Understanding the relationship between physical activity and physical self-perception in adolescent females: the role of body image

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This paper was published in the journal International Journal of Sport Psychology.

Metadata Record: https://dspace.lboro.ac.uk/2134/21019

Version: Accepted for publication

Publisher: Edizioni Luigi Pozzi s.r.l.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Understanding the Relationship between Physical Activity and Physical Self-perception in Adolescent Females: the Role of Body Image

Juan Gregorio Fernández-Bustos*

University of Castilla-La Mancha, Faculty of Education. Physical Education Department, Edificio Simón Abril, Plaza de la Universidad 3, 02071, Albacete, Spain.

JuanG.Fernandez@uclm.es

Irene González-Martí **

University of Castilla-La Mancha. Faculty of Education. Physical Education Department, Edificio Fray Luis de León, Avenida de los Alfares 42, 16071, Cuenca, Spain.

Onofre Ricardo Contreras Jordán*

Anthony Paphthomas***

Loughborough University, School of Sport, Exercise and Health Sciences. Loughborough. Leicestershire. Ashby Road LE11 3TU

Ricardo Cuevas Campos****

University of Castilla-La Mancha. Faculty of Education. Physical Education Department, Ronda de Calatrava 3, 13071, Ciudad Real, Spain.

Correspondence concerning this article should be addressed to Juan Gregorio Fernández-Bustos University of Castilla-La Mancha, Faculty of Education. Physical Education Department, Edificio Simón Abril, Plaza de la Universidad 3, 02071, Albacete, Spain. Tlf. +34 967599200 ext. 8282 E-mail: JuanG.Fernandez@uclm.es
Abstract

The aim of this study was to explore the role of body image concern in the relationship between physical activity and physical self-concept. A total of 441 Spanish adolescent college females aged 12 to 17 completed the Physical Self-Concept Questionnaire (CAF), the Body Shape Questionnaire (BSQ) and Gardner’s Scale for the Assessment of Body Image. Data on body mass index (BMI) and participation in physical activity were also collected. The results showed a positive relationship between physical activity and physical self-concept with all its subdimensions, as well as general self-concept. This relationship was notably higher in the absence of body image concern. However, no relationship was found between exercise and the subdimension of body attractiveness in the case of adolescents who were dissatisfied with their bodies. This emphasizes the importance of a healthy body image in shaping an adolescent female’s self-concept.

Keywords: body image, physical self-concept, physical activity, adolescence, female
Understanding the Relationship between Physical Activity and Physical Self-perception in Adolescent Females: the Role of Body Image

Body image is a complex construct that includes perceptions, attitudes and thoughts over one’s own body (Baile, Raich, & Garrido, 2003). Adolescence is a critical life stage with regards to body image concerns (Hermes & Keel, 2003), particularly amongst women (Ålgars, Santtila, & Sandnabb, 2010). Puberty-related body changes, the onset of romantic relationships and a growing awareness of a culturally slim ideal make female adolescents especially sensitive to body image concerns (Bell & Dittmar, 2011). During adolescence a positive body image is associated with greater relationship confidence (Markey & Markey, 2006), improved social status (Eisenberg, Neumark-Sztainer, Haines, & Wall, 2006) and heightened self-concept and self-esteem (van den Berg, Mond, Eisenberg, Ackard, & Neumark-Sztainer, 2010). In contrast, female adolescents who possess a negative body image are more likely to experience low self-concept, depression (Stice & Bearman, 2001) and the onset of eating disorders (Rodríguez-Fernández & Goñi, 2012).

Physical self-concept, as defined by Fox (1997), is a broader construct than body image. According to Fox’s model, the four subdimensions of sport competence, physical condition, strength and body attractiveness contribute to one’s physical self-concept. This physical self-concept is itself a subdomain of overall or global self-concept. It is directly related to numerous positive health outcomes such as a physically active lifestyle, psychological wellbeing, and life satisfaction (Goñi, Rodriguez, & Esnaola, 2010). As such, physical self-concept is widely considered to be a crucial dimension in shaping an adolescent’s global self-concept (Harter, 1999). Like body image, physical self-concept is subject to sociocultural influences from the mass media, family environment and peers (Rodríguez-Fernández, González, & Goñi-Grandmontagne, 2013).
Numerous studies have explored the relationship between physical activity levels and
genital and physical self-concept. Meta-analyses have shown that, independent of age and
gender, physical activity produces moderate and measurable effects on self-concept (Spence,
McGannon, & Poon, 2005; Spence, Poon, & Duck, 1997). Moreover, from the
multidimensional and hierarchical structure of self-concept, physical self-concept would be a
halfway dimension between exercise and global self-concept (Sonströem, 1997). In terms of
the relationship between physical self-concept and physical activity participation, it appears
that regular physical exercise has positive effects over perceptions of sport competence,
physical condition and strength (Contreras, Fernández-Bustos, García, Palou, & Ponseti,
2010; Moreno, Cervelló, & Moreno, 2008). Although some studies maintain that the
subdomain of body attractiveness is positively correlated with physical activity (González &
Alvariñas, 2004), others argue that there is no physical activity-physical attractiveness
relationship (Goñi, Ruiz de Azúa, & Rodriguez, 2004; Hayes, Crocker, & Kowalski, 1995;
Marsh, 1997). Further, it has also been stated that regular physical activity is associated with
low perceptions of attractiveness as it is the desire to improve body attractiveness that
motivates physical activity participation (Esnaola, 2004).

With regards to the physical activity-body image relationship, several studies have
shown a positive link between physical activity and body satisfaction (Campbell &
Hausenblas, 2009), although most of them only found this positive relationship in men
(Hausenblas & Fallon, 2006). In contrast, some scholars have found an association between
physical activity and increased body dissatisfaction (Davis et al., 1997; Tata, Fox, & Cooper,
2001; Wichstrom, 1995). These conflicting findings may be explained as a consequence of
differences between study groups. For example, physical activity is likely to lead to greater
body satisfaction improvements in groups with a higher baseline level of body dissatisfaction.
The type of physical activity practiced may also have an important role on these differences (Camacho, Fernández, & Rodríguez, 2006; Sundgot-Borgen & Torsveit, 2004).

Research has seldom addressed the relationship between physical self-concept, body image and physical activity. Nevertheless, studies agree that a strong relationship exists between body dissatisfaction and low perceptions of body attractiveness, physical self-concept and general self-concept (Baile, Raich, & Garrido, 2003; Goñi & Rodríguez, 2004). Esnaola (2005) sought to relate physical self-concept to body image between physically active and physically inactive participants; yet he did not find any differences between body attractiveness and body satisfaction between groups.

According to Fernández-Bustos, Contreras, Garcia and González (2010), the absence of a relationship between physical activity and improved perceptions in attractiveness, may be due to the motivations that lead many female adolescents to participate in certain types of physical activities. Specifically, the primary motivation for some female adolescents might be improving their physical appearance rather than the intrinsic value of the activity itself. It is likely that such individuals possess an existing preoccupation with appearance and a poor global self-concept (Furnham, Badmin, & Sneade, 2002), which in turn is caused by body dissatisfaction (Lepage & Crowther, 2010). On the other hand, female adolescents motivated by health benefits or fun, may possess a heightened physical and global self-concept (Fernández-Bustos et al., 2010), as well as improved body satisfaction (Lepage & Crowther, 2010). Body dissatisfaction, hence, would be closely linked to physical self-concept, physical activity motivations, and the type of physical activity chosen (Fernández-Bustos et al., 2010).

Given these conflicting findings, this study aims to verify and deepen the understanding of the relationship between physical activity, physical self-concept and body
satisfaction in female adolescents. Previous studies assessed either the relationship between exercise and physical self-concept, or exercise and body image, without considering the subject’s prior worries or dissatisfaction as an influencing variable. Therefore, the primary objective of the study is to explore the influence of physical activity on physical self-concept and its respective subdomains, while considering body satisfaction as an independent variable. Specifically, we seek to assess the extent to which body satisfaction/dissatisfaction influences the relationship between physical activity and physical self-concept. The hypothesis is that whether women are satisfied or dissatisfied with their body image, those who regularly take part in physical activity will have better physical perceptions and self-concept. Also included within this hypothesis is the possibility that among the women concerned about their body image, there are no differences regarding perceptions of physical attractiveness between those physically active and those not. Additionally, the second objective of this research was to measure the importance of physical exercise in comparison with other variables such as body satisfaction and BMI in building physical and general self-concept. The hypothesis states that the most important variable in building self-concept in the adolescent female is body satisfaction but that physical activity is important in the perceptions of physical condition, sports ability and strength.

Method

Participants

A total of 441 students aged 12 to 17 took part in the present study \(M = 14.57; DT = 1.51\). The research was conducted at a Spanish Compulsory Secondary Education School and 1º Bachillerato School. The number of participants equates to almost the entire female schooled population between these ages in the town of La Roda, in Albacete, Spain. The participants were classified as active or non-active according to their level of participation in
physical sporting activities. Females who exercised at least twice a week for a minimum of 50 minutes each session were considered active. The two months prior to data collection was taken into account for this classification.

Instruments

The Questionnaire of Physical Self-concept (CAF) by Goñi, Ruiz de Azúa and Rodríguez (2006) was utilized to assess physical self-concept. This CAF is based on Fox’s (1997) model and it is the only Spanish physical self-concept questionnaire not translated from another language. It consists of 36 items divided into four specific subscales that correspond to the four subdomains of physical self-concept (*physical attractiveness*, *physical ability*, *physical condition* and *strength*). Answers are obtained by a 5-point Likert-type scale, ranging from 1 (*false*) to 5 (*true*). The score of each scale is calculated by the sum of the items score within any given scale. The questionnaire reliability coefficient (alpha Cronbach) is $\alpha = .93$. A description of the Physical Self-concept dimensions of the CAF and the reliability of each one (Goñi, Ruiz de Azúa, & Rodríguez, 2006) is as follows:

1. **Sports competence.** Perception of personal qualities (e.g. “I am good; I have qualities”) and abilities (e.g. “I see myself as able”; “I see myself as self-confident”) and a predisposition to sports. For example: I am good at sports. Reliability of this scale was $\alpha = .84$

2. **Physical condition.** Physical condition and form; confidence in own fitness. For example: I am in good physical shape. Alpha Cronbach $\alpha = .88$

3. **Physical attractiveness.** Perception of own physical appearance; self-assured and satisfied with the body image. For example: I feel confident with the body image I convey. Scale’s reliability $\alpha = .87$
4. **Strength.** Sees oneself and/or feels strong, with the ability to lift weights, feels confident with doing exercises that require strength and a predisposition to carry out such exercises. For example: I feel strong. Reliability $\alpha = .83$.

5. **General Physical Self-concept.** Positive opinion and feelings (happy, satisfied, proud and confident) regarding Physical self-concept. For example: Physically I feel good. Alpha Cronbach coefficient $\alpha = .86$.

6. **General Self-concept.** Self-satisfied and satisfied with life in general. For example: I feel happy. $\alpha = .84$.

Body dissatisfaction was assessed with two instruments. The first one called Body Shape Questionnaire (BSQ, adapted by Raich et al., 1996) was used to assess the cognitive and behavioural component of body image. The original source was designed by Cooper, Taylor, Cooper, and Fairburn (1987) to measure body dissatisfaction in the female population, together with the fear of weight gain, the negative aversion of one’s own physical appearance, with the consequent avoidance of situations where physical appearance might be an issue so as not to draw attention to themselves and the desire to reduce weight. The BSQ is a self-administered questionnaire which consists of 34 items, with 6-points of Likert-type scale ($1 = \text{never}$, $2 = \text{rarely}$, $3 = \text{sometimes}$, $4 = \text{often}$, $5 = \text{very often}$, $6 = \text{always}$). From the total score obtained, it is possible to establish four categories: no concern about body image (score < 81), slight concern (score between 81 and 110), moderate concern (score between 111 and 140) and extreme concern (score > 140) (Cooper & Taylor, 1988). The measure possesses an internal consistency of $\alpha = .95$.

The perceptive component was assessed by using Gardner’s Scale of Evaluation of Body Image (Gardner, Stark, Jackson, & Freedman, 1999) adapted for a Spanish speaking population (Rodríguez, Beato, Rodríguez, & Martínez-Sánchez, 2003). The figural drawing
scale is formed by 13 silhouettes which represent body contours devoid of any human body attributes (e.g. hair, face, etc.). The body figures were designed according to statistics of National Health Centre of the United States, in such a way that the average body shape and size represents the average weight for the reference population. Gradual modifications were made on both sides of the central figure to increase or reduce the volume + and – 30% of the total volume so as to create six figures on each side representing a 5% increasing weight on the right side and a 5% decreasing weight on the left side. The result is a continuum of body shapes whose ends represent both an extremely lean figure at one end and an overweight figure at the other. The scale allows for self-estimation of the individual’s actual body size and the ideal one (in other words, the perceived size and the assessment of their ideal size figure). Any difference between both would correspond to the discrepancy between the desired body size and what is actually perceived by the individual. The greater the discrepancy, the higher the body dissatisfaction. Whereas the central figure represents 0 value, the figures on the left are given negative values (from -1 to -6) and the figures on the right positive ones (from +1 to +6). The deviation value between desired-perceived figure is measured by subtracting the figural drawing matching the ideal size the participant would like to have from the actual size they perceive themselves (the value of desired body size and the perceived one). Hence, whilst positive values within the perceived discrepancy indicate that the individual desires to gain weight, negative values indicate desire to lose weight.

Finally, individual measurements of weight and height were gathered to calculate BMI; all this following ISAK standardized guidelines by a level 1 ISAK researcher. To measure weight, a calibrated digital scale was used, brand Tanita, model UM-075, (with a sensibility of 0.1 kg); on other hand, a 2 meter altimeter, brand Holtex was utilized to measure height.
Additionally, to classify the participants as active or inactive, the following question was included:

Without including Physical Education classes, have you taken part in any physical activity for more than one hour a week, in a regular manner, during the past two months? (playing sports, jogging, dancing, cycling, etc).

a) Yes, I have practiced for more than one hour every week.
b) No I have not practiced regularly, or have practiced for less than one hour a week.
c) No, I never practice when I am not in the Physical Education classes.

We considered participants ‘active’ if they had selected option a) and ‘inactive’ if they had selected options b) or c).

Procedure

Full University ethical approval was granted prior to commencement of data collection. Informed consent was gathered from all relevant parties, including the participating colleges, parents and the students themselves. Female volunteer students completed the questionnaires in groups of 20-30. Two qualified researchers administered the questionnaire in a classroom large enough for the participants to be sufficiently separated so that responses remained anonymous and confidential. Guidelines to complete the questionnaires correctly were given in advance and participants were reminded of the importance of reading items carefully and responding with honesty. To avoid social desirability in the answers, the participants were informed that the questionnaire was totally anonymous, and that its completion was not identifiable. All data was inputted into a database created in statistical package SPSS version 19.0.
Results

Table 1 compares the average BSQ scores for physically active and inactive female adolescents. Participants who had lower BSQ scores, whether physically active or inactive, showed better perceptions in all the scales studied except for strength ($F = 3.74 \ p > 0.5$).

These differences were more important in attractiveness, general physical self-concept and general self-concept. Furthermore, where physically active female adolescents showed different results on specific scales ($competence \ F = 45.01 \ p < .001; \ physical \ condition \ F = 50.96 \ p < .001; \ attractiveness \ F = 144.82 \ p < .001; \ strength \ F = 10.54 \ p = .001$); non-practitioners showed more differences in general scales ($general \ physical \ self-concept \ F = 144.07 \ p < .001; \ general \ self-concept \ F = 120.61 \ p < .001$).

Results also showed that the female adolescents who engaged in physical activity on a regular basis obtained higher scores in all the scales compared to those who did not engage in any physical activity, regardless of their concern about body image. These differences were significant in all cases within the group satisfied with their bodies, especially in $competence \ (F = 78.58 \ p < .001)$ and $physical \ condition \ (F = 80.81 \ p < .001)$. On the other hand, within the group who showed body dissatisfaction, the differences between active and inactive participants were smaller and were significant for $competence \ (F = 12.12 \ p = .001)$, $condition \ (F = 11.58 \ p = .001)$, $strength \ (F = 4.48 \ p < .05)$ and $general \ self-concept \ (F = 3.92 \ p < .05)$.

Table 1. CAF scores in terms of body satisfaction with CI and practice

Table 2 details participants’ Questionnaire of Physical Self-Concept scores. The results show the discrepancy between perceived body figure and ideal body figure for active and inactive participants. Participants who presented a negative discrepancy showed lower self-perception of body image in all the scales, independently of the practice of physical activity.
activity, than girls who either did not present any discrepancy at all or whose self-perception was positive. The differences in score were significant in all cases except in competence ($F = 2.19 \ p > .05$) and strength ($F = .83 \ p > .05$) amongst those who did not practice PA. Likewise, these differences were more marked in the scales of attractiveness, general and physical self-concept, and even more striking in girls who practice physical activity. In general, physically active female adolescents consistently showed better perceptions than passive female adolescents, especially those whose perceived body matched their desired body. The differences in self-perceptions between active and inactive girls were greater in sport competence (negative discrepancy $F = 26.48 \ p < .001$; Satisfaction $F = 39.36 \ p < .001$; positive discrepancy $F = 33.96 \ p < .001$); and physical condition (negative condition $F = 24.14 \ p < .001$; Satisfaction $F = 46.89 \ p < .001$; positive Discrepancy $F = 33.35 \ p < .001$) though smaller in attractiveness (Satisfaction $F = 4.81 \ p < .05$; positive Discrepancy $F = 4.63 \ p < .05$) and general physical self-concept (negative Discrepancy $F = 5.96 \ p < .05$; Satisfaction $F = 6.69 \ p < .05$; positive discrepancy $F = 9.86 \ p < .01$). Regarding attractiveness, statistical significance was not found in the group with negative discrepancy.

To understand how much each of the scales of CAF is influenced by every independent variable (practice, body satisfaction, BMI and discrepancy), a multiple regression analysis is carried out for each of the dependent variables. As Table 3 shows, the sport participation has a significant influence on the variance of each and every scale; but particularly on competence ($t = 8.62 \ p < .001$), physical condition ($t = 8.55 \ p < .001$) and strength ($t = 5.65 \ p < .001$).
Body dissatisfaction as measured by BSQ also has a relevant influence over all the dimensions of physical and general self-concept. This relationship is always negative and very important as far as attractiveness ($t = -13.66 \ p < .001$); general physical self-concept ($t = -14.30 \ p < .001$) and general self-concept ($t = -12.58 \ p < .001$) are concerned.

BMI has a positive effect on the perception of strength ($t = 6.07 \ p < .001$), whereas it impacts negatively on the perception of attractiveness ($t = -2.04 \ p < .05$). Moreover, discrepancy seems to have no significant impact on the proposed regression models, being general physical self-concept ($t = -2.07 \ p < .05$) the only predictor factor. It is otherwise noteworthy that the multiple regression model (physical activity, dissatisfaction assessed by BSQ, BMI and discrepancy of perceived-desired body) would also explain the 58% of the variance of general physical self-concept, 54% of attractiveness and 48% of general self-concept. However, specific scales of competence, physical condition and strength would only account for 28, 31 and 18%, respectively.

Table 3. Analysis of regression in terms of practice, BSQ, BMI and body discrepancy

Discussion

The main goal of this investigation is to study the importance of body satisfaction in the relationship between physical activity and physical self-concept. This was measured by conducting two analyses. One included independent variables such as physical in/activity, and concern/no concern about body image was considered for the analysis of variance. The objective was to discover if there was any difference in physical self-concept amongst subjects satisfied and non-satisfied with their body image in terms of physical activity. A further goal was to establish intra and inter-group difference factors not yet studied in the literature. Finally, a regression analysis was performed in order to evaluate the influence of
related variables (physical activity, body satisfaction, discrepancy between perceived-desired body and BMI) on general and physical self-concept.

In response to the primary objective of this investigation, many studies have questioned the existing relationship between physical activity and the subdomain of attractiveness (Contreras et al., 2012; Esnaola, 2005; Fox & Corbin, 1989; Goñi, Ruiz de Azúa, & Rodríguez, 2004; Hayes et al., 1995; Marsh, 1997), as well as the influence of physical activity over body image (Davis et al., 1997; Tata, Fox, & Cooper, 2001; Wichstrom, 1995). One possible explanation could stem from aesthetic motivations which lead adolescent females to practice physical activity in an attempt to improve their body figure and physical appearance (Fernández-Bustos et al., 2010). These motivations are likely related to an existing poor self-concept (Furnham, Badmin, & Sneade, 2002) and body dissatisfaction (Lepage & Crowther, 2010). For this reason, studies exploring the influence of physical activity on one’s physical self-concept must differentiate between participants with high and low body dissatisfaction as well as between physically active and physically inactive participants.

We emphasize that, independent of physical activity engagement, students satisfied with their body image present both a higher physical and general self-concept than students dissatisfied with their body image. This provides further confirmation that regardless of engagement in physical activity, satisfaction with one’s own body is important for the evaluation of physical self-perception (Baile, Guillén, & Garrido, 2003; Fernández-Bustos, 2008; Goñi & Rodriguez, 2004) and global self-esteem (Fox, 2000; Calado, Lameiras, & Rodriguez, 2004).
Furthermore, the physical perceptions of the girls who engaged in some physical activity were noticeably greater, especially in the perceptions of sport competence and physical condition, whether or not they were satisfied with their body image. These results did not correspond with those of Esnaola (2005), which did not show differences in satisfaction and attractiveness between physically active and inactive adolescent females. The differences in all the scales studied were statistically significant in the group of students satisfied with their body image; but not so in the group with body image concerns where the scales of general physical self-concept and body attractiveness did not mark significant differences. In support of previous research (Contreras et al., 2010; Esnaola, 2005; Fox & Corbin, 1989; Goñi, Ruiz de Azúa, & Rodríguez, 2004; Marsh, 1997; Moreno, Cervelló, & Moreno, 2008), these results show that physical activity significantly improves three of the four physical self-perception constructs (physical condition, strength, sport competence), regardless of body image concern. Also, in line with Contreras et al., (2012), this impact is greater for those satisfied with their body image. General self-concept was improved amongst physically active girls, regardless of their concern about body image. This finding supports the importance of physical activity in improving self-concept (Spence, McGannon, & Poon, 2005; Spence, Poon, & Duck, 1997).

In line with previous findings (see González & Albariñas, 2004), the relationship between physical activity engagement and perceived body attractiveness was positive amongst girls who were satisfied with their body image; yet such a relationship was not found in girls dissatisfied with their body image. This finding could explain the absence of a relationship noted in previous studies where no differentiation between body satisfaction and body dissatisfaction occurred (Contreras et al, 2010; Esnaola, 2005; Fox & Corbin, 1989; Ruiz de Azúa & Rodríguez, 2004; Hayes et al., 1995; Marsh, 1997). It seems that for many,
feelings of dissatisfaction motivate engagement in physical activity and, as such, the conclusions offered in studies not making this distinction can be called into question. For this reason, it is necessary to distinguish this analysis in terms of individual body image concern. This answers the primary objective by fulfilling the hypothesis posed: females who exercise have better physical perceptions and a higher self-concept, regardless of the worry about their body, except in the subdimension of physical attractiveness where no significant differences were found between those dissatisfied.

With reference to the second objective of this study, and fulfilling the hypothesis posed, the multiple analysis regression showed that physical activity engagement is positively and significantly related to perceptions of attractiveness, physical and general self-concept, but especially with sport competence and physical condition. In line with other authors (e.g. Pastor, Balaguer, & Benavides, 2002; Harter, 1999), it becomes evident that body satisfaction is the most important aspect in shaping physical and general self-concept of adolescent females. These factors, taken as a whole, would explain approximately 50% variance of physical and general self-concept. As found in previous studies (Goñi & Rodríguez, 2004), BMI was only statistically relevant to perceptions of strength, suggesting that it is not a major factor in determining self-concept (Salvador, García-Gálvez, & De la Fuente, 2010).

Finally, on the basis of the data obtained in the current study, we would like to offer some concluding observations. A healthy body image is important if adolescent females are to attain a balanced general and physical self-concept. There is a positive relationship between physical activity and an improved general and physical self-concept. This improvement is greater amongst adolescent females less concerned about their body image. Lastly, participating in physical activity becomes an important means to prevent body dissatisfaction amongst female adolescents satisfied with their body image. It is for this
reason that specific physical education programmes to help students develop a healthier physical self-concept should be implemented in schools and colleges, which could in turn lead to a healthier body image and self-concept.
References

[Relationship in adolescents between physical self-concept and participating in sport].

Revista de Educación, 357, 281-303.

adolescents in function of sport practise]. *Apunts: Educación Fisica y Deportes, 80*, 5-12.

http://dx.doi.org/10.1007/s10964-005-9013-6

Table 1.

<table>
<thead>
<tr>
<th></th>
<th>NO CONCERN BSQ<81</th>
<th>CONCERN FOR BI BSQ>81</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
<td>DT</td>
</tr>
<tr>
<td>SA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Inactive | 18.39 | 142 | 4.84 | 16.13 | 116 | 4.64 | 14.35 | .000(***)
| Active | 23.35 | 117 | 4.00 | 18.74 | 66 | 5.18 | 45.07 | .000(***)
| ANOVA | 78.58 | | | 12.12 | | | | |
| p. | .000(***)| | | .001(**)| | | | |
| PC | | | | | | | | |
| Inactive | 17.20 | 142 | 4.93 | 14.44 | 116 | 5.21 | 18.93 | .000(***)
| Active | 22.69 | 117 | 4.83 | 17.19 | 66 | 5.27 | 50.96 | .000(***)
| ANOVA | 80.81 | | | 11.58 | | | | |
| p. | .000(***)| | | .001(**)| | | | |
| PA | | | | | | | | |
| Inactive | 21.12 | 142 | 5.46 | 13.46 | 116 | 5.59 | 122.82 | .000(***)
| Active | 23.25 | 117 | 4.14 | 14.33 | 66 | 5.82 | 144.82 | .000(***)
| ANOVA | 12.06 | | | .98 | | | | |
| p. | .000(***)| | | .001(**)| | | | |
| S | | | | | | | | |
| Inactive | 15.97 | 142 | 5.02 | 14.80 | 116 | 4.64 | 3.74 | .054 |
| Active | 19.38 | 117 | 5.36 | 16.53 | 66 | 6.28 | 10.54 | .001(**)
| ANOVA | 27.70 | | | 4.48 | | | | |
| p. | .000(***)| | | .323 | | | | |
| PSC | | | | | | | | |
| Inactive | 22.85 | 142 | 4.85 | 14.78 | 116 | 5.48 | 156.96 | .000(***)
| Active | 25.27 | 117 | 3.61 | 16.42 | 66 | 6.36 | 144.07 | .000(***)
| ANOVA | 19.98 | | | 3.34 | | | | |
| p. | .000(***)| | | .036(*)| | | | |
| GSC | | | | | | | | |
| Inactive | 24.18 | 142 | 3.66 | 18.33 | 116 | 4.47 | 133.31 | .000(***)
| Active | 26.25 | 117 | 2.99 | 19.75 | 66 | 5.01 | 120.61 | .000(***)
| ANOVA | 24.15 | | | 3.92 | | | | |
| p. | .000(***)| | | .049(*)| | | | |

Note: SA = Sport Competence; PC = Physical condition; PA = physical attractiveness; S = strength; PSC = Physical Self-concept and GSC = General self-concept.

Concern for BI group includes: slight concern (score 81-110), moderate concern (score 111-140) and extreme concern (score > 140)

*p < .05

**p < .001
Table 2.

Scores of CAF in terms of discrepancy perceived-desired body figure and practice of physical activity

<table>
<thead>
<tr>
<th></th>
<th>Negative Discrepancy</th>
<th>Body Satisfaction</th>
<th>Positive Discrepancy</th>
<th>ANOVA</th>
<th>Post hoc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>N</td>
<td>DT</td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>SA</td>
<td>Inactive</td>
<td>16.95</td>
<td>184</td>
<td>4.68</td>
<td>18.54</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>19.92</td>
<td>113</td>
<td>5.08</td>
<td>25.02</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>26.48</td>
<td></td>
<td></td>
<td>39.36</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>15.36</td>
<td>184</td>
<td>5.30</td>
<td>17.73</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>18.46</td>
<td>113</td>
<td>5.25</td>
<td>24.75</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>24.15</td>
<td></td>
<td></td>
<td>46.89</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>16.09</td>
<td>184</td>
<td>6.27</td>
<td>23.14</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>17.44</td>
<td>113</td>
<td>6.43</td>
<td>25.37</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>3.17</td>
<td></td>
<td></td>
<td>4.81</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>15.53</td>
<td>184</td>
<td>4.91</td>
<td>15.64</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>17.35</td>
<td>113</td>
<td>6.30</td>
<td>20.97</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>7.67</td>
<td></td>
<td></td>
<td>22.26</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>17.62</td>
<td>184</td>
<td>6.23</td>
<td>24.54</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>19.47</td>
<td>113</td>
<td>6.52</td>
<td>26.78</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>5.96</td>
<td></td>
<td></td>
<td>6.69</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>20.70</td>
<td>184</td>
<td>5.04</td>
<td>24.69</td>
</tr>
<tr>
<td></td>
<td>Practice</td>
<td>22.34</td>
<td>113</td>
<td>5.21</td>
<td>27.21</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>7.24</td>
<td></td>
<td></td>
<td>13.90</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>21.10</td>
<td>184</td>
<td>5.04</td>
<td>24.69</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>22.34</td>
<td>113</td>
<td>5.21</td>
<td>27.21</td>
</tr>
<tr>
<td>ANOVA F</td>
<td></td>
<td>7.24</td>
<td></td>
<td></td>
<td>13.90</td>
</tr>
</tbody>
</table>

Note: SA = Sport Competence; PC = Physical Condition; PA = Physical Attractiveness; S = Strength; PSC = General Physical Self-concept and GSC = General Self-concept

Negative discrepancy: body wanted-perceived < -2
Positive discrepancy: body wanted-perceived > 2
Body satisfaction: body wanted-perceived ≥ 2 and ≤ 2

*p < .05
**p < .01
***p < .001
Table 3.

Analysis of regression in terms of practice, BSQ, BMI and body discrepancy

<table>
<thead>
<tr>
<th></th>
<th>Beta</th>
<th>T</th>
<th>Sig.</th>
<th>R^2 corrected</th>
<th>ANOVA(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>.35</td>
<td>8.62</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSQ</td>
<td>-.31</td>
<td>-5.26</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>.03</td>
<td>.79</td>
<td>.426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy BI</td>
<td>.09</td>
<td>-1.43</td>
<td>.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>.34</td>
<td>8.55</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSQ</td>
<td>-.26</td>
<td>-4.68</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-.09</td>
<td>-1.92</td>
<td>.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy BI</td>
<td>.11</td>
<td>-1.72</td>
<td>.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>.08</td>
<td>2.39</td>
<td>.017*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSQ</td>
<td>-.64</td>
<td>-13.66</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-.08</td>
<td>-2.04</td>
<td>.042*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy BI</td>
<td>.06</td>
<td>-1.25</td>
<td>.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>.25</td>
<td>5.65</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSQ</td>
<td>-.28</td>
<td>-4.57</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>.31</td>
<td>6.07</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy BI</td>
<td>.05</td>
<td>-.75</td>
<td>.450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>.11</td>
<td>3.62</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSQ</td>
<td>-.63</td>
<td>-14.30</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-.07</td>
<td>-1.88</td>
<td>.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy BI</td>
<td>.10</td>
<td>-2.07</td>
<td>.039*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>.14</td>
<td>4.09</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSQ</td>
<td>-.62</td>
<td>-12.58</td>
<td>.000***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-.03</td>
<td>-1.88</td>
<td>.378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy BI</td>
<td>.04</td>
<td>-.84</td>
<td>.400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: SA = Sport Competence; PC = Physical condition; PA = Physical Attractiveness; S = Strength; PSC = General Physical Self-concept and GSC = General Self-concept.

*p < .05

**p < .01

***p < .001