offers insights into water consumption behavior at the household level. These insights will be used to inform how behavior intervention could be applied to domestic water consumers to promote water saving. A household water consumption survey was designed and administrated to the domestic water consumers in Greece and Poland. The data indicated that male adults and children took shorter showers than the female adults, and children took fewer showers per week than adults. Most household members take a shower during the evening and most have not tried to take shorter showers. The frequency of gardening during summer time was quite diverse and the irrigation systems for gardening were exclusively hand watering with only a small minority of respondents collecting rain water for gardening. Respondents gave low estimates of their personal water usage. Three major motivations for the efficient use of water at home are, to save water, to help the environment, and to save money. Most respondents report that they would be influenced by water conservation interventions such as information provision, mandatory water restrictions, and an adjusted water price. The impact of household size and income on water consumption was different for Greece and Poland. Similarly, the association between household ownership and responsiveness to changes in price was inconsistent between respondents from Greece and Poland. Future research should explore how these insights together with findings from other parts of the project [37][38] could illuminate and guide the behavior intervention design of household water consumption.

Acknowledgement

The research was undertaken as part of Integrated Support System for Efficient Water Usage and Resources Management (ISS-EWATUS) project, funded by European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. [619228]. We would like to thank Starr Roxanne Hiltz for her helpful comments on earlier versions of the paper.
References