Which catchment characteristics control the temporal dependence structure of daily river flows?

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: CHIVERTON, A. ... et al., 2015. Which catchment characteristics control the temporal dependence structure of daily river flows? Hydrological Processes, 29 (6), pp.1353-1369.

Additional Information:

- This is the peer reviewed version of the following article: CHIVERTON, A. ... et al., 2015. Which catchment characteristics control the temporal dependence structure of daily river flows? Hydrological Processes, 29 (6), pp.1353-1369, which has been published in final form at: http://dx.doi.org/10.1002/hyp.10252. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Metadata Record: https://dspace.lboro.ac.uk/2134/20912

Version: Accepted for publication

Publisher: John Wiley & Sons (© the authors)

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Which catchment characteristics control the temporal dependence structure of daily river flows?

Chiverton. Andrewa,b,c, Hannaford. Jamiea, Holman. Ianb, Corstanje. Ronb, Prudhomme. Christela, Bloomfield. Johnc, Hess M. Timb.

aCentre for Ecology and Hydrology, Wallingford, Maclean building, Crowmarsh Gifford, OX10 8BB, UK
bEnvironmental Science and Technology Department, Cranfield University, Cranfield, MK43 0AL, UK
cBritish Geological Survey, Wallingford, Maclean building, Crowmarsh Gifford, OX10 8BB, UK

Abstract

Hydrological classification systems seek to provide information about the dominant processes in the catchment to enable information to be transferred between catchments. Currently there is no widely agreed-upon system for classifying river catchments. This paper develops a novel approach to classifying catchments based on the temporal dependence structure of daily mean river flow time series, applied to 116 near natural “Benchmark” catchments in the UK. The classification system is validated using 49 independent catchments. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment, and can thus be used to assess the influence catchment characteristics have on moderating the precipitation-to-flow relationship. Semi-variograms were computed for the 116 Benchmark catchments to provide a robust and efficient way of characterising temporal dependence. Cluster analysis was performed on the semi-variograms, resulting in four distinct clusters. The influence of a wide range of catchment characteristics on the semi-variogram shape was investigated, including: elevation, land cover, physiographic characteristics, soil type and geology. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and/or the storage in the catchment. Quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This method could form the basis for future regionalisation strategies, as a way of transferring information on the precipitation-to-flow relationship between gauged and un-gauged catchments.

Keywords: clustering; variogram; temporal dependence; autocorrelation; regionalisation; discriminant analysis.

Introduction

Hydrology has yet to achieve a widely agreed-upon system which classifies catchments based on the movement and storage of water within the catchment (Wagener \textit{et al.}, 2007; Ley \textit{et al.}, 2011). Even though internal complexity will remain within each class as every catchment is unique (Beven, 2000), a broad classification process should be possible. This is based on the general assumption that some level of organisation and therefore predictability in catchment ‘function’ (i.e. the translation of catchment input into river flow) exists (Dooge, 1986; Bloschl \textit{et al.}, 2013). A broad classification process should cluster together similar
catchments, thus limiting the variability within classes and maximising the variability between them. The between-catchment similarities may be a result of natural self organisation or the co-evolution of climate, soils, vegetation and topography (Sivapalan, 2006).

Classification is a means to identify the dominant processes and mechanisms operating in a given catchment type, as well as the most important controls on water fluxes and pathways (McDonnell and Woods, 2004). Identifying the dominant processes which transform precipitation into runoff will enhance understanding about the similarity or dissimilarity between catchments (Gottschalk, 1985). Being able to classify catchments has a range of benefits (Grigg, 1965; 1967):

1) *To give names to things* (enable grouping as seen in other disciplines).

2) *To permit transfer of information* (from gauged to un-gauged catchments as well as enabling comparison between studies in different catchments).

3) *To permit development of generalisations* (improve knowledge about the drivers behind the precipitation to flow relationship).

As the impacts of a non-stationary climate are becoming of greater concern (Wagener *et al.*, 2010), Sawicz *et al.* (2011) added a fourth:

4) *To provide a first order environmental change impact assessment* (identify the impacts from land use/cover and climate change).

Hydrological science has developed descriptive classifications describing catchments in terms of, e.g. land cover (forested, urban, arable, etc); climate (humid, arid, semi-arid, etc); flow pathways (fast, slow); storage (groundwater dominated, surface water catchments); etc (Wagener *et al.*, 2007). These groupings do not provide a comprehensive classification system as they do not enable understanding about the partitioning of water nor the importance of different water stores (McDonnell and Woods, 2004). A further drawback with the aforementioned groupings is that no information is provided about the impact of the interaction between different descriptors. Previous classification studies have either focused on physical catchment characteristics (e.g. Acreman and Sinclair (1986) and Burn and Boorman (1993)) or on indicators derived from specific aspects of the flow record (e.g. floods - Robson and Reed (1999); low flows and flow duration curves -Holmes *et al.* (2005); seasonally averaged flows - Laizé and Hannah (2010); long term average annual regimes and long term annual flow average - Bower *et al.* (2004)). Bower *et al.* (2004) differentiated between first and second order controls (precipitation and catchment characteristics respectively) on flow. Ali *et al.* (2012) and Ley *et al.* (2011) showed a lack of correlation between flow-derived indicators and catchment characteristics. The difference is likely to be caused by the catchment characteristics not adequately capturing the climatic effects (first-order control of flow).

Temporal dependence represents the similarity between the river flow on a given day and river flow on the preceding days. As temporal dependence is likely to be driven by catchment
characteristics (Szolgayova et al., 2013), classification based on the temporal dependence has some key advantages: 1) Raw flow data can be used, rather than having to calculate indicators from discharge data (e.g. annual or seasonal averages, minimum or maximum flows). 2) The method can handle missing data. 3) The classification is based on catchment function (i.e. the degree to which catchment characteristics filter rainfall into runoff) and not a specific part of the flow regime. This confers significant benefits for advancing our understanding of the drivers behind the precipitation-to-flow relationship in a much more generalised way (benefit 3, above) rather than for a specific process (e.g. flooding or low flows).

Szolgayova et al. (2013) suggested that catchment properties can influence the temporal dependence of river flow. Such properties are likely to include those governing the predominant catchment second-order controls (i.e. catchment characteristics which modify the precipitation to flow relationship, Bower et al., 2004). These will influence: partitioning between vertical and lateral pathways (e.g. interception, overland flow, infiltration and percolation); connectivity of the drainage network and hydraulic gradients (Buttle, 2006) and storage (e.g. soil moisture storage, lakes and storage in the saturated zone (Black, 1997)).

This paper will develop a new catchment classification system based on the temporal dependence of river flow; an integration of water input, storage and flow pathways within the catchment. A hydrological classification method becomes more powerful if catchments can be classified without the use of river flow data; enabling un-gauged catchments to be classified and hence allowing data transfer between gauged and un-gauged catchments. Therefore, the second part of this paper will demonstrate how un-gauged catchments could be clustered into the same classification using their catchment characteristics thereby facilitating data transfer (benefit 2).

The methodology used in this paper is designed to capture differences in the precipitation to channel-flow relationship (benefit 3). This novel approach of assessing the temporal dependence in a catchment based on semi-variograms, created using daily river flow data, will be applied to a range of catchments throughout the UK. The term semi-variogram refers to the semi-variance calculated from the data without fitting model (also known as the experimental or empirical variogram) (Chandler and Scott, 2011).

Data

Catchment selection

A sample of catchments was needed to represent the population of UK catchments in terms of spatial location and catchment characteristics. The choice of catchments selected was constrained: 1) To remove the influence of weather, the time series is averaged over a long time period. Therefore, only catchments with a record length of 30 years or more with less than 5 % missing data were considered. 2) As controls from climate and land use change through time (Wagener et al., 2007), a common time period (1970 to 2010) was used to enable comparisons between catchments. 3) Artificial influences on river flows (such as reservoirs or sewage discharges) could affect the dependence structure of the data series, so
near-natural UK Benchmark catchments, with only modest net impacts from artificial influences were chosen (Bradford and Marsh, 2003). 4) Nested catchments with similar flow regimes were removed.

Any study using observed hydrometric data faces an inevitable degree of uncertainty due to limitations with the measurement techniques (MacMillan et al. 2013). The amount of uncertainty will depend on the gauging station to a great degree. In this study, the impacts of data error was minimised insofar as possible through judicious selection of catchments. One of the criteria Bradford and Marsh, (2003) used to develop the benchmark network was hydrometric performance, with the gauging stations in the network generally producing good quality data. Furthermore, the data used in this study has undergone validation by the NRFA as outlined in Dixon et al, (2012) and demonstrated by Muchan and Dixon (2013) to have few data quality issues.

The locations of the 116 catchments are displayed in Figure 1 provide a good coverage of UK catchment types with varying catchment characteristics (Table 1). However, catchments in the South East are smaller, as artificial influences are more pervasive in this densely populated region. In addition a further 49 catchments were selected for validation purposes (Figure 1). These were selected using the approach outlined above, except the requirement to be a benchmark catchment was removed; instead they were screened for artificial influences using the metadata records from the National River Flow Archive (NRFA). The hydrometric data were collected by the measuring authorities (Environment Agency in England, Natural Resources Wales in Wales, Scottish Environment Protection Agency in Scotland, and the Rivers Agency in Northern Ireland) and stored on the NRFA (http://www.ceh.ac.uk/data/nrfa/). Daily rainfall data for each catchment were also calculated from 1km by 1km gridded rainfall data using the method outlined in Keller et al. (2006).

Catchment characteristics

In order to investigate the drivers behind the different shapes of semi-variogram, several catchment characteristics were analysed, grouped into categories: elevation\(_e\), land cover\(_lc\), physiographic and hydrological descriptors from the FEH\(_f\) (Flood Estimation Handbook, the UK’s principal methodology for flood estimation at un-gauged sites; Robson and Reed, 1999), geology\(_g\), storage\(_s\) and soils classification\(_s\) (Table 1).

Five elevation characteristics were considered to assess how topography varies between the clusters, all derived from the Integrated Hydrological Digital Terrain Model (Morris and Flavin, 1990), as published in the UK Hydrometric Register (Marsh and Hannaford, 2008). Land cover was derived from the Land Cover Map 2000 (Fuller et al., 2002), grouped into four categories from the 26 LCM2000 subclasses, to ensure the representation in the 116 catchments and preservation of the four major land covers. Nine characteristics from the FEH were included, incorporating the important characteristics of the catchment and excluding discharge features (e.g. return periods). Four different Hydrology Of Soils Types (HOST) (Boorman et al., 1995) soil types based on the depth to gleyed layer (reduced from 29 HOST classes) and seven different hydrologically important rock types calculated from the 1:625
000 scale digital hydrogeological map of the UK were identified. As with land cover these categories were defined to capture the main hydrological differences whilst being represented throughout the 116 catchments. In addition to the HOST soil classes, BFIHOST and BFI are included as indicators of catchment storage. Base flow index is not a catchment characteristic per se as it is calculated from the flow data. However, it is frequently used as an indication of storage and is included here to compliment the BFIHOST values, which are BFI values predicted from HOST classes.

Method

An overview of the methods used in this paper is provided here, before more detail is provided in the following sections. Firstly, the daily flow data are transformed to make them suitable for (semi-)variogram analysis. Secondly, a semi-variogram is created for each catchment. Thirdly, the variogram for all sites are categorised into groups using cluster analysis. Finally the influence catchment characteristics have on the temporal dependence of each of these clusters is analysed in two ways: firstly through box plots, to investigate the distribution of catchment characteristics for each cluster; and secondly by using quadratic discriminate analysis (QDA) to independently predict membership of the clusters using catchment characteristics rather than the semi-variogram.

River flow data transformation

To calculate a semi-variogram the data should first be transformed into a normally distributed, deseasonalised time series (Skøien et al., 2003). Therefore a number of transformation steps were implemented, each one using the data from the previous, starting with raw daily discharge data:

1) As some hydrological time series had periods of no data and all sites had a good analogue station the time series were in-filled to improve the fit of the periodic function used for deseasonalisation (step 3). Infilling was carried out using the equipercentile linking method (Hughes and Smakhtin, 1996) where the flows from one gauging station are linked to another through percentile ranks. Harvey et al. (2012) showed that the equipercentile method outperforms other methods such as scaling factors for infilling mean daily river flow data.

2) Logarithms were taken, to create a near normal distribution. Zero values were replaced by 0.001 m3s$^{-1}$.

3) Seasonality was removed (to avoid exaggerating the temporal dependence) using Fourier representation; a periodic function was fitted to the data using a sum of sine and cosine waves, at frequencies which are integer multiples of the annual cycle. For each catchment the number of covariates was set to six to enable a good fit to the data (more covariates increases the flexibility of the function, enabling a better fit to the data). While it is acknowledged that using six covariates might over fit the model, this is deemed appropriate to model the seasonal effects (and not to extrapolate). Akaike Information Criterion (AIC), a relative goodness of fit measure, was used to select the best parameters for the periodic function. The effect of seasonality was removed by deducting the magnitude and dividing by standard
deviation caused by seasonality (both calculated from the periodic function) for each day in a year. Although infilling the data enhanced the ability to fit a periodic function to the data and improved the removal of seasonality, the in-filled data were considered less accurate than measured data, so were removed after the seasonality had been taken out.

4) The flow data for each catchment were standardised by deducting the mean and dividing by the standard deviation of the time series; standardising enables comparison of catchments with different magnitudes of flow.

Semi-variograms

The temporal dependence structure can be represented by a one dimensional temporally averaged (semi-)variogram (see Chandler and Scott (2011) or Webster and Oliver (2007) for detailed background about the (semi-)variogram). A semi-variogram has several components (displayed in Figure 2): Throughout this paper the “sill” is defined as the semi-variance where the gradient of the (semi-)variogram is zero. A zero gradient indicates the limit of temporal dependence and is an indicator for the total amount of variance in the time series. The “range” is the time it takes to reach the zero gradient. If the lag time between water landing in the catchment and reaching the gauging station is small and the catchment has little storage then the resulting semi-variogram would be expected to have a short range.

For second-order stationary processes the (semi-)variogram and autocorrelation graph are symmetrical. However, (semi-)variograms are defined for a wider class of processes and therefore enable temporal dependence to be analysed even if there is missing data or a trend. The nugget, which is the y intercept on the modelled semi-variogram, represents a combination of measurement error and sub daily variability. The partial-sill is the range minus the nugget and shows the temporally dependent component. A semi-variogram was calculated for each catchment using the average squared difference between all pairs of values which are separated by the corresponding time lag (Equation 1):

\[
\hat{\gamma}(h) = \frac{1}{2(N-h)} \sum_{i=1}^{N-h} [(Y(t_{i+h}) - Y(t_i))^2]
\]

(Equation 1)

Where \(h \) is the lag time, \(Y(t_i) \) is the value of the transformed data at time \(t_i \) and \((N-h)\) is the number of pairs with time lag \(h \). A maximum lag distance over which to calculate the semi-variogram was defined to enable the clustering to capture differences in the temporal dependence structure.

In order to quantify the differences between the mean values in each cluster, variogram models were fitted to the average semi-variogram for each cluster (see below for details of clustering). These were fitted using the variofit function from the geoR package in the R statistical software. Ten different model shapes (Matern, exponential, gaussian, spherical, circular, cubic, wave, powered.exponential, Cauchy and gneiting) were fitted to the semi-variogram using the Cressie method (Cressie, 1985). The Matern shape produced the fit results for each cluster average.

Clustering
Catchments were clustered using a Euclidean squared distance matrix, calculated using the whole of the semi-variogram to maximise the information going into the clustering algorithm (Wagener et al., 2007). There are many clustering methods available, with none universally outperforming the others (Hannah et al., 2005). Hierarchical clustering was undertaken using seven methods (Ward, single, complete, average, McQuitty, median and centroid), resulting in dendrograms, agglomeration schedules and maps. These were used to assess the spread of catchments across the clusters (i.e. how many catchments there are within each cluster) and physical explanation of clusters. Ward’s method gave the best results for clustering based on the semi-variogram shape, with relatively well defined evenly sized clusters. Ward’s method has been found to be robust for clustering catchments in terms of hydrological response in a wide range of other studies (e.g. Laizé and Hannah (2010); Köplin et al. (2012) and Bower et al. (2004)). Agglomerative clustering based on Ward’s minimum variance method was applied to the distance matrix. The algorithm starts with n clusters (i.e. the number of catchments), at each step the joining of every cluster pair is considered and the two clusters which results in the minimum increase in the sum of squared differences are combined. The final number of clusters is subjective, based on assessing the structure of the dendrogram and changes in gradient of the agglomeration.

Quadratic discriminant analysis (QDA)

Discriminant analysis was used to determine which catchment characteristics can be used to attribute a catchment to a cluster. The analysis identifies whether the mean of the catchment characteristic differs between clusters. Once the variables (characteristics) have been selected discriminant analysis creates an equation with the aim of minimising the possibility of misclassifying catchments. The equation will be in the form:

\[D = v_1X_1 + v_2X_2 + v_3X_3 + ... + v_nX_n + C \]

(Equation 2)

Where D is the discriminant function; \(v \) is the coefficient for the variable; \(X \) is the transformed value for the variable; C is a constant and \(n \) is the number of variables. The \(v \)'s are selected to maximise the difference between clusters. There is one less discriminant equation than the number of clusters. Each equation explains as much of the between-cluster variability as possible with the first equation explaining the most. Quadratic discriminant analysis was used (as opposed to linear discriminant analysis) because it allows a different covariance matrix for each cluster, increasing the model’s flexibility. This is deemed acceptable due to the number of catchments being investigated.

To meet the assumptions associated with discriminant analysis, the catchment characteristics were transformed to be normally distributed. The Shapiro-Wilks value was used to select the best transformation. In addition, to avoid making prior assumptions about the characteristics which best discriminated between the different clusters, a backwards stepwise variable selection was used. A matrix containing total variance and covariance and matrix containing pooled within-group variance and covariance were compared using a multivariate F test. This indicates the extent to which a variable makes a unique contribution to the prediction of cluster membership. The F value was used to select the variables to be removed at each step.
Further to this, to avoid redundant variables, characteristics which were highly correlated (> 0.8 or < -0.8 spearman’s rank) were removed.

Finally, the 49 independent catchments were used in a separate ‘validation’ analysis to evaluate the discriminant expressions fitted to the 116 original catchments. In order to determine whether the validation catchments were successfully clustered from their catchment characteristics, the validation catchments were fitted into the clusters derived from the 116 benchmark catchments. The validation catchments were placed into the cluster for which the semi-variogram was closest to the mean semi-variogram of the cluster.

Results

Clustering

Four clusters were selected because analysis of the agglomeration showed that the benefit of increasing the number of clusters to more than four was small. Analysis of the semi-variograms showed that 87 % (101 catchments) had a range of ~ 90 days or less, and the maximum lag was set to 90 days to maximise the difference of the catchments with semi-variogram ranges of less than 90 days. It is acknowledged that differences between the remaining 13 % (15 catchments) which have a range much greater than 90 days are unlikely to be identified during the clustering process.

Distinction between clusters

The clustering analysis (Figure 3 and Figure 4), gave 32 catchments in cluster 1, 34 catchments in cluster 2, 35 catchments in cluster 3 and 15 catchments in cluster 4. There is a spatial difference between clusters one and two which are predominantly in the north and west and clusters three and four which are predominantly in the midlands and south east.

The difference in the temporal dependence structure between the clusters is illustrated in Figure 4 and Table 2, with increases in range, and decreases in the sill and nugget from clusters one to four. An increasing range indicates less short term (less than 90 days) variability in the daily mean river flow, while a decreasing sill is caused by less temporally autocorrelated variability throughout the 30 year record. Figure 4 also shows that the clusters are reasonably well defined; there is overlap between all four clusters for the short time lags due to similarity in the temporal dependence of the first few days. At longer lags (after ~ 30 days) there is only overlap between clusters 1 and 2 due to the different shapes of the semi-variograms and no overlap at the 95 % confidence interval.

In order to investigate how much rainfall influenced the temporal dependence of river flow, the same method of temporal dependence analysis was applied to catchment averaged daily precipitation from 1980 to 2008 for all catchments. Results showed no significant difference (at the 95 % confidence interval) in the temporal dependence of rainfall between catchments in different clusters (Figure 5). Compared with discharge, the temporal dependence is much shorter in rainfall, only lasting around 10 days.

Catchment characteristics differentiating between the clusters
Initially, box plots were used to investigate the possible catchment characteristics driving the differences between the four identified clusters. All the characteristics in Table 1 are shown except for the percentage of urban land cover, FARL and elevation 90 which were removed because the majority of the catchments had little or no urban area or FARL, and elevation 90 was almost identical to elevation max. The characteristics that differ most between all four clusters are shown in Figure 6. Figure 7 identifies characteristics which distinguish between two or more clusters. Whilst Figure 8 shows characteristics for which the median does not change between clusters. BFIHOST represents the distribution of BFI between clusters (Figure 6) agreeing with Marachel and Holman (2005) who showed that BFIHOST is a robust way to calculate BFI, low flow statistics and the percentage of runoff. As BFI is not a catchment characteristic (being calculated from flow data) and is removed from subsequent analysis.

Figure 9 shows the correlation between all the characteristics which differentiate between clusters (Figures 7 and 8). The physical catchment characteristics in Table 1 are not independent from each other, as shown in Figure 9 by scatter plots and (Spearman’s rank) correlation. The correlation between different catchment characteristics highlights the influence elevation (elevation max and elevation 90) has on the value of PROPWET, DPSBAR, percentage of peat soils and percentage of arable land, all of which have correlations greater than |0.7|. Characteristics describing the pathway and storage are also highly (> 0.7) correlated (e.g. BFI HOST and the percentage of highly productive fractured rock).

Quadratic discriminant analysis

Due to the statistical distribution of: peat soils, PROPWET, and all the rock descriptors (figure 9), a transformation to a normal distribution was not possible and these were excluded from the discriminant analysis. In addition elevation characteristics were highly correlated (> 0.8 or < -0.8 spearman’s rank; Spearman 1904) with one another and drainage path slope. Highly correlated variables invalidate the assumption of independence. Therefore, elevation 10, elevation 50, elevation 90 and elevation max (elevation characteristics with the lowest F values) were also removed from the discriminant analysis. Further to this, BFIHOST and no gleying soils were also highly correlated; the percentage of no gleying soils correctly clustered slightly more catchments, therefore BFIHOST was also omitted. The transformations applied to the characteristics included in the QDA are shown in Table 3.

For each variable combination a set of three equations (in the format of equation 2) which maximise the difference between clusters were created. For every combination of variables, equations 2; and 2ii explained between 85 and 88 % and 7 to 10 % of the between-cluster variability respectively with information added by each equation significant at the 99.9 % confidence interval. The third equation (2iii) explained the remaining (2 % to 5%), with a significance of between 94 and 99 %. The resulting values from equations 2i to 2iii were used to cluster the catchments based on the probability of the catchment being in each of the four clusters (Table 4).
The more catchment characteristics there are in the model, the higher the percentage of correctly classified benchmark catchments (89.7 % with 12 characteristics and 54.3 % with 1 characteristic). In addition, Table 4 identifies that the percentage of arable land discriminates best between the clusters. A relatively accurate model can be made using only a few variables (arable land, depth to gleying in soils and altitude).

Validation

The 49 validation catchments were clustered based on the distance of their semi-variogram to the centre of the already generated clusters (Figure 4), this resulted in 14 from cluster 1, 12 from cluster 2, 14 from cluster 3 and 9 from cluster 4. To test the quadratic discriminant models these were then clustered using their catchment characteristics and the same equations generated for the 116 catchments, the percentage clustered correctly is shown in Table 4.

The validation of the discriminant analysis on the 49 independent catchments (Table 4) shows that models with fewer explanatory variables are more robust. Although a model using 12 catchment characteristics correctly classified 104 out of 116 benchmark catchments, the percentage of correctly clustered validation catchments (Table 4) highlighted that models with a lot of parameters were over-fitted to the data. Based on the percentage of catchments correctly classified in both the benchmark and validation catchments (in models with less than 6 variables), Model 5 (Table 5) is deemed to have the best performance as both the benchmark and validation catchments are clustered well.

The values are calculated for each catchment by multiplying the adjusted values for the catchment characteristics (i.e. the values obtained after transforming the data as outlined in Table 3 which correspond to the X’s in equation 2) by the coefficient (i.e. the v’s in equation 2) e.g. for model 5 (eq1):

\[D = ((\text{arable}(X_1) \times 1.12(V_1)) + (\text{no gley}(X_2) \times 0.25(V_2)) + (\text{gleyed 40-100}(X_3) \times -0.44(V_3)) + (\text{gleyed<40}(X_4) \times -0.37(V_4)) + (\text{DPS}(X_5) \times -0.60(V_5)) \]

Although Model 5 does not classify all the catchments correctly, all but one of the misclassified catchments is predicted to be in an adjacent cluster (Table 6). If a catchment is predicted to be in a higher numbered cluster than the actual cluster, the catchment characteristics indicate larger storage and / or faster response than is indicated by the discharge. Catchments predicted to be less than their actual class demonstrate the opposite.

The above results (Table 4) highlighted that arable is the catchment characteristics which best discriminates between the temporal dependence-based clusters for the 116 benchmark catchments. However, unlike the rest of the characteristics, land cover is dynamic and will change through time, thereby potentially leading to a change in the cluster allocation. In order to investigate this issue the discriminant analysis was redone without land cover characteristics (Table 7), which showed a deterioration of less than 2% for the model with 5 variables.

Discussion
This paper identified four distinct clusters of catchment based on the temporal dependence structure of 116 catchments throughout the UK. The mapping of these clusters (Figure 3) highlighted a spatial pattern between clusters 1 and 2 against clusters 3 and 4. This spatial pattern is indicative of a broad NW – SE gradient in several inter-related variables in the UK (e.g. precipitation, temperature, elevation, soil type, land use and to a certain extent rock type) as found in previous clustering (Bower et al., 2004). The temporal dependence of rainfall (Figure 5) showed no difference between the clusters, indicating that precipitation is not influencing the river flow dependence structure. The homogeneity of the rainfall dependence structure is caused by the high temporal variability (Chang et al., 1984) and lack of precipitation attenuation features (i.e. characteristics which influence lag time).

The characteristics which differentiated best between the clusters (benefit 3) were those that drive (or are highly correlated with characteristics which drive) the precipitation-to-flow relationship; by influencing either the pathway from precipitation to discharge and / or the amount of storage in a catchment (Ali et al., 2012). Values describing the highest parts of the catchment (i.e. elevation 50 and above) have bigger variations between the clusters than lowland elevation values (Figure 7). Topography controls the strength of the forces acting on surface and groundwater flows as well as influencing the evolution of soils and vegetation (Bloschl et al., 2013) which in turn alter the macropores in the soil, hence the travel time of the water through the catchment. This is seen with the higher elevations being correlated with drainage path slope, PROPWET and the percentage of peat soils (Figure 9) which all influence infiltration and hence lag time. PROPWET and peat soils provide information about how waterlogged the soil is and hence drive the partitioning of water between surface and subsurface flow paths as well as the depth to which water can percolate before horizontal flow occurs. High elevation and low infiltration will result in water travelling via a fast pathway where less attenuation of the precipitation will occur, hence, the variability in the river flow will be greater (higher maximum semi-variance) and the range shorter (e.g. cluster 1 in Figure 4 and Table 2). This is consistent with Ley et al. (2011) who highlighted a relationship between flow characteristics and the steepness and infiltration capacity of the catchment. Laizé and Hannah (2010) also identified that upland catchments were more impermeable and thus had a stronger relationship with the regional climate drivers than lowland permeable catchments.

BFIHOST and the percentage of no gleying soils are highly correlated (>=0.79, Figure 9) and are an indication of infiltration and storage. No gleying soils do not become waterlogged and hence water can percolate through the soil, and BFIHOST is an indication of storage and is correlated (>0.7) with highly productive fractured rock. Sawicz et al. (2011) also showed that the precipitation to discharge relationship is influenced by soil characteristics. High infiltration and storage (exhibited in cluster 4) results in semi-variograms with a long range due to the attenuation resulting from the slow transformation from precipitation to discharge.

Figure 6 shows that BFIHOST differentiates cluster 4 from the other clusters. However, there is considerable overlap between clusters 1 to 3. BFIHOST does not adequately capture the differences between catchments with fast precipitation to flow relationships (Dunn and Lilly, 2001) as other characteristics (e.g. topography) have a larger influence.
The final characteristic in Figure 6 is the percentage of arable land. Although Ragab and Cooper (1993) show that arable land has a significantly lower hydraulic conductivity value than grassland; the difference is unlikely to be seen at catchment scale. It is likely that the differences in the percentage of arable between the clusters is caused by the negative correlation (\(\leq -0.7\)) with high elevations, PROPWET and to a lesser extent peat soils which have a large affect on infiltration (Masicek et al., 2012). This agrees with Yadav et al. (2007) who identified that land cover (woodland and grassland) characterises some of the river flow response. Grassland does not differentiate between the clusters as well as arable, likely to be because of the lower correlation with characteristics which drive changes in temporal dependence.

The distribution of high and low productivity fractured rocks between the clusters (Figure 7) show that the majority of catchments in cluster 4 have a larger percentage of highly productive fractured rock (predominantly Chalk); River flow in catchments in cluster 4 thus has a greater contribution from groundwater than in the other three clusters, that will have the effect of moderating higher frequency variability in precipitation and is consistent with the relatively large range and small semi-variance exhibited in catchments in cluster four (Figure 4 and Table 2). The converse is seen in the box plot for catchments underlain by low productivity fractured rock where cluster 1 has a larger median value. For catchments in this cluster there will be negligible groundwater to river flow, and river flows will be characterised by much shorter temporal dependence (Figure 4 and Table 2). These observations are consistent with the findings of Bloomfield and Marchant (2013) who showed that differences in temporal dependence in groundwater are correlated with hydraulic diffusivity (the product of transmissivity and storage). The similarity between the box plots for BFIHOST (Figure 9) and that for the highly productive fractured aquifer type is also consistent with the above conceptualisation of controls on surface water flows and the results of Bloomfield et al. (2009) who demonstrated the correlation between aquifer type and BFI for 44 sub-catchments in the Thames, UK. The percentage of grassland in each catchment also differentiates between the clusters.

The intergranular aquifer types do not show the same variations between clusters as the fractured rocks (Figure 8). This could be caused by three reasons: 1) the catchments are mainly situated on fractured rock hence do not adequately represent the impact of intergranular aquifer types. 2) The seven classes of rock used are too simplistic and do not capture the difference in sub-surface processes occurring in different catchments. 3) The velocity of the water through the consolidated intergranular aquifers is relatively low (Gehlin and Hellström, 2003) and not captured in the timescales being investigated for gauged flow in this paper. Area, longest drainage path and drainage path length showed no significant difference between the clusters due to the flow data being standardised. Woodland also does not distinguish between the clusters and is not correlated with any of the driving characteristics (Figure 6). Therefore these characteristics are not expected to influence the shape of a semi-variogram (Figure 4).

The inter-quartile ranges of all the catchment characteristics in Figure 6 overlap; suggesting that no single catchment characteristic fully describes the temporal dependence structure,
which underlines the importance of a multivariate approach. As such, quadratic discriminant analysis was used to investigate how accurately the catchment characteristics could be used to cluster the catchments into the clusters derived from the semi-variograms. Assessing new (validation) catchments, based on the catchment characteristics provided an indication of how accurately these models could be applied to un-gauged catchments (benefit 2). Model 5 was deemed to be the best model and successfully clustered most of benchmark and validation catchments. All but one of the misclassified catchments were predicted to be in an adjacent cluster (Table 6), this could be caused by overlap between the clusters (Figure 4).

As previously discussed arable land is not likely to be the driver behind the different dependence structures exhibited by the catchments. Arable is highly correlated with high elevation (-0.73) and peat soils (-0.66) which drive PROPWET (-0.8 correlation with arable) and is correlated with F-high (0.6) which indicates a large amount of storage in rocks which also have pathways which enable relatively quick flow. Therefore, arable land (in the UK) is characterising low, well drained land (particularly separating clusters 1 and 2 from 3 and 4). The percentage of no gleying soil is the second best characteristic at differentiating between the clusters and is highly correlated (0.88) with BFIHOST indicating that it is representing the storage in the catchment, particularly separating cluster 4 from the rest. Other key catchment characteristics included soil type and slope which describe the residuals left after the percentage of arable land and the percentage of no gleying soils have been used to discriminate between the clusters and mainly help to discriminate between clusters 1 to 3.

Models which excluded land use characteristics were developed (as arable is not temporally stable). Except for models 4 and 5 there was a large decrease between the percentage of correctly clustered catchments for both the validation and benchmark data sets (Tables 4 and 7). In the models, arable land was replaced with drainage path slope (the variable used in the discriminant analysis which is most correlated with arable). However, drainage path slope is less correlated with BFIHOST than arable, indicating that storage is not as well characterised.

Conclusion

This study has developed a novel technique to classify catchments into clusters based on the temporal dependence structure of daily flow data using semi-variograms. The clusters were then investigated in the context of identifying the catchment characteristics which moderate the precipitation to flow relationship implicit in the semi-variogram structure. Semi-variograms have the advantage over other techniques for indexing dependence of being able to handle missing data and being calculated from raw data, rather than having to calculate indicators from the discharge data (e.g. annual or seasonal averages, minimum / maximum flows). Therefore, this technique could be applied to any set of catchments for which daily flow data are available, including sites with incomplete data coverage. The results show that clustering the catchments based on the semi-variogram is an effective way to obtain separate groups of catchments based on their catchment function and not a specific aspect of the flow regime; this method could provide a useful basis for future catchment typologies.
Four clusters best represented the range of temporal dependence structures found in the UK. Catchments with characteristics indicative of fast flow paths and low storage (i.e. upland catchments) resulted in semi-variograms with a large gradient, levelling off after a few weeks. In contrast, catchments with characteristics which enable water to infiltrate deep into the soil / rock have a small gradient and do not level off within 90 days (benefit 3, improving knowledge about drivers). The key catchment characteristics able to discriminate between catchments with different controls on the precipitation to flow relationship (pathways and storage) were found to be: percentage of arable land, depth to gleyed layer in soils, slope, PROPWET, BFI, percentage of highly productive fractured rock and elevation. It is likely that arable land is not a driver behind the different clusters per se, but a surrogate for a combination of other characteristics (elevation, PROPWET and peat soils) which drive infiltration and hence the precipitation to flow relationship.

This paper also demonstrated that using a combination of catchment characteristics enables un-gauged catchments to be classified into clusters; consequently the shape of the (semi-)variogram can be estimated. The preferred model (Model 5) with 5 variables (arable land, depth to gleyed layer (x3) and drainage path slope) correctly clustered 70.7-72.4 % and 69.4-71.4 % of the benchmark and validation catchments, respectively, depending on whether land cover parameters were excluded. This study found the amount of arable land in a catchment to be a useful characteristic for distinguishing between the clusters. However, as arable land is not temporally stable, values from different time periods could provide different results.

This method is valuable for transferring information about the precipitation to flow relationship from gauged to un-gauged catchments (benefit 2). This could be expanded upon in future work to enable predictions of regime characteristics at un-gauged sites to be made. In addition, ongoing work by the authors assessing will use this temporal dependence approach to assess the impact catchment characteristics have on moderating the non-stationary of hydrological regimes (benefit 4); catchment properties will likely have major influence on the response of river flow regimes to climate variability (e.g. Laizé and Hannah (2010)) and future anthropogenic climate change (Prudhomme et al., 2013).

References

Köplin N, Schädler B, Viviroli D, Weingartner R. 2012. Relating climate change signals and
physiographic catchment properties to clustered hydrological response types. Hydrol Earth
Syst Sc, 16: 2267-2283. DOI: 10.5194/hess-16-2267-2012.

Hydrol, 389: 186-204. DOI: 10.1016/j.jhydrol.2010.05.048.

& Hydrology. 210pp

Masicek T, Toman F, Vicanova M. 2012. Comparison of infiltration capacity of permanent grassland
and arable land during the 2011 growing season. ACTA UNIVERSITATIS AGRICULTURAE ET
SILVICULTURAE MENDELIANA BRUNENSENSIS, 60: 257-266.

McMillan H, Krueger T, Freer J. 2012. Benchmarking observational uncertainties for hydrology:
rainfall river discharge and water quality. Hydrol. Process. 26: 4078-4111
DOI: 10.1002/hyp.9384.

Symposium on Spatial Data Handling, 1: 250-262.

Prudhomme C, Kay AL, Crooks S, Reynard N. 2013. Climate change and river flooding: Part 2
sensitivity characterisation for british catchments and example vulnerability assessments.

Ragab R, Cooper JD. 1993. Variability of unsaturated zone water transport parameters: implications
http://dx.doi.org/10.1016/0022-1694(93)90255-8.

frequency estimation. Institute of Hydrology, UK.

analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrol

Catchment Scale. DOI: 10.1002/0470848944.hsa012.

Skøien JO, Blöschl G, Western AW. 2003. Characteristic space scales and timescales in hydrology.

Szolgayova E, Laaha G, Blöschl G, Bucher C. 2013. Factors influencing long range dependence in

Wagener T, Sivapalan M, Troch PA, McGlynn BL, Harman CJ, Gupta HV, Kumar P, Rao PSC, Basu NB,

Yadav M, Wagener T, Gupta H. 2007. Regionalization of constraints on expected watershed response
DOI: 10.1016/j.advwatres.2007.01.005.
Tables and figure captions:

Figure 1. Location of the 116 benchmark catchments (black) and the 49 validation catchments (grey) used in this study.

Figure 2. Range and sill for a theoretical semi-variogram.

Figure 3. Location of the catchments in the four clusters.

Figure 4. Semi-variograms from daily river flow for the four identified clusters with the 95% confidence intervals (dark shaded area) and the upper and lower bounds of each cluster (light shaded area).

Figure 5. Semi-variograms from daily precipitation data for the four identified clusters with the mean of each cluster (line) and the 95% confidence intervals (shaded area).

Figure 6. Box plots of characteristics which differ between all four clusters. Thick black line is the median value. Box shows the inter-quartile range. Black whiskers represent 1.5 times the inter-quartile range. Blue and red lines show the upper and lower 90% confidence intervals respectively and the circles show outliers.

Figure 7. Box plots of characteristics which differ between two or three clusters, as in Figure 6.

Figure 8. Box plots of characteristics which do not differ between clusters, as in Figure 6.
Figure 9. Correlations between the different catchment characteristics shown as scatter plots with locally weighted smoothed red line and histograms showing the distribution of the catchment characteristics. Correlation values are calculated using Spearman’s rank ranging from negative one to positive one.

Table 1: Summary of the catchment characteristics investigated.

<table>
<thead>
<tr>
<th>Catchment Characteristic</th>
<th>Abbreviation</th>
<th>Units</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude(_{(e)})</td>
<td>N/A</td>
<td>m</td>
<td>Altitude of the gauging station to the nearest datum* (derived using IHDTM**).</td>
<td>3</td>
<td>356</td>
<td>60</td>
<td>35</td>
</tr>
<tr>
<td>Elevation 10(_{(e)})</td>
<td>Elv-10</td>
<td>m</td>
<td>Height above datum* below which 10% of the catchment lies (derived using IHDTM**).</td>
<td>9</td>
<td>408</td>
<td>114</td>
<td>92</td>
</tr>
<tr>
<td>Elevation 50(_{(e)})</td>
<td>Elv-50</td>
<td>m</td>
<td>As above but for 50%</td>
<td>20</td>
<td>604</td>
<td>198</td>
<td>164</td>
</tr>
<tr>
<td>Elevation 90(_{(e)})</td>
<td>Elv-90</td>
<td>m</td>
<td>As above but for 90%</td>
<td>52</td>
<td>889</td>
<td>316</td>
<td>279</td>
</tr>
<tr>
<td>Elevation max(_{(e)})</td>
<td>Elv-M</td>
<td>m</td>
<td>As above but for the maximum value</td>
<td>68</td>
<td>1309</td>
<td>484</td>
<td>470</td>
</tr>
<tr>
<td>Woodland(_{(Lc)})</td>
<td>Wood</td>
<td>%</td>
<td>Amount of the catchment covered by woodland. Calculated from CEH land cover maps 2000. This is an aggregation of: broad-leaved / mixed woodland and coniferous woodland.</td>
<td>0</td>
<td>49</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Arable(_{(Lc)})</td>
<td>N/A</td>
<td>%</td>
<td>As above but using an aggregation of: arable cereals, arable horticulture and arable non-rotational.</td>
<td>0</td>
<td>86</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Grassland(_{(Lc)})</td>
<td>Grass</td>
<td>%</td>
<td>As above but using an aggregation of: improved grassland, neutral grassland, set-aside grassland, bracken, calcareous grassland, acid grassland and fen, marsh and swamp.</td>
<td>6</td>
<td>96</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>Urban(_{(Lc)})</td>
<td>N/A</td>
<td>%</td>
<td>As above but using an aggregation of: suburban, urban and inland bare ground.</td>
<td>0</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Area(_{(FEH)})</td>
<td>N/A</td>
<td>Km(^2)</td>
<td>Area of the catchment calculated using the CEH’s Digital Terrain Model (IHDTM**)</td>
<td>3.07</td>
<td>1500</td>
<td>227.6</td>
<td>108.5</td>
</tr>
<tr>
<td>Drainage path slope(_{(FEH)})</td>
<td>DPS</td>
<td>m Km(^{-1})</td>
<td>Mean drainage path slope calculated from the mean of all inter-nodal slopes (derived using IHDTM**).</td>
<td>12</td>
<td>309</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>PROPWET<sub>(FEH)</sub></td>
<td>P-WET</td>
<td>%</td>
<td>Proportion of the time soils are wet (defined as a soil moisture deficit of less than 6mm).</td>
<td>23</td>
<td>83</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Flood plain extent(FEH)</td>
<td>FPext</td>
<td>Ratio</td>
<td>Proportion of the floodplain which would be covered by the 1 in 100 year flood event.</td>
<td>0.008</td>
<td>0.226</td>
<td>0.064</td>
<td>0.0517</td>
</tr>
<tr>
<td>Longest drainage path(FEH)</td>
<td>LDP</td>
<td>Km</td>
<td>Longest drainage path from a catchment node to the defined outlet.</td>
<td>4.01</td>
<td>116.0</td>
<td>33.49</td>
<td>27.76</td>
</tr>
<tr>
<td>Drainage path length(FEH)</td>
<td>DPL</td>
<td>Km</td>
<td>Mean drainage path length from the distances between all nodes and the catchment outlet.</td>
<td>2.04</td>
<td>60.39</td>
<td>17.78</td>
<td>14.96</td>
</tr>
<tr>
<td>FARL(FEH)</td>
<td>N/A</td>
<td>Ratio</td>
<td>Flood attenuation attributed to reservoirs and lakes.</td>
<td>0.664</td>
<td>1.000</td>
<td>0.979</td>
<td>0.992</td>
</tr>
<tr>
<td>BFIHOST(St)</td>
<td>BFI-H</td>
<td>ratio</td>
<td>Area-weighted base flow index derived using the Hydrology Of Soil Types (HOST) classification.</td>
<td>0.24</td>
<td>0.95</td>
<td>0.5</td>
<td>0.48</td>
</tr>
<tr>
<td>BFI(St)</td>
<td>N/A</td>
<td>ratio</td>
<td>Calculated from mean daily flow data using the method outlined in Gustard et al. (1992)</td>
<td>0.16</td>
<td>0.96</td>
<td>0.5</td>
<td>0.48</td>
</tr>
<tr>
<td>HOST no gleying(s)</td>
<td>S-no</td>
<td>%</td>
<td>Percentage of the catchment made up of classes: 1 to 8, 16 and 17.</td>
<td>0</td>
<td>98</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>HOST gleyed between 40 and 100cm(s)</td>
<td>S-deep</td>
<td>%</td>
<td>Percentage of the catchment made up of classes: 13 and 18 to 23</td>
<td>0</td>
<td>99</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>HOST gleyed within 40cm(s)</td>
<td>S-shal</td>
<td>%</td>
<td>Percentage of the catchment made up of classes: 9,10,14,24 and 25.</td>
<td>0</td>
<td>93</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>HOST peat(s)</td>
<td>peat</td>
<td>%</td>
<td>Percentage of the catchment made up of classes: 11,12,15 and 26 to 29.</td>
<td>0</td>
<td>90</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>Fracture High(g)</td>
<td>F-High</td>
<td>%</td>
<td>Percentage of the catchment underlain by highly productive fractured rocks.</td>
<td>0</td>
<td>100</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Fracture Medium(g)</td>
<td>F-Med</td>
<td>%</td>
<td>Percentage of the catchment underlain by moderately productive fractured rocks.</td>
<td>0</td>
<td>100</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Fracture Low(g)</td>
<td>F-Low</td>
<td>%</td>
<td>Percentage of the catchment underlain by low productivity fractured rocks.</td>
<td>0</td>
<td>100</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>Intergranular High(g)</td>
<td>I-High</td>
<td>%</td>
<td>Percentage of the catchment underlain by highly productive intergranular rocks.</td>
<td>0</td>
<td>42</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Intergranular Medium\textsubscript{(g)} & I-Med & % & Percentage of the catchment underlain by as moderately productive intergranular rocks. & 0 & 71 & 5 & 0 \\

<table>
<thead>
<tr>
<th>Cluster number</th>
<th>Nugget</th>
<th>Partial sill</th>
<th>Range (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0186</td>
<td>0.67</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>0.0099</td>
<td>0.54</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>0.0088</td>
<td>0.48</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>0.0075</td>
<td>0.32</td>
<td>172</td>
</tr>
</tbody>
</table>

Intergranular Low\textsubscript{(g)} & I_Low & % & Percentage of the catchment underlain by low productivity intergranular rocks. & 0 & 11 & 0 & 0 \\

<table>
<thead>
<tr>
<th>Cluster number</th>
<th>Nugget</th>
<th>Partial sill</th>
<th>Range (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0186</td>
<td>0.67</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>0.0099</td>
<td>0.54</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>0.0088</td>
<td>0.48</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>0.0075</td>
<td>0.32</td>
<td>172</td>
</tr>
</tbody>
</table>

No Groundwater \textsubscript{(g)} & No-G & % & Percentage of the catchment underlain by rocks classed as having essentially no groundwater. & 0 & 100 & 11 & 0 \\

* Datum refers to Ordnance datum or, in Northern Ireland, Malin Head Datum.

Table 2. Characteristics of the variogram models fitted to the mean of each cluster.

Table 3. Transformations applied to each catchment characteristics in order to create a normal distribution.
Table 4. Different discriminant models and the percentage of catchments which were correctly classified by using the catchment characteristics. Shaded cells show the catchment characteristics included in the model.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elev 10</td>
<td>\sqrt{x}</td>
</tr>
<tr>
<td>Woodland</td>
<td>$\sqrt[3]{x}$</td>
</tr>
<tr>
<td>Arable</td>
<td>$\sqrt[3]{x}$</td>
</tr>
<tr>
<td>Grassland</td>
<td>$\sqrt[3]{x}$</td>
</tr>
<tr>
<td>Area</td>
<td>$\ln(x)$</td>
</tr>
<tr>
<td>DPS</td>
<td>$\sqrt[3]{x}$</td>
</tr>
<tr>
<td>FPext</td>
<td>$\ln(x)$</td>
</tr>
<tr>
<td>LDP</td>
<td>$\ln(x)$</td>
</tr>
<tr>
<td>DPL</td>
<td>$\sqrt[5]{x}$</td>
</tr>
<tr>
<td>No Gleying soils</td>
<td>$\sqrt[3]{x}$</td>
</tr>
<tr>
<td>Gleying 40-100cm</td>
<td>$\sqrt[3]{x}$</td>
</tr>
<tr>
<td>Gleying <40cm</td>
<td>$\sqrt[3]{x}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model number</th>
<th>Number of variables</th>
<th>% classified correctly</th>
<th>% validated correctly</th>
<th>Wood</th>
<th>DPL</th>
<th>Area</th>
<th>Grass</th>
<th>Elev-10</th>
<th>LDP</th>
<th>FPext</th>
<th>DPS</th>
<th>Gleyed less than 40cm</th>
<th>Gleyed between 40 and 100cm</th>
<th>No gleyed soil</th>
<th>Arable</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>89.7</td>
<td>32.7</td>
<td>Green</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>89.7</td>
<td>30.6</td>
<td>Green</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>87.9</td>
<td>57.1</td>
<td>Green</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>86.2</td>
<td>63.3</td>
<td>Green</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>81.9</td>
<td>53.1</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>80.1</td>
<td>57.1</td>
<td>Green</td>
</tr>
</tbody>
</table>
Table 5. Variables and associated coefficients used in Model 5 to classify the catchments based on their catchment characteristics.

<table>
<thead>
<tr>
<th>Arable</th>
<th>No Gleying</th>
<th>Gleyed <40</th>
<th>Gleyed <100cm</th>
<th>DPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 5 (eq1)</td>
<td>1.12</td>
<td>0.25</td>
<td>-0.44</td>
<td>-0.37</td>
</tr>
<tr>
<td>Model 5 (eq2)</td>
<td>0.09</td>
<td>-0.19</td>
<td>0.83</td>
<td>0.51</td>
</tr>
<tr>
<td>Model 5 (eq3)</td>
<td>-0.91</td>
<td>0.51</td>
<td>0.46</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Table 6. Confusion matrix showing benchmark and validation (in brackets) catchments in each cluster after clustering using the catchment characteristics in model 5.

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>27 (11)</td>
<td>10 (2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>6 (3)</td>
<td>23 (6)</td>
<td>4 (3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>1 (0)</td>
<td>8 (6)</td>
<td>19 (10)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>15 (9)</td>
</tr>
</tbody>
</table>

Table 7. Discriminant models and the percentage of catchments which were correctly classified, Shaded cells show the catchment characteristics which were included in the model.
<table>
<thead>
<tr>
<th>Model number (number of variables)</th>
<th>% classified correctly</th>
<th>% validated correctly</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>79.3</td>
<td>20.6</td>
</tr>
<tr>
<td>8</td>
<td>80.1</td>
<td>20.6</td>
</tr>
<tr>
<td>7</td>
<td>78.4</td>
<td>55.1</td>
</tr>
<tr>
<td>6</td>
<td>76.7</td>
<td>55.1</td>
</tr>
<tr>
<td>5</td>
<td>70.7</td>
<td>69.4</td>
</tr>
<tr>
<td>4</td>
<td>69.8</td>
<td>69.4</td>
</tr>
<tr>
<td>3</td>
<td>66.4</td>
<td>63.2</td>
</tr>
<tr>
<td>2</td>
<td>66.4</td>
<td>67.3</td>
</tr>
<tr>
<td>1</td>
<td>38.7</td>
<td>40.8</td>
</tr>
</tbody>
</table>