Ball grid array-module with integrated shaped lens for WiGig applications in eyewear devices

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: BISOGNIN, A. ... et al., 2016. Ball grid array-module with integrated shaped lens for WiGig applications in eyewear devices. IEEE Transactions on Antennas and Propagation, 64 (3), pp.872-882.

Additional Information:

- © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Metadata Record: https://dspace.lboro.ac.uk/2134/20892

Version: Accepted for publication

Publisher: © IEEE

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Ball Grid Array-Module with Integrated Shaped Lens for WiGig Applications in Eyewear Devices

Aimeric Bisognin, Student Member, IEEE, Aykut Cihangir, Cyril Luxey, Senior Member, IEEE, Gilles Jacquemod, Member, IEEE, Romain Pilard, Member, IEEE, Frédéric Gianesello, Member, IEEE, Jorge R. Costa, Senior Member, IEEE, Carlos A. Fernandes, Senior Member, IEEE, Eduardo B. Lima, Student Member, IEEE, Chintana J. Panagamuwa, Member, IEEE, Will G. Whittow, Senior Member, IEEE

Abstract—A Ball Grid Array-module (BGA-module) incorporating a low-cost shaped dielectric lens is proposed for wireless communications in the 60GHz WiGig band between a smart eyewear where it is integrated and a facing laptop or TV. The module, which is co-designed with a 60GHz transceiver, consists of two separate identical antennas for transmitting (Tx) and receiving (Rx). The in-plane separation of these elements is 6.9mm both being offset from the lens focus. This poses a challenge to the lens design to ensure coincident beam pointing directions for Rx and Tx. The shaped lens is further required to narrow the angular coverage in the elevation plane and broaden it in the horizontal plane. A 3-D-printed eyewear frame with an optical lens-reflector screen, a camera, a microphone/speaker pair and a touchpad. They are generally connected to a peripheral (smartphone or set-top box) through Bluetooth or peripheral devices (monitor, keyboard, etc), as well as ultra-high-definition video/audio transfer from a camera to a TV or projector, eliminating the need for cables. Typically, for a LoS 2-meter communication in this band, an antenna gain of approximately 4dBi is needed (at both sides of the link) considering today’s transceiver performances (10dBm power at the antenna port, -54dBm Rx sensitivity and OFDM 16-QAM modulation). If this distance is increased to around 8 meters, the gain should be approximately 10dB.

With the never-ending improvement of the capabilities of wireless communication devices, the most critical necessity has been to supply the user with higher and higher data rates. This has led to both the improvement of the existing wireless communication standards as well as the launch of new standards and new technologies. One of these standards, the WiGig IEEE 802.11ad, is gaining more and more popularity among industry because the unlicensed frequency band around 60GHz offers a broad bandwidth to achieve multi-gigabits speeds (up to 7Gbit/s). The low interference level favored by the very high wall penetration loss and by the high oxygen absorption in this band for moderate distances makes this standard a good candidate for Line-of-Sight (LoS) in-room Wireless Personal Area Communications (WPAN). Possible applications include the wireless connection of a personal computer (PC) with its peripheral devices (monitor, keyboard, etc), as well as ultra-high-definition video/audio transfer from a camera to a TV or projector, eliminating the need for cables. Typically, for a LoS 2-meter communication in this band, an antenna gain of approximately 4dBi is needed (at both sides of the link) considering today’s transceiver performances (10dBm power at the antenna port, -54dBm Rx sensitivity and OFDM 16-QAM modulation). If this distance is increased to around 8 meters, the gain should be approximately 10dB.

In parallel, smart eyewear devices are gaining popularity as wireless communicating objects with some products already released in the market and some other being prepared for the near future [1-5]. In general, those devices incorporate a small optical lens-reflector screen, a camera, a microphone/speaker pair and a touchpad. They are generally connected to a peripheral (smartphone or set-top box) through Bluetooth or WLAN standards at 2.4 GHz. Our recent work considered eyewear devices as a possible candidate to replace smartphones in the near future and we successfully demonstrated high potential for LTE communications [6].

In this study, a Ball Grid Array-module (BGA-module) incorporating separate Tx and Rx antennas (to avoid a lossy switch at 60 GHz in TDD mode) integrated with a shaped 3-D-printed plastic lens is proposed for integration with a smart eyewear device for high-speed video transfer from the device to a laptop or a TV in front of the user. The transceiver is based on an RFIC design using 65nm CMOS technology and aims to fulfill the WiGig requirements for its highest available...
data rate, i.e. MCS20. This mode offers a 4.158 Gbps data rate thanks to OFDM 16-QAM modulation. All WiGig frequency sub-bands are covered from 57 to 66GHz. The chipset is described in detail in [7]. The shaped lens is intended to achieve an acceptable gain (>10dBi) and to shape the radiation pattern with wide beamwidth in the horizontal plane (at least 100° at 5 dBi gain) and narrow beamwidth in the vertical plane (in the order of 25° at 5 dBi gain). The challenge for its design is the additional need to counteract the beam depointing effect due to the impossibility of positioning the separate Tx and Rx radiating elements simultaneously at the lens single focal point. The in-plane separation of these radiating elements is 6.9 mm. The lens was found to be a convenient solution to address the shaped beam challenge instead of using a large planar array with low aperture efficiency and non-uniform (and lossy) feeding network. The objective of the paper is to show that the proposed antenna concept is feasible for mm-wave eyewear applications, being compact, low cost and with negligible impact in terms of head Specific Absorption Rate (SAR). Section II gives some basic information about the BGA-module and the Tx and Rx radiating elements. The design of the lens with its theoretical background and simulation results are also explained in this section. The integration of the BGA-module and the lens within the eyewear is presented in Section III. Simulation results taking into account the presence of the user's head are also presented in this section. Measurement results for the manufactured prototype are given in Section IV. Section V discusses the evaluation of the radiation exposure on the body through simulations. Finally, conclusions are drawn in Section VI.

II. ANTEenna DESIGN

A. BGA-Module

The BGA-module was designed and manufactured in high density integration (HDI) technology dedicated to 60GHz SiP solutions. This HDI technology is based on standard BGA design and realization techniques: it enables a minimum trace resolution as well as trace spacing of 50μm. The low-cost stack-up of three organic substrates enables four metallization layers. A picture of the BGA-module can be seen in Fig. 1. This module was designed to radiate in free-space. The module has equal length and width (12×12mm²) with a height of 0.5mm. It hosts two printed antennas, one for receiving and one for transmitting, offset from the center of the BGA-module and separated by ∆d=6.9mm distance from each other (1.38λ₀). The antennas are of aperture-coupled patch type, where the apertures are excited through a microstrip line underneath them. The antennas are linearly polarized with a measured gain higher than 4dBi between 57-66GHz (including transmission line losses). More information about the BGA-module (version 1) and the antenna can be found in [8]. They are thus not repeated here for the sake of brevity. However, it should be noted that a second optimized version of the BGA-module is used in the current paper having more than 10dB return loss and 5dBi gain from 57 to 66 GHz which is better than the performance presented in [8].
The GO/PO-based lens design procedure requires prior knowledge of the radiation pattern of one antenna of the BGA-module into an unbounded medium of the chosen material for the lens. ABS-M30 plastic material (consumer grade plastic used for smartphone casing) was chosen in order to ensure low cost for the overall system. A 3-D-printing rapid manufacturing technology was selected to fabricate the lens. A disk sample of ABS material was printed to experimentally evaluate its complex permittivity. The Fabry-Perot resonator measurement method presented in [11] gave us \(\varepsilon_r=2.48 \) and \(\tan(\delta)=0.009 \) at 60GHz. The lens design was performed at 60GHz, as the central frequency. Intrinsic to the GO design, the frequency bandwidth of the lens is inherently large but the full-system bandwidth is mainly determined by the BGA-module bandwidth. The radiation pattern of the feed inside the unbounded ABS medium at 60GHz was obtained from a full-wave HFSS simulation (Fig. 3). Overall, the main E and H planes of the bare BGA antennas have similar beamwidths. The 3-D shaped lens is designed in two steps. First, the lens profile in the horizontal plane is obtained from an elevation cut of an axial-symmetric lens designed with an appropriate profile in the horizontal plane target improves as \(r(\eta=0) \) increases. This value influences the horizontal plane power pattern in a different way, as will be discussed ahead. In the present design \(r(\eta=0)=15\text{mm} \) was chosen as a compromise between the output power pattern specification in both planes and the utmost size constraint for the desired integration with the glasses. The obtained lens profile is presented in Fig. 4. This curve is used as the horizontal profile of the 3-D lens. In the vertical plane (E-plane), narrowing the radiation pattern of the BGA-module can be achieved by using a beam collimating lens profile (like an ellipse). For each cut of the 3-D lens at a constant \(x \) value, an elliptical lens profile is implemented (Fig. 5). Each \(x \)-cut corresponds to a given \(\eta \) angle so that \(x=r(\eta)\sin(\eta) \). In each \(x \)-cut, the height of the elliptical profile is \(F(\eta)=r(\eta)\cos(\eta) \). The elliptical lens profile is defined by

\[
l(\eta,\alpha)=\frac{\sqrt{\varepsilon_r-1}}{\sqrt{\varepsilon_r-\cos(\alpha)}}F(\eta)
\]

where \(\alpha \) is the angle of each point \(l(\eta,\alpha) \) in relation to the vertical axis of each cut plane of the lens profile as indicated in Fig. 5. Therefore the complete 3-D lens profile is defined by the following set of parametric equations

\[
\begin{align*}
x(\eta,\alpha) &= r(\eta)\sin(\eta) \\
y(\eta,\alpha) &= l(\eta,\alpha)\sin(\alpha) \\
z(\eta,\alpha) &= l(\eta,\alpha)\cos(\alpha)
\end{align*}
\]

As with \(\eta \), the \(\alpha \) angle also ranges from 0 to \(\alpha_{\text{max}} \) where \(\partial l(\eta,\alpha)/\partial \alpha \) becomes negative. The remaining points from \(z=z(\eta, \alpha_{\text{max}}) \) to \(z=0 \) are defined with a constant \(y=y(\eta, \alpha_{\text{max}}) \).
The obtained 3-D lens profile is shown in Fig. 2. Its overall size is $\Delta z=15$ mm by $\Delta x=26$ mm and $\Delta y=14$ mm. This approximate 3-D lens design procedure is an evolution of the one developed by the authors in [13]. The corresponding radiation pattern is calculated using PO, considering the actual nonsymmetric feed radiation pattern shown in Fig. 3.

Fig. 4. Horizontal (or H-plane) profile of the plastic lens.

Fig. 5. Vertical cut of the plastic lens profile for a $x=$constant plane.

Fig. 6. Normalized GO/PO simulated radiation pattern of the 3-D lens fed by the Tx patch of the BGA-module at 60 GHz: (a) Feed at the center of the lens; (b) Feed offset from the center by $x=3.45$ mm.

The normalized result is presented in Fig. 6a for the main planes, confirming the effectiveness of the proposed design. The simulated maximum directivity is of the order of 12 dBi. To achieve a narrower E-plane radiation pattern and a higher lens directivity the lens size can be increased by choosing a higher value for $r(\eta=0^\circ)$.

Due to the Rx and Tx $\Delta d=6.9$mm separation in the BGA-module the lens is not fed from its focal point at the center of the base of the lens. The $\Delta d/2=3.45$ mm (0.69 λ_0 at 60 GHz) feed off-set in the x-axis tends to produce a beam depointing effect. However, the previous H-plane radiation pattern template was specifically chosen to minimize this effect. It is noted that the y-plane elliptical profile does not allow depointing minimization if y-axis feed off-set was selected instead. The x-axis feed off-set effect in the horizontal plane (H-plane) radiation pattern of the lens can be seen in Fig. 6b, showing that the flat-top characteristic is reasonably maintained and only 1dB reduction is observed in the broadside direction from the non-offset source case. It has little influence in the E-plane since Tx and Rx patches remain in the focal point of the elliptical x-cut profile of the lens that passes through each feed position.

III. INTEGRATION OF THE BGA-MODULE WITH THE EYEWEAR DEVICE

In order to validate the GO/PO based lens design and to evaluate the antenna in the realistic use-case scenario, full wave electromagnetic simulations were also carried out, using the commercial software Empire XCcel [14]. The simulation model included the BGA-module integrated with the dielectric lens, mounted in the left-hand side of a dedicated ABS eyewear frame (Fig. 7 left part). An FR4 substrate which might be needed in a realistic product as the application PCB and a backing ground plane were also included in this model, behind the Antenna-module (Fig. 8). The frame includes a curved region on the right-hand side of the head to emulate visually the screen of a smart eyewear device. It also includes on the two sides of the frame, two parallelepiped casing-like structures for housing the application PCBs for WLAN/Bluetooth and WiGig standards, respectively.
A homogeneous Specific Anthropomorphic Mannequin (SAM) head was also included in the simulation to account for the user head influence. Considering the computation time and memory requirements to simulate the full set-up from Fig. 7, it was decided to use a cropped model of the head, since the effects of the tissues that are placed far from the antenna in terms of wavelength will be negligible. The cropped model used in the simulations can be seen in Fig. 7 (right side). It keeps all the structures and materials that lie within $10\lambda_0$ distance from the Antenna-module and discards all the others, so the final dimensions of the simulation rectangular box is $78\times73\times155\text{mm}^3$. The lens and the dielectric frame were modeled as ABS plastic material. The values taken from Fabry-Perot measurements and given in Section II B were used to model the ABS material. The outer shell of the head (marked as Tissue-1) was assigned the properties of dry skin at 60GHz, having a relative permittivity of 7.98 and a loss tangent of 1.37. To model the interior region of the head (Tissue-2), electrical properties of the brain was used, with a relative permittivity of 10.4 and loss tangent of 1.19. Those values were taken from [15].

A second set of simulations was also performed removing the head and the backing PCB of the lens. The comparison of the simulated reflection coefficient of the Tx antenna of the BGA-module without the head and PCB and with the head and PCB is presented in Fig. 9. The simulated coupling coefficient from the Tx antenna to Rx antenna is very low ($|S_{21}|<-30\text{dB}$) and thus is not shown here. The Tx antenna integrated with the lens and the backing PCB and head has a reflection coefficient always lower than -6.7dB between 57-66GHz, even decreasing below -15dB around the lower edge of the band. It can also be seen from the same figure that the reflection coefficient of the same Tx antenna without backing PCB and head is very similar, suggesting negligible effects of the head and the backing PCB. The consequence of the absence of a co-design between the source and the lens directly translates into a frequency shift (compared to the “without head and PCB case”) with a minimum of $|S_{11}|$ around 55-57 GHz (almost out-of-band) as the BGA-module now radiates into plastic rather than air.

The comparison of the full-wave radiation patterns in the E-plane ($\phi=0^\circ$) and H-plane ($\phi=90^\circ$) for the two configurations is shown in Fig. 10a and b, respectively. The maximum radiation does not occur exactly in the front direction of the eyewear. There is a slight asymmetry in the radiation pattern (10° tilt) but this is not really important in this application as the beam tilt is small as compared to the beamwidth and the user does not necessarily have to be directly in front of the receiving device. Note, the obtained radiation patterns confirm that the lens geometry is fairly suitable to overcome the focal depointing. In addition, the specified 5dBi gain beamwidth of 25° in the E-plane and 100° in the H-plane are very closely met. The maximum full-wave simulated directivity is almost 15dBi which is higher than the 12dBi simulated with GO/PO.
Fig. 10. Full-wave simulated directivity patterns of the BGA-module integrated with the lens with head and PCB and without head and PCB. a) E-plane; b) H-plane at 60 GHz

IV. MEASUREMENTS

A. Fabrication of the eyewear prototype and the antenna-module

A picture of the manufactured ABS frame integrating the lens is shown in Fig. 11. Fig. 12 presents the BGA-module (left side) and the ABS lens alone (right side). All the ABS prototypes were fabricated using 3-D printing plastic technology.

Fig. 11. Pictures of the manufactured ABS frame incorporating the shape of the lens.

Fig. 12. BGA-module and 3-D-printed ABS plastic lens.

B. Measurement Results

The measurements of the BGA-module with the integrated lens were carried out without the head and PCB, following the conclusions from the previous Section. Also, the full eyewear frame was not utilized for the radiation pattern measurements as it physically impairs the access of the feeding probe used in our millimeter-wave measurement set-up [17] (Fig. 13).

There is a good agreement between measured and simulated reflection coefficients given in Fig. 14. The measured reflection coefficient is well below -11.5 dB in the target band (57-66GHz). Note, no co-design was performed which suggests that better performance could be achieved in a possible new version of the eyewear and BGA-module. The simulated and measured realized gain patterns are presented in 3-D form in Fig. 15 and in the main planes in Fig. 16a (E-plane for $\phi=0^\circ$) and Fig. 16b (H-plane for $\phi=90^\circ$). The maximum measured gain is approximately 11dBi at 60GHz (including the transmission line losses). The measured 5dBi gain beamwidth is 24$^\circ$ in E-plane and 96$^\circ$ in H-plane. A comparison of the simulated and measured radiation efficiency can be seen in Fig. 17. A fair agreement is observed, especially in the target band between 57 and 66GHz. The measured efficiency has been extracted from the 3-D realized gain pattern with the method already presented in [18]. The Tx antenna of the BGA-module has a measured radiation efficiency ranging from 52 to 58% in this band which is a suitable value for WiGig transmissions between the eyewear and a TV or a laptop. The stability of the gain pattern versus frequency was also investigated through the band of interest. Fig. 18 presents the measured realized gain patterns (E and H-planes) for three frequency points: 58GHz, 60GHz and 66GHz. These patterns show negligible variation with respect to frequency even in terms of 5 dBi beamwidth as presented in Table I, all complying with the beamwidth specification.

Fig. 13. Pictures of the probing of the Tx antenna of the BGA-module with the lens (left side), bottom view of the BGA-module with the lens inside the foam support (right side)

Fig. 14. Simulated and measured reflection coefficient of the Tx antenna of the BGA-module with the lens

Fig. 15. 3-D simulated and measured realized gain patterns of the Tx antenna of the BGA-module with the lens

Fig. 16a. E-plane realized gain patterns of the Tx antenna of the BGA-module with the lens

Fig. 16b. H-plane realized gain patterns of the Tx antenna of the BGA-module with the lens
TABLE I

<table>
<thead>
<tr>
<th></th>
<th>58 GHz</th>
<th>60 GHz</th>
<th>66 GHz</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Plane 5dBi BW</td>
<td>25°</td>
<td>24°</td>
<td>23°</td>
<td>25°</td>
</tr>
<tr>
<td>H-Plane 5dBi BW</td>
<td>106°</td>
<td>96°</td>
<td>108°</td>
<td>100°</td>
</tr>
</tbody>
</table>

V. HUMAN BODY EXPOSURE

International standards based on the incident power density have been developed to limit the electromagnetic exposure by the human body from RF devices at 60GHz. The IEEE (USA) recommends a maximum power density of 10W/m² averaged over 0.01m² (10cm×10cm) averaged over 3.6 minutes for the general public [19]. The limit is 100W/m² in controlled environments averaged over 21.6 seconds [19]. The standards also determine a maximum power density of 1000W/m² averaged over any one square centimeter. ICNIRP (Europe) has power density limits of respectively 10W/m² and 50W/m² averaged over 20cm² for the general public and controlled conditions. The maximum power density averaged over 1cm² should not exceed 20 times the above values. The averaging time can be calculated by 68/f1.05=0.92minutes. The ICNIRP levels are stricter for both the larger averaging areas and also the 1cm² area. Therefore, compliance with ICNIRP guarantees compliance with the IEEE recommendation. Despite the power density being defined in the standards, there is no consistent evaluation metric in the recent published papers. The local specific absorption rate (SAR) is examined in [20, 21]. The 1g SAR and the power absorbed were discussed in [22]. The maximum electric field, power density and local SAR were assessed in [23]. In-vitro protein and culture were considered in [24, 25] where the maximum local SAR and the SAR averaged over the whole sample was related to the incident power density. A thermal imaging camera was used to measure the temperature distribution and hence the local and average power density as well as the local SAR in [26]. This paper concluded that power levels up to 550 mW would comply with the exposure limit and an incident power density of 10 W/m² would result in a temperature increase of 0.1°C.

In our study, two sets of simulations were performed for analyzing the effect of the BGA-module with lens on the head of the user. The first set of simulations was performed with a homogeneous head model as used in Section III, consisting of the outer part modeled as dry skin and the inner part modeled as the brain tissue. The second set of simulations was performed with the Visible Human head model taking into account different tissues with corresponding electrical properties.

A. Simulations with Homogeneous Head Model

Simulations with the homogeneous head model were performed to obtain the power density level at the surface of the skin. According to ICNIRP guidelines, the power density level on the tissue, averaged over 20cm² should be lower than 1mW/cm² (or 10W/m²) around 60 GHz frequency. The simulated power density with EMPIRE XCell software on the skin surface can be observed in Fig. 19 for 60 and 66GHz. It should be noted here that the values presented in the figure legends are not averaged either over time or space, so they are the worst-case levels. Moreover, the input power to the
antenna was set as 1W in the simulations so the power density levels shown in the figures need to be divided by 100 to comply with the typical input power level of 10dBm for WiGig devices. The un-averaged maximum power density observed on the skin surface varies between 0.37W/m² and 0.42W/m² between 60-66GHz (for an input power of 10dBm). These values are well below the reference values from the guidelines even though they are instantaneous, un-averaged values. Obtaining such a low power density over the skin was expected since the main radiation is directed away from the head and also the spacing between the Antenna-module and the head is 30mm which is $6\lambda_0$ at 60GHz.

![Simulated Power Density with SAM head (scaled to 1W input power) over the skin for (a) 60GHz and (b) 66GHz](image)

B. Simulations with Visible Human Head Model

The simulations were also performed by placing the BGA-module with lens on a truncated VH model with 1mm resolution (inset in Figure 20). The Yee cell size inside the head was set to 0.2mm and even smaller cells were used to discretize the BGA-module including the lens. Empire can display the power density on the surface of the SAM head, which is categorized as a solid shape, but not on the voxel based VH head. Therefore, to examine the power density on the surface of the VH head, the SAM-shaped field monitor was copied to the VH simulation file. This allowed us to observe that the surface of the VH head was closer to the antenna than the SAM head. Therefore, the SAM-shaped field monitor was moved several millimeters towards the antenna to lie on the surface of the VH head. Approximate calculations using the path loss equation indicated that this positioning difference can increase the power density by approximately 5dB. The power density on the surface of the VH head varies between 67 and 100W/m² as shown in Fig. 20. These values are again the maximum values seen at a point in space, normalized to 1W input power, without any space or time averaging. Considering 10dBm of maximum input power in WiGig applications, the values are well below the standard values, even without averaging.

![Simulated Power Density with VH head (scaled to 1W input power) for (a) 60GHz and (b) 66GHz](image)

VI. CONCLUSION

The paper demonstrated the feasibility of a compact low-cost antenna assembly for a WiGig smart eyewear device
intended for high-speed wireless data communication in the 60 GHz band with a laptop or TV facing the user. The antenna-module incorporates a 3-D-printed shaped dielectric lens especially designed to enhance gain while shaping the radiation pattern to provide wide angular coverage in the horizontal plane and narrow beam coverage in the vertical plane. The lens design was based on GO/PO but full wave electromagnetic simulation was carried out to evaluate the antenna assembly performance when integrated with the eyewear device. Results were presented for two scenarios: the first one included the user's head as well as a portion of a PCB backing the Antenna-module. In the second scenario, the head and PCB were removed. It was demonstrated that the effect of the head and of the backing PCB on the radiation pattern and the reflection coefficient was negligible. Keeping this in mind, the measurements for the BGA antenna-module and the lens were carried out in free-space, showing a good agreement with the simulations in terms of reflection coefficient, radiation efficiency and realized gain radiation pattern. The maximum measured gain at 60GHz was 11dBi, with 5 dBi gain beamwidth of 24° in the vertical plane and 96° in the horizontal plane (including the transmission line losses). The measured gain radiation pattern was also shown to have negligible variation over the target frequency band (57-66GHz).

The effects of the antenna radiation on the human body was analyzed for two sets of simulations, using both a homogeneous SAM head phantom and Visible Human head model. The simulated power density values for both head models were found to be lower than the limits established in the related standards, considering an input power of 10dBm.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Orange Labs La Turbie and the CIM-PACA design platform. Frederic Devillers from Orange Labs is deeply acknowledged for the adjustments of the mechanical parts of the measurement set-up. The authors would like to acknowledge a scholarship given by project ESF RNP "Newfocus" to Aimeric Bisognin.

REFERENCES

[2] “M100 Smart Glass,” Available at: http://www.vuzix.com/UKSITE/consumer/products_m100.html
[14] EMPIRE XCell, Information Available at: http://www.empire.de/