Thiacalix[4]arene derivatives bearing imidazole units: a ditopic hard/soft receptor for Na+ and K+/Ag+ with an allosteric effect and a reusable extractant for dichromate anions

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: ZHAO, J.-L. ... et al., 2016. Thiacalix[4]arene derivatives bearing imidazole units: a ditopic hard/soft receptor for Na+ and K+/Ag+ with an allosteric effect and a reusable extractant for dichromate anions. Chemistry Select, 1 (8), pp.1541-1547.

Additional Information:

- This is the peer reviewed version of the following article: ZHAO, J.-L. ... et al., 2016. Thiacalix[4]arene derivatives bearing imidazole units: a ditopic hard/soft receptor for Na+ and K+/Ag+ with an allosteric effect and a reusable extractant for dichromate anions. Chemistry Select, 1 (8), pp.1541-1547., which has been published in final form at http://dx.doi.org/10.1002/slct.201600245. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Metadata Record: https://dspace.lboro.ac.uk/2134/21753

Version: Accepted for publication

Publisher: © Wiley-VCH

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Thiacalix[4]arene derivatives bearing imidazole units: a ditopic hard/soft receptor for Na\(^{+}\)/Ag\(^{+}\) and K\(^{+}\)/Ag\(^{+}\) with allosteric effect and a reusable extractant for dichromate anions

Jiang-Lin Zhao,\([a]\) Chong Wu,\([a]\) Xi Zeng,\([b]\) Shofiu Rahman,\([c]\) Paris E. Georgiou,\([c]\) Mark R.J. Elsegood,\([d]\) Thomas G. Warwick,\([d]\) Carl Redshaw,\([e]\) Simon J. Teat,\([f]\) and Takehiko Yamato\([a]\)

Abstract: Two novel receptors L1 and L2 possessing imidazole moieties based on thiacalix[4]arene in the 1,3-alternate conformation have been synthesized and characterized. The crystal structures of L1 and L2 have been determined. The binding behaviour towards Li\(^{+}\), Na\(^{+}\), K\(^{+}\) and Ag\(^{+}\) ions has been examined by \(^{1}H\) NMR titration experiments in (CDCl\(_3/\)CD\(_3\)CN; 10:1, v/v) solution. The exclusive formation of mononuclear complexes of L1 with metal cations is of particular interest revealing a negative allosteric effect in the thiacalix[4]arene family. Liquid-liquid extraction experiments indicate that synthesized L2 can be utilized as an efficient reusable extractant for dichromate anion by controlling the pH of the aqueous solution.

Introduction

Allosteric regulation between subunits within a receptor system is one of nature’s elegant strategies for precisely regulating and controlling the diverse functions in biological systems.\(^1\) The use of allosteric regulation has also been utilized by chemists to control molecular function by external stimuli to transduce chemical signals, and to achieve chemical feedback regulation.\(^2\) Inspired by this, much effort has been devoted in supramolecular chemistry to construct artificial systems to achieve analogous functions such as molecular recognition and signal amplification.

Di- or poly-topic receptors have been constructed with two or more binding subunits within the same macrocyclic structure.\(^3\) It is well known that such systems are suitable candidates for the allosteric regulation of host-guest interactions with metal cations.\(^4,5\) Thiacalix[4]arenes are macrocyclic molecules which can be relatively easily functionalized and have pre-organized binding sites. In particular, the 1,3-alternate conformation is capable of possessing binding subunits in the two opposite domains of the molecule, and is thus a potentially ideal structure for allosteric regulation.\(^5\) Consequently, we have been interested in being able to incorporate two subunits having different binding properties onto a thiacalix[4]arene and to control or maintain a 1,3-alternate conformation. This would therefore permit the construction of a di-topic receptor system which should possess allosteric features.

The development of systems for the fast estimation, removal and separation of silver (soft metal), together with the use of Ag\(^{+}\) complexes in photographic materials and their potential use in cancer radioimmunotherapy has attracted the attention of supramolecular chemists towards designing effective Ag\(^{+}\)-selective receptors.\(^6\) Recently, we undertook the synthesis and evaluation of thiacalix[4]arene and homotrioxacalix[3]arene ligands as Ag\(^{+}\) ionophores and found that the introduction of imidazole groups at the lower rim of the calixarene skeleton resulted in a high affinity for Ag\(^{+}\).\(^7\) On the other hand, it has been reported that by introducing an ester group at its lower or upper rim, the thiacalix[4]arene derivative can selectively complex alkali metal cations (hard metals), such as Na\(^{+}\) and K\(^{+}\).\(^8\) Thus, the introduction of imidazole groups onto the thiacalix[4]arene framework as one binding subunit and the introduction of ester groups on the opposite side as the other binding subunit, was envisioned. Such a system could be used as a ditopic receptor with two binding subunits pre-organised for both hard (Na\(^{+}\) and K\(^{+}\)) and soft (Ag\(^{+}\)) cations, and with possible switching of complexation preferences.

Herein, the synthesis, X-ray structure, and complexation studies of a novel ditopic receptor L1 which possesses two binding subunits (imidazole and ester moieties) based on a thiacalix[4]arene in the 1,3-alternate conformation is reported. In order to further investigate the allosteric effects, the mono-topic receptor L2, with a similar structure, was also produced. Additionally, due to the amphoteric nature of the imidazole group can function not only as an effective cation but also as an anion receptor under appropriate conditions. Also, as a continuation of our search for dichromate anion extractants based on thiacalixarene derivatives,\(^7,13\) the extraction efficiency of the systems...
Results and Discussion

Synthesis

The preferential formation of the 1,3-alternate conformer of thiacalix[4]arene occurs in the presence of a cesium cation whose size is compatible with that of the thiacalix[4]arene cavity and thus contributes significantly to the cation-π interaction. Receptor L1 could therefore be obtained in 55% yield by the stereoselective O-alkylation of 1 with 2-chloromethyl-1-methyl-1H-imidazole in the presence of Cs2CO3 in dry acetone (Scheme 1). Similarly, receptor L2 was obtained in 44% yield by the stereoselective O-alkylation of 2 with 2-chloromethyl-1-methyl-1H-imidazole in the presence of Cs2CO3 in dry acetone (Scheme 1).

The 1H NMR spectrum of L1 exhibits two singlets for the tert-butyl protons at up-field positions, viz δ 1.10 and 1.26 ppm; two singlets for the aromatic protons at δ 7.24 ppm and 7.46 ppm (Figure S1), all of which is indicative of a C2-symmetric structure for the 1,3-alternate conformation. Obviously, receptor L2 is also in the 1,3-alternate conformation revealing two singlets for the tert-butyl protons (δ 0.82 and 1.15 ppm) and two singlets for the aromatic protons (δ 7.12 and 7.27 ppm, Figure S4). Surprisingly, remarkable shielding effects are experienced by the N-CH3 protons of L1 and L2 (Table 1), compared with the reference compound L3, which is prepared by O-alkylation of 4-tert-butyl-2,6-dimethylphenol with 2-chloromethyl-1-methyl-1H-imidazole in the presence of NaH (Scheme 2). It strongly suggests that the heteroaromatic protons of the imidazole groups for both of L1 and L2 are exposed to the ring current shielding effect area operating between two of the thiacalixarene benzene rings.

Furthermore, X-ray crystallographic analysis further confirmed the molecular structure of L1 and L2 as shown in Figure 1. Both L1 (Fig. 1a) and L2 (Fig. 1c) are in the 1,3-alternate conformation. As expected, the imidazole ring containing N(1) and C(45) of L1 and L2 are pointing into the thiacalix[4]arene cavity which is consistent with the significant up-field shift for the N-CH3 group in the 1H NMR spectra. A slightly distorted square is observed for receptor L1 (Fig. 1b, S1···S2 = 5.636 Å, S2···S3 = 5.562 Å, S3···S4 = 5.546 Å and S4···S1 = 5.579 Å); however, an approximate square is observed for receptor L2 (Fig. 1d, S1···S2 = 5.559 Å, S2···S3 = 5.552 Å, S3···S4 = 5.535 Å and S4···S1 = 5.558 Å). In other words, the cavity size of receptor L1 is a little larger than receptor L2 based on the sum of the S···S distances.

Table 1. Partial chemical shifts of L1, L2 and reference compound L3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical shifts, δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-N-CH₃</td>
</tr>
<tr>
<td>L1</td>
<td>2.78</td>
</tr>
<tr>
<td>L3</td>
<td>3.70</td>
</tr>
<tr>
<td>L2</td>
<td>2.57</td>
</tr>
<tr>
<td>∆δL₁₃</td>
<td>-0.92</td>
</tr>
<tr>
<td>∆δL₂₃</td>
<td>-1.13</td>
</tr>
</tbody>
</table>

* ∆δ value is the difference of the chemical shift between L1, L2 and reference compound L3 in CDCl₃ at 27 °C. A plus sign (+) denotes a shift to lower magnetic field, whereas, a negative sign (–) denotes a shift to higher magnetic field.

For internal use, please do not delete. Submitted_Manuscript
Complexation studies

At the onset of the study, it was anticipated that multi-recognition of both hard metals (Na\(^+\), K\(^+\)) and soft metals (Ag\(^+\)) by the ditopic receptor L1 could be detected. This of course, being due to the presence of the two ester moieties\(^7\) at one face of the thiacalix[4]arene cavity and the two imidazole moieties\(^7\) at the opposite face. The binding affinities of L1 and L2 toward metal cations were therefore evaluated by \(^1\)H NMR titration experiments (CDCl\(_3\)/CD\(_3\)CN = 10:1, v/v).

\(^1\)H NMR titration studies

Both L1 and L2 possess imidazole moieties which would preferentially exhibit higher affinity towards Ag\(^+\) ion. Hence, we conducted \(^1\)H NMR titration experiments with CF\(_3\)SO\(_3\)Ag. Titration of a solution of L1 with Ag\(^+\) ions resulted in dramatically downfield shifts (\(\Delta\delta = +0.86\) ppm) for the imidazole-N-CH\(_3\) protons at \(\delta\) 3.68 ppm after complexation with 1.0 equiv. Ag\(^+\) (Figure 2). It was noteworthy that \(\delta\) 3.68 ppm was almost the same chemical shift for the imidazole-N-CH\(_3\) protons (\(\delta\) 3.70 ppm, Table 1) of the reference compound L3. It strongly suggested that the imidazole-N-CH\(_3\) group of L1 escaped from the shielding area to the deshielding area upon Ag\(^+\) capture by receptor L1. Subsequently, the adjacent imidazolyl- proton H4 was also affected by the change in the position of the N-CH\(_3\) group, and exhibited a downfield shift (\(\Delta\delta = +0.46\) ppm) at \(\delta\) 7.14 ppm. In contrast, another significantly up-field shift (\(\Delta\delta = -0.15\) ppm) for the methylene protons of OCH\(_2\)Imid at \(\delta\) 5.04 ppm was also observed. Thus chemical shift change may be attributed to the OCH\(_2\)Imid methylene protons being folded into the shielding area of the thiacalix[4]arene-cavity in order to form an efficient complex with Ag\(^+\). All of the evidence strongly suggested that Ag\(^+\) was complexed by the nitrogen atoms of the imidazole moieties via N···Ag\(^+\) interactions.

Similar phenomena were observed for the titration experiment of L2 with Ag\(^+\) (Figure S7). The proton resonances of N-CH\(_3\) and H4 in the imidazole rings were gradually shifted to downfield upon addition of Ag\(^+\) ions which could be attributed to the conformational change of receptor L2 with a concomitant deshielding effect. The methylene protons of OCH\(_2\)Imid were slightly shifted up-field after being complexed with one equiv. Ag\(^+\), which may also be attributed to the OCH\(_2\)Imid methylene protons being folded into the shielding field of the thiacalix[4]arene-cavity. Both L1 and L2 exhibited slight chemical shift changes of the aromatic protons which are also attributed to the conformational changes upon complexation. On increasing the titration amount...
of Ag⁺ to 2.0 equiv., no further significant changes were observed for L1 and L2. According to the corresponding titration curve, the association constants were calculated to be 44 M⁻¹ (Figure S8) which formed a 1:1 complex of L2 with Ag⁺, K⁺, Na⁺ and Li⁺ respectively (Figure S16 and S19). All of the observed phenomenon suggested that receptor L1 and L2 possess higher affinity towards Ag⁺ ion via N-···Ag⁺ interactions.

The affinity towards alkali metal cations was also investigated, given that K⁺ and Na⁺ ions are known to interact with the ester moiety. ¹H NMR titration experiments with CF₃SO₃K, CF₃SO₃Na and CF₃SO₃Li were carried out. The addition of an equiv. of CF₃SO₃K to L1 caused immediate complexation as demonstrated by the downfield shifts of the ester ethyl group resonances (CH₂: ∆δ = +0.07 ppm, COOCH₂: ∆δ = +0.12 ppm, Figure 3) for the 1:1 complex of L1 with an association constant of 253 M⁻¹ (Figure S17). The slightly downfield shifts of the thiacalixarene benzene protons may be attributed to the decreased shielding effect operating in two of the thiacalixarene benzene rings upon complexation of the ester moieties with K⁺. The signals of the imidazole group’s protons were broadened, showing slow ligand exchange on the NMR time scale. A similar phenomenon was observed in the presence of an equiv. of CF₃SO₃Na (OCH₂CO, ∆δ = +0.15; COOCH₂, ∆δ = +0.07 ppm, Figure S8) which formed a 1:1 complex of L1 with an association constant of 92 M⁻¹ (Figure S18). CF₃SO₃Li did not cause detectable spectral changes for L1 due to the small atom radius which could not form an efficient complex (Figure S9). According to the corresponding association constants for these processes, it is clear that the association constants for alkali metal cations directly follow the radius of the alkali metal cations: K⁺ > Na⁺ > Ag⁺ (Figure 4).

MALDI-TOF-MS data also supported the formation of a stable 1:1 host–guest complex. As shown in Figure S10 – S12, the mass spectrum of L1 with cations exhibited peaks at 1187.123, 1119.301 and 1103.285 corresponding to masses of [L1 + Ag⁺], [L1 + K⁺] and [L1 + Na⁺], respectively. And the mass spectrum of L2 with cation exhibited peaks at 1195.107 corresponding to masses of [L2 + Ag⁺] (Figure S13). In other words, the 1:1 stoichiometry between receptors and guest cations were unambiguously confirmed by Mass. Consequently, the proposed binding model and chemical shift changes (∆δ) of L1 and L2 with metal ions are summarized in Figure 5.

Allosteric studies

The presence of an allosteric effect with L1 was studied by ¹H NMR titration. Upon titration with one equiv. of Ag⁺ to the 1:1 M⁺⊂L1 (M⁺ = Li⁺, Na⁺ or K⁺) complex solution, the corresponding peaks were dramatically shifted to the same chemical shift positions as were noted for the 1:1 Ag⁺⊂L1 complex. This therefore implied that Ag⁺ was bound to the imidazole site and induced the decomposition of hard metal cations (Li⁺, Na⁺ or K⁺) from the ester site (Figure 6). Furthermore, the 1:1 Ag⁺⊂L1 complex was also titrated with an equiv. of M⁺ ions (M⁺ = Li⁺, Na⁺). L1, which reflects the size recognition ability of receptor L1.
The concept of a negative allosteric effect by receptor L1 is shown in Figure 7.

Figure 6. Partial 1H NMR spectra of receptor L1 (5.0 mM) in CDCl$_3$/CD$_3$CN (10:1, v/v) complex with an equiv. of various metal ions; M$^+$ denoted the alkali metal cations (M$^+$ = Li$^+$, Na$^+$ or K$^+$).

or K$^+$). None of the spectral patterns of Li$^+$ ([Ag$^+$ ⊂ L1]), Na$^+$ ([Ag$^+$ ⊂ L1] and K$^+$ ([Ag$^+$ ⊂ L1]) complexes showed any detectable signal changes. These results indicated that the complexation of Ag$^+$ completely suppressed the recognition of Li$^+$, Na$^+$ or K$^+$ by the ester moiety. The concept of a negative allosteric effect by receptor L1 is shown in Figure 7.

Figure 7. Proposed negative allosteric effect of ditopic receptor L1. M$^+$ denotes the alkali metal cations (M$^+$ = Li$^+$, Na$^+$ or K$^+$).

Two-phase solvent extraction

Chromium and its compounds are widely used in our daily life, such as, tanning, plating, leather dyes, and in the photographic industry, all of which produce large quantities of toxic pollutants. However, high concentrations of hexavalent chromium (VI) ion is toxic to the human body, as it can diffuse as Cr$_2$O$_7^{2-}$ or HCr$_2$O$_7^-$ through cell membranes and oxidize biological molecules. Thus, selective treatment of polluted water containing Cr (VI) prior to discharge is essential. The dichromate (Cr$_2$O$_7^{2-}$ and HCr$_2$O$_7^-$) ions are anions with oxide functionalities at their periphery. These oxide moieties are potential sites for hydrogen bonding to the complexant or host molecule(s). Imidazole group, among such heterocyclic units, the imidazole ring behaves as an excellent hydrogen bond donor moiety in synthetic anion receptor systems, and the acidity of the NH proton of the imidazole can be tuned by changing the electronic properties of the imidazole substituents. Thus, the introduction of a imidazole moiety to thiacalix[4]arene platform plays an important role in confirming cooperative participation of the peripheral imidazole groups. Furthermore, the extraction results also indicated that extractant L2 was more effective for the extraction of dichromate anions at low pH (pH 1.5) than extractant L1. This could be ascribed to the cavity size of extractant L2 is smaller and more symmetrical than extractant L1 (Figure 1, X-ray results). In other words, extractant L2 maybe provided a more ideal mutual distance needed for hydrogen bonding between two imidazole groups to extract dichromate anions.

Interestingly, according to the reference reports, the reference compound L3 showed almost no significant selective binding of dichromate anions even at low pH. It strongly suggests that the thiacalix[4]arene platform plays an important role in confirming cooperative participation of the peripheral imidazole groups.

Additionally, the extractants L1 and L2 possess ‘proton-switchable’ binding sites, namely the imidazole moieties, which can be protonated at low pH. The protonated forms of L1 and L2 are more effective at complexing with dichromate anion through hydrogen bonds. In other words, the extraction of dichromate anion by extractants L1 and L2 only occurs when the aqueous phase is acidic, especially at lower pH, in order to form efficient hydrogen bonds. Thus, a reusable extractant concept is possible for extractants L1 and L2 by controlling the pH of the aqueous solution (Figure 9).
Two new thiacalix[4]arene receptors L1 and L2 which each possess imidazole moieties in the 1,3-alternate conformation have been synthesized and characterized. The X-ray crystal structures of both L1 and L2 have been determined, confirming their 1,3-alternate conformations. The binding behaviour towards Na+, K+ and Ag+ ions have been examined by 1H NMR titration experiments in (CDCl3/CD3CN; 10:1, v/v) solutions. The ditopic receptor L1 showed affinity not only toward hard alkali metal cations but also toward soft metal Ag+ cations, owing to the presence of the two imidazole moieties at one face of the thiacalix[4]arene cavity and two imidazole moieties at the opposite face. However, the monotopic receptor L2 only exhibited affinity toward Ag+ and was unable to bind alkali metal cations due to its lack of the ester groups. The exclusive formation of mononuclear complexes of L1 with metal cations is of particular interest with respect to negative allosteric effects in the thiacalix[4]arene family. These findings further demonstrate that preorganization, suitable conformational changes and affinity have a pronounced effect on the complexation process between the two different arms placed at the two edges of the thiacalix[4]arene platform. Due to its amphoteric nature, the imidazole ring can function as an effective cation and/or anion receptor system. Furthermore, the extraction abilities of imidazole ring can function as an effective cation and/or anion receptor system. Thus, the extraction abilities of L1 and L2 toward dichromate anion were evaluated by a liquid-liquid extraction method. The extraction results indicate that the synthesized L2 can be utilized as a reusable extractant by control of the pH of the aqueous solution.

Experimental Section

General procedures

Unless otherwise stated, all reagents used were purchased from commercial sources and were used without further purification. All solvents used were dried and distilled by the usual procedures prior to use. All melting points (Yanagimoto MP-S1) are uncorrected. 1H NMR and 13C NMR spectra were recorded on a Varian-400MR-vnmr 400 with SiMe4 as an internal reference: J-values are given in Hz. Mass spectra were obtained with a Nippon Denshi JMS-HX110A Ultrahigh Performance mass spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed by Yanaco MT-5. UV-visible spectra were recorded using a Shimadzu UV-3150UV-vis-NIR spectrophotometer.

Materials

A mixture of diester 1 (200 mg, 0.224 mmol) and Cs2CO3 (728 mg, 2.24 mmol) in dry acetone (30 mL) was heated at reflux for 1 h under nitrogen. Then 2-chloromethyl-1-methyl-1H-imidazole hydrochloride (372 mg, 2.24 mmol) was added and the mixture was heated at reflux for another 20 h. After cooling the reaction mixture to room temperature, it was acidified with 1 M HCl (15 mL) and extracted with CH2Cl2 (20 mL × 3). The combined extracts were washed with water (30 mL × 2) and then brine (30 mL × 1), and dried with MgSO4. The organic solvent was removed under reduced pressure and the crude product was purified by column chromatography with chloroform–ethyl acetate (1:1) as an eluent to give L1 (133 mg, 55%) as colourless prisms, M.p. 239–241°C. 1H NMR (400 MHz, CDCl3): δ = 1.10 (s, 18 H, t-Bu), 1.21 (t, 6 H, J = 7.1 Hz, CH3CH2), 1.26 (s, 18 H, t-Bu), 2.78 (s, 6 H, Imid-CH), 4.14 (q, 4 H, J = 7.1 Hz, COOCH2), 4.52 (s, 4 H, OCH2COO), 5.21 (s, 4 H, OCH2Imm), 6.65 (s, 2 H, Imid-H), 6.96 (s, 2 H, Imid-H), 7.24 (s, 4 H, Ar-H) and 7.46(d, 4 H, Ar-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 31.0, 31.1, 33.0, 34.1, 34.2, 60.3, 65.1, 65.9, 121.8, 127.5, 127.6, 128.4, 129.3, 131.9, 143.5, 146.6, 146.8, 155.4, 156.8 and 167.7 ppm FABMS: m/z [M+H]+ Calcd for C64H73N4O4S4: 1091.43; Found: 1091.43.

A mixture of distal 2 (200 mg, 0.221 mmol), Cs2CO3 (720 mg, 2.21 mmol) in dry acetone (30 mL) was heated at reflux for 1 h under nitrogen. Then a solution of 2-chloromethyl-1-methyl-1H-imidazole hydrochloride (369 mg, 2.21 mmol) was added and the mixture was heated at reflux for another 20 h. After cooling the reaction mixture to room temperature, it was acidified with 1 M HCl (15 mL) and extracted with CH2Cl2 (20 mL × 3). The combined extracts were washed with water (30 mL × 2) and then brine (30 mL × 1), dried with (MgSO4). The organic solvent was removed under reduced pressure and the crude product was purified by column chromatography with chloroform as an eluent to give L2 (105 mg, 44%) as colourless prisms, M.p. 252–253°C. 1H NMR (400 MHz, CDCl3): δ = 0.92 (s, 18 H, t-Bu), 1.15 (s, 18 H, t-Bu), 2.57(s, 6 H, Imid-CH), 5.05 (s, 4 H, OCH2Ph), 5.18 (s, 4 H, OCH2imid) 6.69(d, J = 0.7 Hz, 2 H, Imid-H), 6.91(d, J = 7.3 Hz, 4 H, Ph-H), 6.99(d, J = 0.9 Hz 2 H, Imid-H), 7.08(d, J = 7.5 Hz, 4 H, Ph-H), 7.12 (s, 4 H, Ar-H), 7.16 (t, J = 7.3 Hz, 2 H, Ph-H) and 7.27 (s, 4 H, Ar-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 30.7, 31.2, 32.8, 33.9, 34.3, 64.5, 70.7, 122.1, 126.9, 127.2, 127.4, 128.0, 128.6, 128.9, 129.3, 135.7, 143.6, 146.8, 146.9, 156.2 and 156.6 ppm. FABMS: found 1089.35 [M+H]+, Anal. calcd. For C64H73N4O4S4 [M + H]+ m/z = 1089.45; C, 70.55, H, 6.66; N, 5.14 %, found: C, 70.44; H, 6.43; N, 5.10%.

Liquid-liquid extraction studies

Two-phase solvent extraction was carried out between K2Cr2O7 aqueous (10 mL, [dichromate anion] = 1.0 × 10⁻⁴ M) and host (10 mL, [host] = 2 × 10⁻⁴ M in CH2Cl2). A few drops of 0.01 M KOH/HCl solution were added in order to obtain the desired pH at equilibrium and maintain the ionic strength. The two phase mixture in a stoppered flask was immersed in a thermostated water bath at 26°C which was shaken at 300 strokes per min for 4 h and then kept at the same temperature for 1 h, allowing for the complete separation of the two phases. Each extraction experiment was repeated three times. The concentration of dichromate ion remaining in the aqueous phase was determined by UV spectroscopy. Blank experiments showed that no dichromate extraction occurred in the absence of thiacalix[4]arene derivatives L1 and L2. The percent extraction (E%) has been calculated using the following expression:

\[
E\% = \left(\frac{C_0 - C}{C_0} \right) \times 100
\]

where C0 and C are the initial and final concentrations of the metal dichromate before and after the extraction, respectively.

1H-NMR complexation experiments

To a CDCl3/CD3CN (v/v 10:1, v/v) solution of L1 and L2 (5 × 10⁻⁵ M) in an NMR tube was gradually added 0.2 – 2.0 equivalent of the related metal perchlorates. The spectrum was recorded after the addition and the temperature of the NMR probe was kept constant at 27°C.

The 1H-NMR data of the most representative complexes is given below:

\[\text{Ag}^+ \subset L1 \subset \text{L}2\]

where C1 and C2 are the initial and final concentrations of the metal dichromate before and after the extraction, respectively.
X-ray Crystallography

Diffraction data were collected on a Bruker APEX 2 CCD diffractometer equipped with graphite-monochromated Mo-Kα radiation for L1·3EtOH·H2O and with synchrotron radiation for L2·2.58EtOH. Data were corrected for Lorentz and polarisation effects and for absorption. 18

The structures were solved by charge flipping or direct methods algorithms and refined by full-matrix least-squares methods, on F2. 19 in L1·3EtOH·H2O Atom C(49) was modelled as 2-fold disordered with major component 55.1(13)%. One of the ethanol molecules was modelled as a region of diffuse electron density using the Platon Squeeze procedure. 20

Table 3 Summary of crystal data for the receptors L1, and L2

<table>
<thead>
<tr>
<th>Complex</th>
<th>L1</th>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C64H72N4O4S4·2.58EtOH</td>
<td>C64H72N4O4S4·2.58EtOH</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1237.65</td>
<td>1208.05</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>P 1</td>
</tr>
<tr>
<td>α[Å]</td>
<td>15.9314(18)</td>
<td>14.691(6)</td>
</tr>
<tr>
<td>β[Å]</td>
<td>15.4414(19)</td>
<td>14.867(6)</td>
</tr>
<tr>
<td>γ[Å]</td>
<td>17.066(2)</td>
<td>15.030(7)</td>
</tr>
<tr>
<td>α[°]</td>
<td>103.616(2)</td>
<td>85.407(3)</td>
</tr>
<tr>
<td>β[°]</td>
<td>104.584(2)</td>
<td>86.152(3)</td>
</tr>
<tr>
<td>γ[°]</td>
<td>96.412(2)</td>
<td>79.641(3)</td>
</tr>
<tr>
<td>Volume[Å³]</td>
<td>3395.2(7)</td>
<td>3214.3(2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Crystal size[mm]</td>
<td>0.88 x 0.42 x 0.20</td>
<td>0.11 x 0.09 x 0.01</td>
</tr>
<tr>
<td>λ[Å]</td>
<td>1.07137</td>
<td>0.7749</td>
</tr>
<tr>
<td>Dcalc[Mg/m³]</td>
<td>1.211</td>
<td>1.248</td>
</tr>
<tr>
<td>μ[mm⁻¹]</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>temperature[K]</td>
<td>150(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Measured reflns</td>
<td>37601</td>
<td>22331</td>
</tr>
<tr>
<td>unique reflns</td>
<td>12465</td>
<td>8081</td>
</tr>
<tr>
<td>obsd reflns</td>
<td>8007</td>
<td>5494</td>
</tr>
<tr>
<td>parameters</td>
<td>815</td>
<td>942</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.062</td>
<td>0.060</td>
</tr>
<tr>
<td>R(F) > 2σ(F)</td>
<td>0.069</td>
<td>0.087</td>
</tr>
<tr>
<td>wR2(all data)</td>
<td>0.193</td>
<td>0.256</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.03</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Acknowledgements

This work was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University)". We would like to thank the OTEC at Saga University and the International Cooperation Projects of Guizhou Province (No. 20137005) for financial support. The EPSRC is thanked for a travel grant (to CR).

Keywords: Thiacalix[4]arene • Imidazole • Allosteric effect• Dichromate

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

A ditopic hard/soft receptor L1 for Na⁺/Ag⁺ and K⁺/Ag⁺ with a negative allosteric effect.

Page No. – Page No.

Thiacalix[4]arene derivatives bearing imidazole units: a ditopic hard/soft receptor for Na⁺/Ag⁺ and K⁺/Ag⁺ with allosteric effect and a reusable extractant for dichromate anions

Layout 2:

FULL PAPER

((Insert TOC Graphic here; max. width: 11.5 cm; max. height: 2.5 cm))

Author(s), Corresponding Author(s)*

Page No. – Page No.

Title

Text for Table of Contents

For internal use, please do not delete. Submitted_Manuscript