Comments on Crosstalk 26: 
High intensity interval training does/does not have a role in risk reduction or treatment of disease. 
Personalised exercise – time to HIIT the right balance.

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is the peer reviewed version of the following article: PUGH, J.K. and FAULKNER, S.H., 2016. Comments on Crosstalk 26: High intensity interval training does/does not have a role in risk reduction or treatment of disease. Personalised exercise – time to HIIT the right balance. Journal of Physiology, 593(24), pp. 5215–5404., which has been published in final form at http://dx.doi.org/10.1113/JP271041. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. It is a comment on the original article and can be found in supporting information.

Metadata Record: https://dspace.lboro.ac.uk/2134/22312

Version: Accepted for publication

Publisher: © Wiley
Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Personalised exercise – time to HIIT the right balance

Jamie K. Pugh and Steve H. Faulkner

School of Sport, Exercise and Health Sciences, Loughborough University, and the NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit. Leicester & Loughborough, UK

Comments

This topical CrossTalk sparks important debate on the role for high intensity interval training (HIIT) in risk reduction and treatment of disease. Wisløff et al., (2015) suggest HIIT appears highly effective at reducing disease risk. Furthermore, a recent meta-analysis highlights important benefits to cardio-metabolic health following HIIT (Jelleyman et al., 2015), particularly in those at risk of or with type 2 diabetes (T2DM). Specifically, HIIT resulted in a superior reduction in insulin resistance and increase in VO₂ max compared to continuous exercise and non-exercise control groups.

In contrast to the point of Holloway and Spriet (2015), HIIT promotes improvements to cardiac structure and function, highlighting the potential of HIIT to reduce cardiac risk factors in clinical and pre-clinical populations. The feasibility of HIIT in a ‘real world’ context is often questioned. However, high rates of adherence to unsupervised training, without either preconditioning exercise or any adverse cardiac events, has been reported (Cassidy et al., 2016). Similarly, high adherence rates to group cycling, which incorporates HIIT, led to marked improvements in cardio-metabolic health in overweight physically inactive individuals (Faulkner et al., 2015).

Despite this evidence, the importance of alternative exercise activities cannot be ignored. For example, resistance-based exercise may provide additional benefits that would otherwise be missed if endurance exercise were performed in isolation (Shaw et al., 2015). Therefore, we suggest that while HIIT elicits several health benefits, HIITing the intensity balance is critical in order to optimise personalised exercise interventions and benefit both individual and public health.

Words: 250 (250 max)

References


