Manufacturing polymeric capsules for encapsulation of liquid absorbents and ion exchange media using glass capillary microfluidics and on-the-fly photopolymerisation

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: NABAVI, S.A., VLADISAVLJEVIC, G.T. and MANOVIC, V., 2016. Manufacturing polymeric capsules for encapsulation of liquid absorbents and ion exchange media using glass capillary microfluidics and on-the-fly photopolymerisation. Presented at the FORMULA VIII - Formulate your innovation. Innovate your formulation, Barcelona, Spain, July 4-7th. pp. 169.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/22068

Version: Accepted for publication

Publisher: © The authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
In this study, we have developed a novel continuous process for the fabrication of monodispersed core/shell capsules of controllable size and shell thickness using microfluidic emulsification and “on-the-fly” in-situ photopolymerisation. The process allows for 100% encapsulation efficiency of the core material and can be used to encapsulate liquid ion exchange media inside an ion-permeable polymer shell. Conventional methods for fabrication of core/shell capsules such as internal phase separation, interfacial polymerization, complex coacervation and layer-by-layer deposition typically require multi-stage processing and do not allow precise control over the shell thickness and capsule size [1,2].

The process was tested by encapsulating an aqueous solution of K₂CO₃ of different concentrations and the capsules were used to capture CO₂ from the environment (Fig. 1).

The shell phase was a UV-curable liquid silicon rubber (Semicosil® 949) containing 0-2 wt% Dow Corning 749 Fluid added as a lipophilic stabilizer. The minimum UV light intensity and the minimum exposure time for a complete shell polymerization were 13.8 mW·cm⁻² and 144 s, respectively. It was found that the drop generation process was stable for more than one hour. The capsule diameter and the shell thickness were precisely adjusted over the range of 200-400 and 20-30 µm, respectively by controlling the flow rate of the three fluid streams. Prior to CO₂ uptake, the capsule interiors were purple because the pH was above 11 (Fig. 1c.1). After exposure to CO₂, the core liquid turned to yellow (pH < 7.5, Fig. 1c.2), due to the chemical reaction: K₂CO₃ + H₂O + CO₂ → 2KHCO₃. The capsule can be regenerated by heating, which causes the reaction to proceed in the opposite direction and a pure stream of CO₂ is released: 2KHCO₃ → CO₂ + K₂CO₃ + H₂O. The capsules were thermally stable up to at least 180°C and they kept structural integrity during regeneration cycles.

References