Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: PRUDHOMME, C. ..., et al., 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences of the United States of America, DOI: 10.1073/pnas.1222473110.

Metadata Record: https://dspace.lboro.ac.uk/2134/22127

Version: Accepted for publication

Publisher: © National Academy of Sciences

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Hydrological droughts in the 21st century: hotspots and uncertainties from a global multi-model ensemble experiment

Authors: Christel Prudhomme 1, Ignazio Giuntoli 1,2, Emma L. Robinson 1, Douglas B. Clark 1, Nigel W. Arnell 3, Rutger Dankers 4, Balázs Fekete 5, Wietse Franssen 6, Dieter Gerten 7, Simon N. Gosling 8, Stefan Hagemann 9, David M. Hannah 2, Hyungjun Kim 10, Yoshimitsu Masaki 11, Yusuke Satoh 12, Tobias Stach 9, Yoshihide Wada 13, Dominik Wisser 13,14

1 Centre for Ecology and Hydrology, Mclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom 2 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom 3 Walker Institute for Climate System Research, University of Reading, Reading, RG6 6AR, United Kingdom 4 Met Office Hadley Centre, Exeter, United Kingdom 5 Civil Engineering Department, The City College of New York, New York, USA 6 Earth System Science, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, Netherlands 7 Potsdam Institute for Climate Impact Research, Germany 8 School of Geography, University of Nottingham, Nottingham, NG7 2RD, United Kingdom 9 Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany 10 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan 11 National Institute for Environmental Studies, Japan 12 Department of Civil Engineering, The University of Tokyo, Japan 13 Department of Physical Geography, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, Netherlands 14 Center for Development Research, University of Bonn, Germany

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multi-model experiment including seven Global Impact Models (GIMs) driven by bias-corrected climate from five Global Climate Models (GCMs) under four Representative Concentration Pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analysed land area are projected by nearly half of the simulations. This increase in drought severity has a strong Signal-to-Noise ratio at the global scale, and Southern Europe, Middle East, South East United States, Chile and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from GCMs, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology it is hence critical to consider a diverse range of GIMs to better capture the uncertainty.

Drought | Climate impact | Global hydrology | Evaporation | CO2

Introduction

The global water cycle is expected to change over the 21st century due to the combined effects of climate change and increasing human intervention. In a warmer world the water holding capacity of the atmosphere will increase, resulting in a change in the frequency of precipitation extremes, increased evaporation and dry periods (1) and intensification of droughts (2). This is represented by most Global Climate Models (GCMs) by increased summer dryness and winter wetness over large areas of continental mid- to high-latitudes in the Northern Hemisphere (3), associated with a reduction in water availability at continental (4, 5) and global scales (6, 7). Because such changes have potentially very serious implications in some regions of the world, identifying areas where there is agreement in the direction and magnitude of changes in drought characteristics (hotspots) in response to climate change is essential information for water resource management aimed at ensuring water security in a changing climate.

Most GCMs, however, are not able to reproduce the fine-scale processes governing terrestrial hydrology (and hence runoff) and suffer from systematic biases (8). As land-atmospheric feedbacks are not yet fully understood and reproduced by global models (9), and because full coupling of GCMs and Global Impact Models (GIMs) is not straightforward, GIMs forced by data from GCMs have been used as tools to quantify the impact of changed climate on the water cycle and droughts (10), despite by definition ignoring important feedbacks and their possible modification with climate change (11). GIMs vary in the types of processes represented and the parameterisations employed. Some GIMs, particularly those designed to quantify water resources, only calculate the water balance (e.g. 12), while others consider coupled water and energy balances, sometimes also representing the dynamic response of plants to changes in atmospheric CO2 and climate (e.g. 13). Until recently the uncertainty in the simulation of the terrestrial water cycle related to the choice of a particular GIM had not been investigated. However, the Water Model Intercomparison

Significance

Increasing concentrations of greenhouse gases in the atmosphere are widely expected to influence global climate over the coming century. The impact on drought is uncertain because of the complexity of the processes, but can be estimated using outputs from an ensemble of global models (hydrological and climate models). Using an ensemble of 35 simulations we show a likely increase in the global severity of drought by the end of 21st century, with regional hotspots including South America and Central and Western Europe in which the frequency of drought increases by more than 20%. The main source of uncertainty in the results comes from the hydrological models, with climate models contributing to a substantial but smaller amount of uncertainty.

Reserved for Publication Footnotes

www.pnas.org --- --- PNAS | Issue Date | Volume | Issue Number | 1--??
This study focuses on identifying regions where the impact of climate change on hydrological drought (henceforth simply ‘drought’) shows a strong signal of change between the end of the 20th and 21st centuries. We define drought as occurring when total runoff is less than a given threshold. Drought represents the time-integrated effect of several interlinked processes and stores, including precipitation, evaporation and soil moisture storage (10); because some of these processes are represented by GCMs and some by GIMs, it is vital to quantify the relative uncertainty introduced by both GCMs and GIMs when assessing climate change impacts.

We use outputs from the ISI-MIP multi-model ensemble (MME) experiment (18) of 35 members (for RCPs 2.6 and 8.5; only 27 members available for RCP4.5 and 6.0) in which GIMs of different types were driven by bias-corrected (8) climate from state-of-the-art CMIP5 GCMs (19). These GIMs describe the terrestrial water cycle at global scale and include current understanding of hydrological systems (20). Note that statistical bias-correction can influence the signal of runoff changes but this generally remains smaller than uncertainty from GCMs and GIMs (21). The simulations we use did not consider water management or changes of land use, so they represent the effects of climate change alone. We quantify changes in the space-time variability of drought that are projected to occur under four Representative Concentration Pathways (RCPs) that span a wide range of radiative forcing (from left to right RCP2.6 R2, RCP4.5 R4, RCP6.0 R6, RCP8.5 R8). In each RCP panel, results are organised according to radiative forcing (from left to right: HadGEM2-ES; IPSLCM5-ARL; MIROC-ESM-CHEM; GFDL-ESM2M and NorESM1-M. CO2 effect in GIMs is described as colour: black/open symbols No CO2; cyan/filled symbols: CO2. GIMs are indicated by symbols: up triangle HO8; circle JULES; x Mac-PDM.09; +MPI-HM; pentagon PRCGLOB-WB; down triangle VIC; square WBM.

Project (Water MIP; 14) highlighted that simulated hydrological averages can vary substantially between GIMs, even when driven with the same bias-corrected climatic forcing (14, 15), and uncertainty in future projection due to GIMs can be as large as that from GCMs in some regions (16, 17). While in the climate-to-impact modelling chain much effort has been directed to better understand the uncertainty due to GCMs, studies of the impact of climate change on water availability and drought have often been based on one or a few GIMs, potentially underestimating the overall uncertainty.

This study focuses on identifying regions where the impact of climate change on hydrological drought (henceforth simply ‘drought’) shows a strong signal of change between the end of the 20th and 21st centuries. We define drought as occurring when total runoff is less than a given threshold. Drought represents the time-integrated effect of several interlinked processes and stores, including precipitation, evaporation and soil moisture storage (10); because some of these processes are represented by GCMs and some by GIMs, it is vital to quantify the relative uncertainty introduced by both GCMs and GIMs when assessing climate change impacts.

We use outputs from the ISI-MIP multi-model ensemble (MME) experiment (18) of 35 members (for RCPs 2.6 and 8.5; only 27 members available for RCP4.5 and 6.0) in which GIMs of different types were driven by bias-corrected (8) climate from state-of-the-art CMIP5 GCMs (19). These GIMs describe the terrestrial water cycle at global scale and include current understanding of hydrological systems (20). Note that statistical bias-correction can influence the signal of runoff changes but this generally remains smaller than uncertainty from GCMs and GIMs (21). The simulations we use did not consider water management or changes of land use, so they represent the effects of climate change alone. We quantify changes in the space-time variability of drought that are projected to occur under four Representative Concentration Pathways (RCPs) that span a wide range of radiative forcing (from left to right RCP2.6 R2, RCP4.5 R4, RCP6.0 R6, RCP8.5 R8). In each RCP panel, results are organised according to radiative forcing (from left to right: HadGEM2-ES; IPSLCM5-ARL; MIROC-ESM-CHEM; GFDL-ESM2M and NorESM1-M. CO2 effect in GIMs is described as colour: black/open symbols No CO2; cyan/filled symbols: CO2. GIMs are indicated by symbols: up triangle HO8; circle JULES; x Mac-PDM.09; +MPI-HM; pentagon PRCGLOB-WB; down triangle VIC; square WBM.
Global changes

Under RCP8.5, the MME mean change in the frequency of drought (i.e., DI = 1) shows a widespread increase of drought conditions across the globe and in particular in most parts of South and North America, large parts of tropical and southern Africa, the Mediterranean region, South East China and Australia; little change or reduced occurrence of drought conditions are found in northern Canada, North East Russia, the Horn of Africa and parts of Indonesia (Fig. 1). There is strong seasonality across many mid- to high-latitude regions in the Northern Hemisphere, with small changes or reductions in DJF and larger increases in JJA (Fig. S4). For 25 members (i.e., 70% of the ensemble) the frequency of drought increases in 60.3% of unmasked land cells, falling to 44.5% in DJF when there is the largest degree of disagreement between ensemble members as to the direction of changes. Over the whole year, S2N is largest in the Mediterranean and the Middle East, Chile, South East US, and Western Australia (Fig. 1).

In Fig. 2 we calculate the mean change in GDI for the four RCPs. The results show a likely increase in drought severity with a MME mean increase of 3.9% under RCP2.6, 6.3% for RCP4.5, 7.4% for RCP6.0 and reaching 13% under RCP8.5 (see (23) for method and SI for detailed results); changes are largest in JJA (17.6%) and smallest in DJF (10.6%) under RCP8.5. The systematic increase in drought severity with radiative forcing (Fig. 2) is associated with considerable variation in the magnitude of the changes ranging from -1.7% to +11.2% under RCP2.6 and -4.8% to 25.4% under RCP8.5. S2N associated with GCMs and GIMs shows a stronger signal (less uncertainty) for GCMs (mean S2N = 2.44) than for GIMs (1.82) primarily due to smaller IQ for GCMs (mean IQ = 0.049) than for GIMs (0.070) (SI for details). This indicates that, at the global scale, the variability due to different GIMs is larger than due to different GCMs.

There is a statistically significant (see Methods) increase in the frequency of severe events (large GDI) for all RCP/GCM/GIM combinations except for JULES which shows a consistently smaller change signal in all simulations but one for RCP 8.5 (Cumulative Density Function CDF, Fig. 3). Under historical forcing, drought affects less than 21% of the global land area at any one time (GDI < 0.21; black lines) but this is exceeded for 23 out of 35 simulations under RCP2.6 (dark blue) and for 30 under RCP6.5 (red). Largest increases are seen for RCP8.5, with maximum drought severity exceeding 40% of land in 16 simulations. There is greater temporal variability in the GDI in many simulations of the RCPs (flatter CDFs in Fig. 3), increasing with radiative forcing, and associated with more pronounced variability between GIMs.

Effects of model structure

All the models shown in Fig. 3 calculate the water balance of the land, but only H08 and JULES consider the energy balance (Table S1 in SI), and only JULES represents the effects of CO2 on stomatal opening and includes a dynamic vegetation model that allows vegetation to grow in response to its environment. To examine whether the different behaviour of JULES was at-
tributable to one of these differences in model structure, we
used results from two further GIMs (LPJmL and MATSIRO)
that were excluded from the MME because of a high proportion
of zero runoff values (Methods and Figs. S2 and S3 in SI) but
which share some similarities with JULES in terms of model
structure: MATSIRO and JULES are energy (and water) balance
models, while LPJmL and JULES both represent varying CO2
dynamic vegetation effects. For this analysis the GDI was cal-
culated using the smaller sample of land cells dictated by LPJmL
and MATSIRO (Fig. S3 in SI) after the masking procedure was
applied to those GIMs. CDFs from the energy balance GIMs
show a strong response of H08 and MATSIRO to climate change
(Fig. 4), broadly similar to those from the water balance models
of Fig. 3, which is evidence that it is not the inclusion of an
energy balance that makes JULES different. (The CDFs in Fig.
4 cannot be compared directly with those in Fig. 3 because of
the different locations sampled. However, as the sampling does
not substantially alter the distributions for JULES between these
two figures, qualitative comparisons of the figures can be made.)

In contrast, the CDFs for the models that include CO2 and
vegetation effects (JULES and LPJmL; solid lines in Fig. 4 right)
show a weaker response to climate change. The effect on plants
of increased CO2 concentration is often considered to consist of
physiological and structural components. The former results in
the stomata opening less widely in a CO2-enriched atmosphere,
leading to less water loss through transpiration (24). However,
increased growth can alter the structure of the vegetation, poten-
tially resulting in increased leaf area (and increased transpiration
(25). Sensitivity experiments in which CO2 was allowed to vary
only until the year 2000, after which it remained constant, showed
increased response to climate from both JULES and LPJmL
(dashed lines in Fig. 4 right), albeit the increase is much more
pronounced in JULES. Both models gave less transpiration under
higher CO2 than when CO2 was constant despite having increased
biomass (Fig. S5 in SI) indicating a strong physiological effect of
CO2. Further runs of JULES in which all structural aspects of
the vegetation (fractional coverage, leaf area and height) were
kept constant in time showed that the largest increase in drought
occurred when both CO2 and vegetation were constant (Fig. S6
in SI) – that is for the configuration most similar to that of the
other GIMs shown in Figs. 2 and 3. This suggests that accounting
for the dynamic response of plants to CO2 and climate is largely
responsible for the outlying (small) response of JULES in Fig.3.
This is consistent with a study showing that a substantially lower
irrigation water demand under climate change is simulated by
GIMs including CO2 effect than those without (26).

Regional changes
We calculate the RDI for the 17 GEO sub-regions (27) for
which the DI could be calculated at more than 50% of the points
in the region; note however the wide variation in size between
regions (27). Average changes under RCP8.5 (top line in Fig.
5) vary between no change (Eastern Africa) to 28% (Central
Europe), with 5 regions showing increases of at least 20% (South
and Meso-America, Caribbean, Central and Western Europe).
S2N is larger than 1 in 6 regions, and is larger than 1.5 in West-
ern and Central Europe. Uncertainty is largest in Eastern Europe,
South East Asia, South America and Eastern Africa where S2N
is less or equal to 0.7. When calculated separately for GCMs and
GIMs ensembles, the average S2N resulting from different GCMs
is larger than that from GIMs in 11 regions, and in 3 of those it
is more than 1.5 times large (Meso America, Central Europe
and Caribbean; see Table S3 in SI for details). This is seen in
Fig. 5 where the variation in mean change between the GCMs
(lines near top of figure) is smaller than that between the GIMs
(lines at bottom of figure). In North and South America, Eastern
Europe, East and South Asia, Central and Eastern Africa, S2N
from GCMs and GIMs are comparable. When JULES is excluded
from the ensemble (i.e., only 6 GIMs included) the mean change
remains relatively similar to that from the 7GIMs ensemble but
the S2N ratio increases, with magnitude depending on the region
(Tables S2 and S3 in SI for details). Note however that even with
JULES excluded from the MME, the uncertainty from GIMs
generally remains greater than that from GCMs, suggesting that
JULES is not the dominant source of uncertainty within GIMs.

Discussion
Previous global modelling experiments have suggested that under
climate change soil moisture and runoff would decrease (see e.g.
4–7, 10, 28, 29–32), albeit with large regional uncertainty in the
magnitude of changes. However most studies only include one or
a few Global Impact Models (GIMs), while recent work (17,
6) has shown that the uncertainty associated with the response
terrestrial hydrology to climate change simulated by different
GIMs could be as large as the uncertainty in the response of the
climate to greenhouse gas forcings simulated by Global Climate
Models (GCMs). The uncertainty associated with GIMs has been
attributed to differences in the number and type of processes
represented in the GIMs (e.g. water balance, energy balance),
and to differences in the details of their implementations. We
used a Multi-Model Ensemble (MME) experiment including a
relatively large number of GIMs of diverse types (which are able
to reproduce the main characteristics of water deficits in terms
of regional extent and duration (15)), forced by the same bias-
corrected climate from simulations of five state-of-the-art GCMs,
to assess changes in the frequency and severity of droughts, at
the global and regional scales, under four different RCPs for the end
of the 21st century.

At the regional scale, our results show that drought frequency
(proportion of time under drought conditions) and severity (pro-
portion of land under drought conditions) is very likely (i.e. more
than 90% of ensemble members) to increase in the Caribbean,
South America, Western and Central Europe, Central Africa,
Australia and New Zealand and Western Indian Ocean under
RCP8.5; this reinforces earlier findings based on CMIP3/ SRES
projections (2). In Eastern Africa, the variation between GCMs
is large and the Signal-to-Noise ratio (S2N) is close to zero. Both
GCMs and GIMs contribute to the overall uncertainty in the
response; improving the representation of regional changes in
droughts is dependent on improved process representation in
the models, for example through analyses of GIMs biases when
forced by observed climate. It is however beyond the scope of
this paper to diagnose the reasons for the differences between
particular GCMs and GIMs.

The MME shows a likely increase in the spatial extent (sever-
ity) of dry episodes under all four RCPs, with increasingly large
changes under greater radiative forcing and S2N greater than 1
at the global scale and in some regions. Under RCP8.5, all five
GCMs show a substantially warmer climate which will tend to
drive increased evaporation. There is more variation in projected
precipitation changes, both between regions and between GCMs
(Fig. S1 of SI). Where evaporation increases and precipitation
decreases, soil moisture deficit can build up, resulting in increased
drought. In our results, areas with the largest signal of drought
increase are generally located where precipitation is projected
to decrease. However, even in those areas where precipitation
increases, drought can still increase if this extra water is lost
through greater evaporation. This is the case in tropical areas
where GCMs indicate increased precipitation (e.g. parts of Cen-
tral Africa; Fig. S1 in SI), but increase in evaporation leads to
more drought being simulated by GIMs (Fig. 1). Using S2N
calculated over different sub-sets of the MME describing range
of GCMs and GIMs, we showed that the total uncertainty associated
with projected changes in drought is larger from GIMs compared
to GCMs. GIMs uncertainty is particularly affected by an outlying
GIM, JULES, that shows systematically lower response to climate change, but remains larger than the uncertainty in GCMs even when excluding it from the ensemble, e.g. GDI S2N is 2.48 from GIMs and 3.01 from GCMs when excluding JULES (Table S3 in SI; numbers in bracket for details).

By investigating JULES simulations further, we show that its outcry signal is largely the result of the inclusion of a description of the plant response to enhanced CO$_2$, a process that is not represented in most GIMs used to simulate global water resources. The effects of CO$_2$ and dynamic vegetation on plant evapotranspiration and mean runoff have been studied before (e.g. 24, 25, 33, 34) but the effect on drought and a direct comparison with hydrological models has not been presented before.

When atmospheric CO$_2$ increases, the stomata can partially close (35) conserving the water and resulting in smaller changes of evaporatortranspiration in a warmer climate (26, 36). This leaves a wetter soil and thereby a less likely drought occurrence, as found in our results. At the leaf-scale the physiological effect of increased CO$_2$ is well characterised by laboratory and field studies (37) but models differ substantially in the predicted response of transpiration at the ecosystem level (38) and the net effect of physiological and structural changes is also highly uncertain (39).

Our results suggest that the inclusion of CO$_2$ and vegetation dynamics can fundamentally change the drought response to climate change but the magnitude of these changes remain uncertain.

This underlines the importance of including a diverse range of GIMs describing various processes when designing multi-model experiments, and that more research should be conducted to better understand the response of vegetation water use to CO$_2$ increase.

Our MME only considered the impact of climate change with no representation of water management or changes in land use. Climate (including CO$_2$ effects on vegetation) is not the only forcing relevant to assessments of future droughts and water scarcity as water demand can generate water stress (40) and the projected future population increase will likely result in further increases in water stress (41). For a thorough investigation of water availability, the combined effect of climate, land use and water management should be taken into account, using a range of GCMs and GIMs to capture the uncertainty.

Methods

In this paper we have analysed simulations from the Global Impact Models of the ISI-MIP ensemble experiments for which daily runoff data were available.

The experiments considered five different worlds: one representative of historical radiative forcing and four possible future worlds. These future scenarios included: a very high baseline (rising radiative forcing reaching 8.5Wm$^{-2}$ by 2100, RCP8.5), a very low forcing level (radiative forcing peaking at 3Wm$^{-2}$ before declining to reach 2.6Wm$^{-2}$ by 2100 RCP2.6), and two medium stabilization scenarios (stabilization without overshoot pathway to 4.5/6.0 Wm$^{-2}$ at 2100 RCP4.5/RCP6.0) (22, 42). Each radiative forcing scenario was implemented by five Global Climate Models (GCMs): HadGEM2-ES; IPSL-CMSA-LR, MIROC-ESM-CHEM, GFDL-ESM2M and NorESM1-M (18). Transient GCM outputs were re-gridded to a common 0.5° latitude x 0.5° longitude grid and a 2-step bias correction procedure implemented for each month independently (8) based on the WATCH Forcing data (43).

The bias-corrected GCM outputs (8) were used as inputs for nine Global Impact Models: H8B, JULES, LPJmL, Mac-PDM-09, MATSIRO, MPI-hm, PRC-GlobWB, VIC and WBM (see SI for references). For RCP4.5 and 6.0, VIC and Mac-PDM-09 were only driven by HadGEM2-ES. The GIMs were run on 0.5° grids (except JULES, which was run with grid cell size 1.875° longitude x 1.25° latitude, then regridded to 0.5° for analysis). GIMs were spun up to a quasi steady state by repeated use of detrended meteorology for 1951-1980, followed by a simulation of the period 1951-2005. Simulations for each RCP covered 2006-2099 (2005-2099 for HadGEM2-ES-forced runs). All GIMs considered contemporary patterns of land use, except JULES which modelled natural vegetation only, with no land use. No anthropogenic storage (e.g. dams and reservoir) or water management were represented.

We have not investigated the extent to which the drought results from the model output are due to simulation peculiarities or observation, however. Our best assessment from other work with JULES (not specifically on drought) is that results are generally not very sensitive to the size of the grid cells, at least for modest changes in resolution (say 0.5 to 3 degrees) and for regionally or globally averaged statistics.

