Driver’s ability to absorb information from co-located signs along motorways

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: HAN, C. ... et al, 2016. Driver’s ability to absorb information from co-located signs along motorways. Transportation Research Board 95th Annual Meeting, January 10–14, 2016, Washington D.C., USA

Additional Information:

- This conference paper was peer-reviewed by TRB.

Metadata Record: https://dspace.lboro.ac.uk/2134/22164

Version: Accepted for publication

Publisher: © the authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
DRIVERS’ ABILITY TO ABSORB INFORMATION FROM CO-LOCATED SIGNS
ALONG MOTORWAYS

Dr Clarissa Han, Corresponding Author
ARRB Group
500 Burwood Highway, Vermont South, VIC 3133 Australia
Tel: 0061 3 98811695; Fax: 0061 3 98878104; Email: clarissa.yihan@arrb.com.au

Dr Peter Cairney
ARRB Group
500 Burwood Highway, Vermont South, VIC 3133 Australia
Tel: 0061 3 98811621; Fax: 0061 3 9887 9618; Email: peterc@arrb.com.au

Dr Ashleigh Filtness
Centre for Accident Research & Road Safety - Queensland
Queensland University of Technology
130 Victoria Park Road, QLD 4059 Australia
Tel: 0061 7 3138 7713; Fax: 0061 7 3138 0111; Email: ashleigh.filtness@qut.edu.au

Dr Gregoire Larue
Centre for Accident Research & Road Safety - Queensland
Queensland University of Technology
130 Victoria Park Road, QLD 4059 Australia
Tel: 0061 7 3138 4644; Fax: 0061 7 3138 0111; Email: g.larue@qut.edu.au

Amy Schramm
Centre for Accident Research & Road Safety - Queensland
Queensland University of Technology
130 Victoria Park Road, QLD 4059 Australia
Tel: 0061 7 3138 4944; Fax: 0061 7 3138 0111; Email: a.schramm@qut.edu.au

Prof Andry Rakotonirainy
Centre for Accident Research & Road Safety - Queensland
Queensland University of Technology
130 Victoria Park Road, QLD 4059 Australia
Tel: 0061 7 3138 4683; Fax: 61 7 3188 0111 Email: randry@qut.edu.au

Word count: 4,200 words text + 11 tables/figures x 250 words (each) = 6,950 words

Submission Date: 24 July 2015
ABSTRACT

The paper presents initial findings from an Austroads funded project NT1782 Ability to Absorb Information through Electronic and Static Signs. The paper aims to investigate how easily messages displayed on co-located signs can be absorbed, and if drivers can absorb messages and take appropriate action without any adverse impact on the safety and efficiency of driving.

Co-location of three types of signs under motorway conditions was investigated: direction signs (DS), variable message signs (VMS) and variable speed limits/lane control signs (VSL/LCS). The authors reviewed global wide practices and research evidence on different types of sign co-locations. It was found that dual co-location of VSL/LCS, VMS and/or DS is a practical arrangement which has been widely practised overseas and in Australia. Triple co-location of VSL/LCS, VMS and DS is also practised overseas but is still new to the Australian driving community. The NT1782 project also employed an advanced driving simulator (ADS) to further investigate the possible impacts of sign co-location on drivers’ responses in an emergency situation and there were no obviously adverse impacts have been identified from the ADS study.

The authors consolidated all findings and concluded that although there is no clear evidence showing that triple co-location gives rise to riskier behaviour, this proposition should be viewed with caution. Further evaluation of triple co-location in a real-life setting is called for.

Keywords: sign co-location, direction signs, variable message signs, variable speed limit signs, lane control signs, advanced driving simulator, dual-colocation, triple co-location
INTRODUCTION

There are locations on the motorways where co-location of different types of signs on the same gantry or post might be attractive to road agencies such as:

- situations where a number of critical messages need to be conveyed over a short travel distance, e.g. approaching an exit that is located part way around a left curve, just beyond a crest or where batters make installation of roadside signs impracticable
- situations where the available budget is limited and there is opportunity to make full use of existing or proposed gantries
- situations where there is a need to minimise redundant signs without omitting any important information.

The ability of drivers to see, read and understand traffic signs has been extensively investigated. However, co-location of a number of critical messages over a short distance has the potential to exceed road users’ capacity to absorb and act on them. The paper aims to review current practice and guidelines on the sign co-locations and investigate the possible impacts of sign co-location on the safety and efficiency of driving under motorway conditions. It is anticipated that work on this will inform future policy in relation to the use of co-located electronic and static signs along motorways in Australia. Co-location of three types of signs under motorway conditions was investigated: direction signs (DS), variable message signs (VMS) and variable speed limits/lane control signs (VSL/LCS).

The paper presents findings from the recent Austroads funded project NT1782 Ability to Absorb Information through Electronic and Static Signs (Austroads 2015), it starts with a comprehensive review of current standards, guidelines and practice. The paper then focuses on identifying the evidence for and against sign co-locations based on existing research works. Further discussion is also conducted to obtain more evaluation evidence and recommend possible situations and solutions when considering co-locations of DS, VMS and VSL/LCS for motorways.

REVIEW OF CURRENT PRACTICE AND GUIDELINES

The authors reviewed both overseas and Australian practices, standards and guidelines on co-location of dynamic and static signs. It was found that co-location of dynamic and static signs are not considered by Australian standards (i.e. AS 1742 Set-2014, Manual of uniform traffic control devices (Standards Australia 2014)) or US standards (i.e. US Manual on Uniform Traffic Control Devices (FHWA 2012)). Sign separation with sufficient distances is recommended when there is a need to convey two or more different messages in one location. Generally, speed limits should not be used in conjunction with other guide signs. However, a lot of mismatches exist between standards and current practices in terms of sign co-location. Co-location of dynamic and static signs has been applied on both Australian and overseas motorways.

Amongst DS, VMS and VSL/LCS, there are five types of co-location formats of:

1. Dual co-location of VSL/LCS and VMS

European guidelines such as EasyWay (2012a and 2012b) provide harmonisation deployment guidelines for VSL and VMS. The co-location of VMS and VSL in Copenhagen (Figure 1) and co-location of VSL and VMS on the M42 in the UK (Figure 2) are given as examples of good practice. It has also been applied in Australia (e.g. Figure 3) and recommended by Austroads guidelines (Austroads 2009a). Highways Agency (2014) reported that co-location of
VSL/LCS and VMS applied in UK managed motorway projects have received positive feedback from users.

FIGURE 1 Co-located VMS and VSL in Motoring 3 around Copenhagen

FIGURE 2 Co-located VMS and VSL along the M42
Han et al.

FIGURE 3 Co-located VMS and VSL on Monash Freeway, Australia

2. Dual co-location of VSL/LCS and DS

Dual co-location of VSL/LCS and DS is a common practice in US managed lane applications (FHWA 2011) and European managed motorway applications (e.g. Highways Agency 2014, EasyWay 2012a). Figure 4 provides an example of a priced dynamic shoulder lane (PDSL) in Minnesota. The PDSL allows eligible and toll-paying vehicles to use the inside shoulder during the morning peak period only. Figure 5 shows a simple co-location of VSL and DS from a Dutch motorway. Figure 6 shows a complicated co-location of VSL and DS from a Dutch motorway. The sign in Figure 6 is also the most complicated hybrid sign in practice.

In Australia, dual co-location of VSL/LCS and DS is applied in many managed motorway applications and has been considered by Austroads (2009a). Queensland Traffic and road use manual (TRUM) provides detailed guidance regarding the co-location of VSL/LCS with both lane-based direction signs and non-lane-based direction signs (TMR 2013). An example of co-location of gantry mounted VSL and an advance direction sign in the case of a single exit in TMR (2013) is shown in Figure 7. VicRoads Managed Freeways Handbook (VicRoads 2013) indicates that co-location of DS and LUMS might be considered if geometric constraints prevent sign separations. Figure 8 shows an example of co-located VSL and DS along Monash Freeway in Melbourne.
Figure 4 Lane control signal over I-35W PDSL (priced dynamic shoulder lane), Minnesota

Figure 5 Example of simple co-location of VSL and DS in Rotterdam, Netherlands
Source: Google Maps (2013), ‘Rotterdam, Netherlands’ map data, Google, California, USA.

FIGURE 6 Example of complicated co-location of VSL and DS in Rotterdam, Netherlands

Source: TMR (2013).

Figure 7 Co-location of gantry mounted VSL and advance direction signs in the case of a single exit
3. Triple co-location of VSL/LCS, direction signs and VMS

This is the most complicated co-location of dynamic and static signs. It has been applied in the UK M42 ATM pilot (e.g. Figure 9) and this project was acknowledged as world best practice by European EasyWay guidelines (EasyWay 2012a, 2012b) and US guidelines (FHWA 2011).

In Australia, Department of Transport and Main Roads, Queensland (TMR) have attempted to test dual and triple co-locations of lane use management systems (LUMS) with DS and VMS on Queensland motorways. Larue et al. (2013) reported an advanced driving simulator
(ADS) study that aimed to investigate drivers’ behavioural changes and comprehension resulting from the sign co-location proposed by TMR. Figure 10 shows an example of triple co-located signs that have been tested; however the testing results were inclusive. Further research evidence from Larue et al. (2013) is also discussed in Table 1 of the next section of the paper.

![Figure 10 Triple co-location of VSL/LUMS, direction signs and VMS proposed by TMR](image)

Source: Larue et al. (2013).

Figure 10 Triple co-location of VSL/LUMS, direction signs and VMS proposed by TMR

4. Co-location of VMS and direction signs

Co-location of VMS and direction signs is not commonly used or well-researched based on the findings from literature review.

5. Hybrid signs

A hybrid sign usually includes a dynamic message panel in a static sign that displays a graphic legend or a text message. The US MUTCD (FHWA 2012) cited hybrid signs as a special type of dynamic message sign used mainly in managed lane operations. Figure 10 provides some examples of different hybrid sign applications in the FHWA (2012). Hybrid sign is also supported by European EasyWay (2012b) and has been broadly applied in European countries, the US, Australia and New Zealand.
The authors also reviewed extensive existing research works including four laboratory experiments, five driving simulator studies and two driver evaluations from both overseas and Australian sources. Evidence relating to co-location of dynamic and static signs from these researches has been identified. Table 1 brings this evidence together in order to assess the arguments for and against co-location, and to identify any issues that remain to be resolved. The evidence from standards and guidelines is also summarised in Table 1.
<table>
<thead>
<tr>
<th>Information source</th>
<th>Evidence for co-location</th>
<th>Evidence against co-location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards and guidelines</td>
<td>Approves co-location (hybrid signs) in limited circumstances – lane use, dynamic tolling and etc.</td>
<td>Overhead signs limited to essential signs. Regulatory signs including speed limits should not be used in conjunction with overhead sign installations; concern about amount of time available.</td>
</tr>
<tr>
<td>Highways Agency (UK) (see FHWA 2012)</td>
<td>VMS, VSL and direction signs co-located along M42.</td>
<td></td>
</tr>
<tr>
<td>Netherlands (see FHWA 2012)</td>
<td>Speed and direction signs co-located, including complex signs with up to six layers of information.</td>
<td></td>
</tr>
<tr>
<td>EasyWay (2012b) European project to harmonise VMS practice</td>
<td>Variety of combinations for VMS, pictographs, speed limits, direction arrows, route numbers.</td>
<td></td>
</tr>
<tr>
<td>AS 1742.15</td>
<td>Co-location might be considered if geometric constraints prevent separation, driver ability to comprehend the information has been checked, and benefits outweigh disadvantages.</td>
<td>Generally only one type of sign per post; different types of message should be on separate posts. Only directly relevant auxiliary signs permitted with speed limits.</td>
</tr>
<tr>
<td>Freeway design parameters for fully managed operations (Austroads 2009a)</td>
<td>Preferable not to locate VSL/LCS on same gantry as static or other VMS.</td>
<td></td>
</tr>
<tr>
<td>TMR TRUM (2013)</td>
<td>Lane-based DS should be co-located with VSL/LCS; non-lane based DS may be co-located.</td>
<td></td>
</tr>
<tr>
<td>Laboratory experiments</td>
<td>A limited degree of co-location is allowed without causing driver information overload.</td>
<td>Driver information overload was likely to occur if a single sign displayed more than two destinations and/or more than two route symbols, or more than three sign panels in total.</td>
</tr>
<tr>
<td>Lerner et al. (2003)</td>
<td>Drivers adopted one of two scanning strategies, fixed or back-and-forth; the latter yielded better performance and suggests that drivers would be able to cope with multiple information in the one location.</td>
<td></td>
</tr>
<tr>
<td>Liu (2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information source</td>
<td>Evidence for co-location</td>
<td>Evidence against co-location</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cooper and Mitchell (2002)</td>
<td>Evidence against co-location</td>
<td>Drivers could not always extract all the information on complex signs displayed for 2–3 s. Consistency and complexity of message affected the percentage of correct responses. Suggests possible limit for ability to extract information.</td>
</tr>
<tr>
<td>Edquist and Johnston (2008)</td>
<td>More than 3 traffic control devices in one scene or more than 5 in a 10 s drive increased ratings of clutter and time to detect changes in signs; this seems compatible with co-location of signs.</td>
<td></td>
</tr>
<tr>
<td>Pyta and Cairney (2007)</td>
<td>The ‘exit closed’ message was conveyed most successfully on the co-location scenario, compared to the sequenced locations of direction signs and VSL/LCS.</td>
<td></td>
</tr>
<tr>
<td>Driving simulators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu, Sun and Rong (2011)</td>
<td>Highway guide and non-guide signs should not contain more than five pieces of information (e.g. five road names) – this is sufficient to permit co-location.</td>
<td></td>
</tr>
<tr>
<td>Cooper and Mitchell (2002)</td>
<td>Tactical messages increased decision time by approx. 0.15 s, but strategic messages increased it by 0.45 s equivalent to adding three additional destinations. It suggests drivers can still cope with co-location provided number of directions is limited.</td>
<td></td>
</tr>
<tr>
<td>Larue et al., (2013)</td>
<td>The CARRS-Q advanced driving simulator (ADS) was used to investigate the effects of different scenarios of dual co-location of VSL/LUMS and VMS and triple co-location of VSL/LUMS, direction signs and VMS. Changes in sign co-location and task complexity had little observed effects on vehicle dynamics variables.</td>
<td>Co-location increased gaze times beyond the 2 s ‘safe’ threshold for half the subjects, and resulted in some very long viewing times. BUT it is questionable whether the 2 s threshold applies in all driving conditions; it also depends on where the driver is looking.</td>
</tr>
<tr>
<td>Süsser (2004)</td>
<td>New multi-functional signs that flexibly combined direction arrows and flexible dynamic display panels were highly effective and well-received by drivers. They have been applied at important decision points on German motorways since 2004. They suggest that drivers are well able to cope with the level of complexity involved in co-location.</td>
<td></td>
</tr>
</tbody>
</table>
Information source | Evidence for co-location | Evidence against co-location |
--- | --- | --- |
TTR (2007) | Investigated driver response to real-life motorway management system signing on M42; signs were generally well understood, and customer satisfaction levels were very high. | |
Süsser (2004) | See above – drivers were highly satisfied with new signing system. | |
Observation and analysis of on-road behaviour | | |
No studies found | | |

Note: Reader should refer to Austroads (2015) for further details of relevant literatures.

Studying the evidence in Table 1 suggests that the bulk of the evidence favours co-location, as follows:

- **Standards, guidelines and practice**

 As discussed, the guidelines and standards which do not favour co-location appear to have been overtaken by developments in practice, where co-location is widely accepted.

- **Driver evaluations**

 Driver evaluations have generally found high levels of satisfaction with new forms of complex signs.

- **Experimental and simulator studies**

 These have generally found that drivers have been able to cope well with the amount of information likely to be presented on co-located signs and to be able to extract the required information from the sign array in time to make the required decisions. The three exceptions are:

 - Cooper and Mitchell (2002), where subjects did not always manage to extract all the information from the array in the allocated time. Note however that this was based on the sign information being exposed for a limited time rather than being available over a number of seconds as it would be in real-life.

 - Lerner et al. (2003) reported that driver information overload was likely to occur if a single sign displayed more than two destinations and/or more than two route symbols, or more than three sign panels in total.

 - Larue et al. (2013) found that both dual and triple co-location of DS, VMS and/or VSL increased the time spent looking at the sign beyond the 2 s threshold identified by Klauer et al. (2006) in the Virginia 100-car naturalistic driving study, and in some cases this resulted in rather long viewing times.

UNSOLVED ISSUES RELATING TO CO-LOCATION

Current guidelines and most of the empirical work indicate that road users will be able to cope with co-location. The remaining issue is whether co-located signs require sufficiently long glance times to increase the risk of collisions. Two points should be considered in relation to this issue:

1. The issue is not ‘can the driver extract the required information in the available viewing time?’, but ‘does extracting the information occupy the driver’s attention for such a long
period (e.g. longer than 2s) that he/she is at risk of not taking in critical information from the road directly in front of the vehicle?’

2. The extent to which looking away from the road immediately in front of the vehicle is dangerous depends on what the driver is looking at instead. If the driver is looking at something inside the vehicle, as is the case in many instances of distraction, then central vision (the most central part of the visual field) is directed well away from the critical area in front of the vehicle and the probability of detecting events in that area is very low. On the other hand, if the driver is looking ahead to a gantry sign, the most sensitive part of the eye is only slightly displaced from the critical area in front of the vehicle, and there is a good chance that events in that region, such as a brake lights coming on, or another vehicle pushing into the lane, would register in peripheral vision which would immediately trigger a direct glance in that direction. However, further investigation and evidence would be required before a robust conclusion could be achieved.

The issues to which further research should be addressed are therefore these – can drivers respond adequately to other events on the road while engaged in extracting information from co-located signs, and can they respond as adequately to these events when signs are co-located compared to when they are located separately? Here an extreme example of another event on the road could be an emergency situation such as having a vehicle in front of the driver’s vehicle brake suddenly as a traffic sign is approached.

FURTHER RESEARCH EVIDENCE AND DISCUSSION ON THE IMPACT OF SIGN CO-LOCATION UNDER EMERGENCY SITUATIONS

To address the unsolved issues identified from the literature review, the NT1782 project also employed the Centre for Accident Research and Road Safety (CARRS-Q) to further simulate drivers’ ability to respond to an emergency event while extracting information from co-located signs (Austroads 2015). The CARRS-Q ADS component extended the work of Larue et al. (2013) by adapting the previously used simulation of a section of the Ipswich Motorway in Queensland, Australia. Adaptations included an increase in traffic volume and the occurrence of an emergency event towards the end of each scenario. Some further development of the ADS program was conducted to incorporate the required sign arrangements. The simulator is capable of collecting a wide range of driving performance measurements and driver eye movements.

The simulator study employed a repeated measures design in order to compare participants’ behaviour and responses, three scenarios were developed and tested: no sign co-location, with dual co-location and with triple co-location (Austroads 2015). Both normal motorway driving and an emergency situation were considered. For each scenario participants were instructed to drive to a given destination. Each scenario contained a lane closure and changes in speed, indicated by the VSL/LCS sign. An emergency event occurred towards the end of each scenario in conjunction with a change in VSL information. The emergency event was a vehicle in front of the participant’s vehicle braking suddenly as a traffic sign was approached. After driving each scenario participants completed the NASA TLX (task load index) (Hart and Staveland, 1988) and after all three scenarios had been driven participants completed a survey asking their opinions of triple co-located signs. Full study details can be found in Appendix A of Austroads (2015).

Some key findings and further discussions are summarised as follows:

1. Overall, participants responded safely to emergency situations while they were extracting information from co-located signs. However, there was some evidence of slowed
response to the emergency situation for some individuals when triple co-located signs were presented. Therefore although there is no clear evidence that triple co-location gives rise to higher risk than dual co-location this proposition should be viewed with caution. Further evaluation of triple co-location in a real-life setting should not be ruled out.

2. There was no difference in participant’s general driving behaviour under normal motorway driving conditions (no emergency).

3. Drivers appeared equally able to select the correct destination whether signs were co-located or not. Complying with a posted speed limit change occurring in conjunction with an emergency event was not affected by sign co-location.

4. The ADS study in Austroads (2015) found that in all three tested scenarios, the maximum time spent looking at any one sign was less than this 2 s threshold. In contrast, Larue et al. (2013) reported that both dual and triple co-location increased the time spent looking at the sign beyond the 2 s threshold. This 2 s threshold was identified by Klauer et al. (2006) as being critical for safe driving, and in some cases this could result in rather long viewing times. However, wince neither simulator study identified any significant differences in the maximum eye gaze time between dual and triple co-locations, it is probably safe to conclude that triple co-location did not lead to higher risk of long eye gaze on one sign, when compared to dual co-location.

5. It appears that Australian drivers tend not to like the complicated triple co-located signs based on the self-reported survey which suggested that there was perceived increase in information load. Furthermore, the stressfulness item of the NASA-TLX was greater following the triple co-location drive. However, the triple co-located signs are not currently in use in Australia and so would have been completely new to most participants. Perhaps an information campaign aimed at drivers would improve public acceptance and comprehension of the triple co-located signs.

CONCLUSIONS AND RECOMMENDATIONS

By consolidating all findings from the literature review, the analysis of evidence for and against sign co-locations, and the recent ADS study (Austroads 2015) it is concluded that:

1. Although some standards and guidelines do not permit co-location of sign information, these have been overtaken by current practice and more recent guidelines from other jurisdictions. Particularly, dual co-location of VSL/LCS, VMS and/or DS is a practical arrangement which is widely practised. Additionally, triple co-location of VSL/LCS, VMS and directional signs is currently practised along UK motorways.

2. Experimental research suggests that dual co-location appears to present no difficulties to drivers, either when VSL/LCS is presented along with a DS or with a VMS. It is suggested that dual co-located signs should be provided along a route and/or throughout a network of routes in a consistent manner in response to drivers’ information needs.

3. Experimental research also suggest that with triple co-location of signs:
 - most aspects of the driving task are not adversely affected
 - in general, drivers responded adequately to an emergency situations in a simulator, although there is some suggestion that for some individuals responses may be slower with triple co-location.

4. The positive evidence from the review of current practice and guidelines and suggest that, for the time being at least:
- triple co-located signs should be used only in situations where other arrangements for displaying essential sign information are impractical
- drivers’ behaviour and reactions to the signs should be monitored closely in the period following installation.

However, these findings should not rule out on-road trials with triple co-located signs.

5. The simulator study reported in Austraods (2015) found that Australian drivers did not like the complicated triple co-located signs, although they were generally able to cope with the information displayed on the sign. Over time, as drivers become more familiar with triple co-located signs, drivers’ ability to absorb information and attend appropriately to the signs may improve, and the degree of difficulty that they experience decrease.

Based on the overall findings from the paper the authors also suggest Austroads and relevant stakeholders to consider the sign colocations in their future decision-making process such as:

1. Austroads should inform Standards Australia of the above findings and suggest that consideration be given to the inclusion of dual co-location of VSL/LCS, VMS and/or DS within the Australian Standard AS 1742 Manual of Uniform Traffic Control Devices (Standards Australia 2014).

3. Road agencies should conduct field trials of triple co-locations to further monitor and evaluate drivers’ behaviour, comprehension and responses in real-life settings. Triple co-located signs should only be considered in situations where other arrangements for displaying essential sign information are impractical.

ACKNOWLEDGEMENT

This paper is based on initial findings from an Austroads funded project NT1782 Ability to Absorb Information through Electronic and Static Signs. The authors would like to acknowledge the generous contribution from the project manager and reference group members including Kelvin Marrett, Mana Tavahodi, Anna Clancy, Meredyth-Ann Williams, Jeremy Burdan, David Jorgensen, Jon Douglas, Aftab Abro, Rifaat Shoukrallah, Dave Landmark, Maurice Burley, Joanne Chang and Steve Clark.
REFERENCES

1. Austroads 2009a, Freeway design parameters for fully managed operations, AP-R341-09, Austroads, Sydney, NSW.
3. Austroads 2015, Ability to absorb information through electronic and static signs, AP R485-15, Austroads, Sydney, NSW.
5. Department of Transport and Main Roads 2013, Traffic and road use manual (TRUM): technical notes 2.18: interim guidelines for the colocation of gantry mounted variable speed limit signs with advance direction signs on motorways, TMR, Brisbane, QLD.
9. Federal Highway Administration 2011, Managed lane chapter for the freeway management and operations handbook, FHWA, Washington, DC, USA.
Naturalistic Driving Study data, report no. DOT HS 810 594, National Highway
Traffic Safety Administration, Washington DC, USA.