Characterisation, analysis and comparison of multiple biomass fuels used in co-firing trials

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: LAY, V.F. ... et al, 2015. Characterisation, analysis and comparison of multiple biomass fuels used in co-firing trials. IN: Proceedings of the 23rd European Biomass Conference and Exhibition, pp. 464-474

Additional Information:

- This paper is available here with the kind permission of the publisher.

Metadata Record: https://dspace.lboro.ac.uk/2134/22353

Version: Published

Publisher: ETA-Florence Renewable Energies

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
CHARACTERISATION, ANALYSIS AND COMPARISON OF MULTIPLE BIOMASS FUELS USED IN CO-FIRING TRIALS.

V.F. Lay1,2, C.A. Kirk1, R.L. Higginson2, S.C. Hogg2, C. Davis3

1 Department of Chemistry, 2Department of Materials, 3 E.On Technology (Ratcliffe) Ltd.

Loughborough University, Loughborough, Leicestershire, LE11 3TU. Technology Centre, Ratcliffe-on-Soar, Nottingham, NG11 0EE.

ABSTRACT: The co-firing of biomass and coal is one method proposed for the reduction of CO₂ emissions. This paper compares synthetic laboratory ash of hemp, coal, and eucalyptus and their co-ashed blends with deposits formed during the co-combustion of hemp and coal and eucalyptus and coal. Results show that whilst the results are not in complete agreement a trend towards the formation of Ca-silicates, Ca-Mg silicates and K-Al-Silicates at high temperatures is present in both laboratory ashed samples. The morphology of the particles formed through the different methods differs with larger spherical agglomerates present in the deposits.

Keywords: Ashes, Biomass, Co-Firing, Eucalyptus, Hemp.

1 INTRODUCTION

Environmental concerns arising from the frequent and widespread use of fossil fuels for energy generation have led to greater interest in the use of both dedicated biomass firing and biomass/coal co-firing [1]. The combustion of biomass is widely considered to be carbon neutral as the CO₂ absorbed in photosynthesis during plant growth is then released through combustion [2,3]. It is worth noting, that small amounts of greenhouse gases are emitted during fuel transport and processing. Therefore, to ensure that the process is as carbon neutral as possible, it is desirable that biomass is sourced locally [4]. Increases in biomass usage requires a deeper understanding of the fuels used including combustion properties, fuel characteristics (e.g: calorific value, ash composition, heavy metals present) and ash behaviour (formation of corrosion products or high melting point silicates) [5]. This important analysis should be undertaken prior to full application of the fuels [1]. A review of the behavior of a wide range of biomass during combustion has been undertaken [6,7]. Investigations into the composition of ash produced from biomass firing/co-firing have been carried out alongside the possible applications or uses of the ash including fly ash as components in concrete and for use in road surfaces [1].

Phase transformations, alongside chemical interactions during combustion and pyrolysis, have previously been identified as key questions in relation to biomass firing [6]. Multiple studies into biomass combustion and the transformation behavior of the major inorganic elements contained in the ash have been conducted on a variety of fuels [8–12]. Lindberg et al. noted that as some systems may have in excess of 20 elements present in the fuels predicting interactions and deposition will not be straightforward [13].

A study into the composition of several species of woody biomass and types of plant tissue of trees (e.g. needles, bark, stem, shoots) concluded that, due to the inhomogeneous nature of the biomass and variations in plant tissue, producing a representative composition of the whole tree is challenging [14]. Further work modelling the ashing characteristics of five types of plant tissue and comparing against laboratory ashed samples, found the theoretical results to be in good agreement with the samples [15]. The elemental composition of biomasses were found to vary between plant species and genus [16,17]. These studies also showed that the ash composition is likely to vary due to different mineral pathways in the plant itself, as well as sometimes being affected by differing soil characteristics.

Databases such as the BIOBIB database [18] provide useful information on fuels already analysed however, the varying nature of biomasses even between crop and harvest [19,20], may mean that the information cannot be relied upon for 100% accurate information on fuels selected for use in power plants and further analysis may be required. It was found that some entries in the database were missing >20% of values required for peer data comparison (e.g. proximal analysis (C,H,S,N,Cl), ultimate analysis (inorganic ash matrix), calorific value, ash thermal behaviour and heavy metal content) [17].

This paper is to examine the ashing characteristics of three biomasses and one coal as well as two blends (hemp-coal and eucalyptus coal) to examine interactions of phases present in the ash at various temperatures on heating. Data obtained from lab studies are compared to deposits formed during largescale co-firing trials in a 1MWth combustion rig.

2 EXPERIMENTAL

Hemp, eucalyptus, Russian coal and two biomass-coal blends, hemp and coal (77:23 by mass) and eucalyptus and coal (88:12 by mass), were ashed in an air atmosphere, in a Carbolute CSF12/13 chamber furnace with a Eurotherm 808 controller. 1g of each sample was ashed in a clean oven dried crucible according to the temperature profile: 150°C (1 hour), 250°C (2 hours), 450°C (1h 30 mins), 575°C (3 hours) followed by cooling in a dessicator, weighing and returning to the furnace at 575°C until a constant weight (+3mg) was obtained. This was carried out in triplicate. These ashes and ash blends were placed in a Pt crucible in an Elite BRF14/5-2416 Furnace, and heated at 100°C intervals for 1 hour between 600-1100°C. At each temperature, a small portion of each sample was removed and the ash was returned to the furnace.

Fuel analysis was provided by E.On Technology (Ratcliffe) Limited. As received data are presented in Table I. Ash analysis of the bulk fuels was provided by E.On Technology (Ratcliffe) Limited. Elements present were determined by acid dissolution and emission spectroscopy according to ASTM D6349-09. (Table II) gives ash analysis.
Table I: Fuel composition, as received provided by E.On Technology (Ratcliffe) Limited

<table>
<thead>
<tr>
<th></th>
<th>Hemp</th>
<th>Eucalyptus</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>14.5</td>
<td>8.2</td>
<td>7.3</td>
</tr>
<tr>
<td>Volatile Matter (%)</td>
<td>56.3</td>
<td>76.8</td>
<td>35.8</td>
</tr>
<tr>
<td>Fixed Carbon (%)</td>
<td>13.0</td>
<td>14.4</td>
<td>48.2</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>16.2</td>
<td>0.6</td>
<td>8.7</td>
</tr>
<tr>
<td>CV, kJ/kg</td>
<td>14050</td>
<td>18570</td>
<td>27440</td>
</tr>
<tr>
<td>Sulfur (%)</td>
<td>0.09</td>
<td>0.01</td>
<td>0.34</td>
</tr>
<tr>
<td>Chlorine (%)</td>
<td>0.21</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Hydrogen (%)</td>
<td>4.43</td>
<td>5.63</td>
<td>4.48</td>
</tr>
</tbody>
</table>

Table II: Elements present in the ashes of fuels studies as determined by emission spectroscopy, provided by E.On Technology (Ratcliffe) Limited. (CaO as CaCO₃ for biomass)

<table>
<thead>
<tr>
<th>Element (%)</th>
<th>Hemp</th>
<th>Eucalyptus</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>44.00</td>
<td>26.50</td>
<td>44.80</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.68</td>
<td>7.60</td>
<td>6.21</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.84</td>
<td>5.13</td>
<td>4.50</td>
</tr>
<tr>
<td>CaO</td>
<td>17.70</td>
<td>21.80</td>
<td>23.10</td>
</tr>
<tr>
<td>MgO</td>
<td>3.89</td>
<td>5.88</td>
<td>2.55</td>
</tr>
<tr>
<td>K₂O</td>
<td>11.80</td>
<td>10.25</td>
<td>3.57</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.32</td>
<td>2.52</td>
<td>1.52</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.11</td>
<td>0.33</td>
<td>4.07</td>
</tr>
<tr>
<td>BaO</td>
<td>0.02</td>
<td>0.22</td>
<td>0.49</td>
</tr>
<tr>
<td>Mn₃O₄</td>
<td>0.17</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>6.52</td>
<td>2.88</td>
<td>1.13</td>
</tr>
<tr>
<td>SO₃</td>
<td>1.44</td>
<td>2.53</td>
<td>3.53</td>
</tr>
</tbody>
</table>

Samples were collected onto ceramic probes (Figure 1) in the superheater region of a 1MW th test combustion rig. They were taken in-situ during combustion runs of the co-firing of hemp-coal (77:23% by mass) and eucalyptus-coal (88:12% by mass). The collection times and temperatures are shown in Table III.

Figure 1: Hemp and coal ash deposits onto ceramic probes

Table III: Sample collection parameters for combustion rig samples (H=Hemp, E=Eucalyptus)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Duration (min)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>38</td>
<td>971</td>
</tr>
<tr>
<td>H2</td>
<td>57</td>
<td>Not Recorded</td>
</tr>
<tr>
<td>H3</td>
<td>76</td>
<td>1013</td>
</tr>
<tr>
<td>H4</td>
<td>58</td>
<td>980</td>
</tr>
<tr>
<td>E1</td>
<td>163</td>
<td>978</td>
</tr>
<tr>
<td>E2</td>
<td>202</td>
<td>914</td>
</tr>
<tr>
<td>E3</td>
<td>184</td>
<td>1012</td>
</tr>
<tr>
<td>E4</td>
<td>117</td>
<td>932</td>
</tr>
</tbody>
</table>

3 RESULTS AND DISCUSSION

Table I illustrates that the fuel compositions differ from one another, with coal and hemp containing a larger portion of ash in comparison to eucalyptus. This, in turn, is likely to have an effect on the slagging and fouling propensity of a fuel. Larger quantities of ash lead to an increase in the likelihood of phases which can cause the well documented issues [4,21] of high deposition rate and corrosion to occur.

Table II gives the elemental composition of the ash matrices of the three fuels studied. Differences in the quantity of elements present can lead to a significant phase variation between fuels. A comparison of the phases present in laboratory ashed samples to those present in ash samples collected in the combustion rig, may show some differences. This is likely to be due to the reduction/oxidation conditions and atmosphere experienced in each environment differing, which may result in the formation of different phases.

3.1 Laboratory Ashed Samples

3.1.1 X-Ray Diffraction

PXRD data are presented in Figures 2-4, representing analysis of samples at 600°C, 1000°C and 1100°C. These temperatures and data sets were selected as they highlight clear differences in the phases present at different temperatures on heating. The PXRD patterns shown in Figure 2, show that the major component of the ash at 600°C is quartz (SiO₂). This is unsurprising due to the large percentage of Si present in each of the fuels (Table I). At lower temperatures SiO₂ remains largely unreacted. The role of silicates in plants is known to be largely a protection mechanism from stress [22]; it is commonly taken up as sillicic acid (Si(OH)₄) before transport to other regions of the plant.

At lower temperatures carbonates (calcite (CaCO₃), fairchildite (K₂Ca(CO₃)₂) and dolomite (CaMg(CO₃)₂)) are present. The origin of calcite in the biomass fuels is thought to be via the decomposition of calcium oxalate, known to be present in the fuels [23,24]. The decomposition occurs in two steps:

\[
\text{CaC}_2\text{O}_4\cdot\text{H}_2\text{O} \rightarrow \text{CaC}_2\text{O}_4 + \text{H}_2\text{O} \quad 170-200\degree\text{C} \quad (\text{Equation 1}) \quad [6]
\]

\[
\text{CaC}_2\text{O}_4 + \text{CO}_2 + 300-600\degree\text{C} \quad (\text{Equation 2}) \quad [6]
\]
Calcite often then undergoes a decomposition to lime (CaO) according to the reaction:

$$\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \text{ } 840^\circ \text{C} \text{ (Equation 3)}$$

Dolomite decomposition follows the path shown in Equation 4[25].

$$\text{CaMg(CO}_3\text{)}_2 \rightarrow \text{CaCO}_3 + \text{MgO} + \text{CO}_2 \text{ } 500-900^\circ \text{C} \text{ (Equation 4)}$$

Figure 2: PXRD data of laboratory ashed samples at 600°C. A selected range (20-40°2θ) is presented for clarity. Q (Quartz, SiO₂), M (Microcline, KAlSi₃O₈), F (Fairchilite, K₂CaCO₃), S (Sylvite, KCl), C (Calcite, CaCO₃), N (Nepheline, NaAlSiO₄), Hp (Halite Potassium (K₂N₄O₂Cl), D (Dolomite, CaMg(CO₃)₂), I (Illite, K(Al₂Si₂O₅(OH))₂), HA (hydroxyapatite (Ca₉.₀₄(PO₄)₆(OH)₁.₆₈)), He (Hematite, Fe₂O₃). The highest intensity reflection of Periclase (MgO) is observed at 42.9°2θ, outside the range presented. Tables V-IX in the appendix list the full phases present in each fuel at each temperature.

The presence of lime was only observed in the sample set for hemp suggesting that upon formation it promptly reacts, most likely to form Ca-silicates.

Above 900°C silicates begin to form (Figures 3 & 4). Due to the differing original compositions of the fuels there are a variety of silicates formed for each fuel. All three fuels are high in Ca and therefore the presence of Ca-silicates through the pathways presented in equations 5-7 is likely.

$$\text{CaCO}_3 + \text{SiO}_2 \rightarrow \text{CaSiO}_3 \text{ (wollastonite)} + \text{CO}_2 + 2\text{CO}_2$$ \text{ (Equation 5)}[25]

$$\text{CaMg(CO}_3\text{)}_2 + \text{SiO}_2 \rightarrow \text{CaMgSi}_2\text{O}_6 \text{ (diopside)} + 2\text{CO}_2$$ \text{ (Equation 6)}[25]

$$\text{KAl}_2\text{(Si}_3\text{Al}_2\text{O}_{10}\text{(OH)}_2) \rightarrow 2\text{KAlSi}_3\text{O}_8 \text{ (leucite)} + 2\text{CaAl}_2\text{Si}_3\text{O}_8 \text{ (anorthite)} + 2\text{CO}_2 + \text{H}_2\text{O}$$ \text{ (Equation 7)}[26]

The formation of the Ca-silicates alongside CaMg-silicates highlights the potential for interaction between the elements and phases present in biomass and coal. For instance, eucalyptus ashed without coal was found to have more prominent peaks associated with ankermanite (Ca₃MgSi₆O₁₈) in comparison to the diffraction signature of the more Mg-rich phase, diopside (CaMgSi₅O₁₂), whereas the eucalyptus-coal blend had a more prominent signature of the diopside phases. This suggests that Ca reacted preferentially over Mg to drive formation as shown by Trindade et al., who found that CaCO₃ is consumed more rapidly than MgO in the formation of Ca-Mg silicates [25]. Therefore an increase in MgO content of the ash, derived from the dolomite present in the coal during co-ashing, may drive the reactions further towards diopside rather than ankermanite.

Hemp ashed with coal has a greater variety of silicates present in comparison to the ashing of hemp alone (Tables V & VII). The lower Fe content of the hemp-coal mixture, in comparison to eucalyptus and coal, for instance may drive the formation of the feldspar anorthite (CaAl₂Si₂O₈). Sorenson et al. investigated the effects of Fe on the formation of aluminosilicate phases. They concluded that a lower iron content was more likely to yield anorthite rather than diopside, as this mineral was...
found to crystallise alongside augite \(((\text{Ca,Na})(\text{Mg,Fe,Al,Ti})((\text{Si,Al})_2\text{O}_6))\) in the presence of Fe [27].

Kang et al. classified the effects of Al₂O₃ on the diopside/anorthite system and found that below 8.6wt% Al₂O₃ favoured the formation of diopside over anorthite, Above 15.9wt% Al₂O₃ anorthite was shown to be the dominant phase [28]. The low wt% of Al₂O₃ present in the mixtures suggests a preference towards the formation of diopside. Hemp and coal has a lower Fe content than eucalyptus-coal, favouring anorthite. Increased Al from coal ash in the hemp-coal blend, potentially explains the presence of anorthite in the hemp co-ash where there is none in the hemp ash.

Kalsilite (KAlSiO₄) is often present in the ash samples (Tables V-IX). Vassilev et al., in their comprehensive study of biomass ash transformations state that the formation temperature of kalsilite is between 900-1100°C [6]. This corresponds well with experimental data, however it has been identified in PXRD patterns collected on samples heated below 900°C. The complex nature of the matrix may be a contributing factor in its early formation. Also present in the ash is leucite (KAlSi₂O₆), which may have formed from kalsilite. Previous work by Zhang et al. has shown kalsilite to be a precursor to leucite formation[29]. Equation 7 shows a pathway for leucite formation through a reaction with illite. Due to the presence of illite in the coal ash it is likely this is mechanism of the leucite formation at lower temperature in the eucalyptus and coal co-ash.

Hematite (Fe₂O₃) is present in the ashes of coal, eucalyptus, coal & eucalyptus and hemp & coal, which is correlated by the iron contents of the fuels (Table II). The Fe₂O₃ shown to be present in the hemp & coal ash is highly likely come from the coal. Vassilev et al. [6] state that organically bound iron in biomass fuels oxidises to hematite between 200-700°C, this may explain the presence of Fe₂O₃ in the eucalyptus ash, as the eucalyptus fuel was shown to have a high amount of Fe (Table II).

Sylvite (KCl) was found to be present in the hemp samples at low temperature. The eucalyptus and coal fuels have low Cl content (Table I) and therefore no KCl in the ashes of these fuels was detected by PXRD.

Hydroxyapatite is present in both the hemp ash and the hemp and coal ash; hemp has a relatively high level of P₂O₅ in the ash matrix (Table II). The hydroxyapatite could be either extraneous, from the soil or formed as a secondary phase during ashing [22,30]. Boström et al. [12] report that the formation of Ca-phosphate phases will occur prior to an Ca/Si interaction.

The origin of the feldspar phase microcline is thought to originate from soil contamination during harvest and processing [12].

3.1.2 Hemp Microscopy Analysis

Figure 5 shows calcium oxalate/carbonate crystals present in the hemp fuel pre-ashing. Exact information on the composition is hard to ascertain due to the high carbonaceous nature of the fuel. In plant material, it is likely the carbonate phase present is CaC₂O₄ and therefore the presence of CaCO₃ through the decomposition of oxalate is likely (Equation 2).

![Figure 5: SEM electromicrograph and EDS analysis of CaC₂O₄/CaCO₃ crystals (labelled a) present in hemp fuel.](image)

Figure 6a shows interesting thorn-like structures on the surface of the hemp fuel. Whilst the original texture of the hemp fuel is lost during heating, largely due to its organic composition, these structures remain clearly intact through the heating process. EDS analysis of these structures (Figure 7) shows the major components are Ca,K,Mg,Si, P and O, suggesting they comprise of both silicates and hydroxyapatite, this would account for the stability at high temperatures.

![Figure 6: SEM electromicrographs of: a) hemp fuel b) hemp ash after 1h 600°C c) hemp ash after 1h 700°C d) hemp ash after 1h 800°C e) hemp ash after 1h 900°C f) hemp ash after 1h 1000°C g) hemp ash after 1h 1100°C](image)

As the ashing temperature increased a higher number of glass-like particles are present. This suggests the melting, reaction and agglomeration of certain components of the fuels. EDS mapping (Figure 8) shows that these glassy particles largely comprise of Ca-Mg silicates alongside K-Al silicates. Ca and P also remain closely associated. This would confirm the presence of hydroxyapatite, which is thermally stable at 1100°C.
3.1.3 Eucalyptus Microscopy Analysis

An SEM electromicrograph of the eucalyptus fuel (Figure 9a) shows a large degree of texture on the fuel surface. This is lost during the ashing process indicating it is cellulose, hemicellulose and lignin that form this structure. After removal of the organic material distinct crystals are observed in the fuels (Figures 9b-9g).

EDS analysis shows distinct K,Al, Si, O crystals (Figure 9b) at 600°C, thought to be microcline (KAlSi3O8) as this is the phase containing those elements present at this temperature from XRD (Table IX).

Present at 800°C is an anhydrite (CaSO4) crystal probably originating from coal via dehydration of gypsum (CaSO4.2H2O); this indicates little reaction between certain components of eucalyptus and coal ash until higher temperatures are reached.

The Fe crystals present in Figure 9e are thought to originate from fuel processing.

3.2 COMBUSTION RIG SAMPLES

To further this investigation, comparison of the data collected on samples from lab-based studies to those collected during combustion rig runs, will now be made. This part of the study focuses on comparisons between the hemp & coal and eucalyptus & coal blends.

3.2.1 P-XRD Analysis
3.2.2 Hemp and Coal Co-Fire

PXRD analysis of the hemp ash samples shows compositional differences between H1-H4 (Table IV, Figure 10). The phases found to be present in H2 deviate most when compared to the other samples (H1, H3, H4). Dolomite was shown to be present, with
diopside being the most significant CaMg-silicate phase. In the other samples however, the Ca-Mg silicate akermanite was found to be present. It is also worth noting that the temperature for H2 is unknown and therefore accurate interpretation of the phases present is not fully possible. The presence of dolomite alongside diopside in H2 suggests that there was not a full reaction of dolomite into Ca-Mg silicates and therefore it may have formed from reaction of CaO and MgO with atmospheric CO₂. Vassilev et al. show the formation of secondary carbonates between 200-900°C [1].

Variations between samples may also be attributed to temperature differences between samples (971-1013°C) and also reduction/oxidation conditions at the time of sampling [31]. The lack of KCl present in the deposits is due to the temperatures of the ceramic probes; KCl usually deposits through a diffusion/thermophoresis mechanism [32] on to a cool surface. As the temperatures of the ceramic probes used for deposition were at approximately the same temperature as the flue gas it is unlikely that KCl would be present in the samples.

A comparison of the laboratory ashed samples to the combustion rig samples shows many similarities in the phases found to be present. The presence of hydroxyapatite in both sample sets do not indicate whether it is formed during the ashing process or if it is present in the plant itself, possibly in the thorn-like structures. Microcline is only present in some of the rig samples, this suggests that it is extraneous in origin i.e. collected during harvesting from the soil. Extraneous minerals behave differently to those found in the biomass, for instance they may reach lower surface temperatures during combustion [33], or, due to their larger crystallite size (as they will not volatilize in the flame) they may also fail to be carried in the flue gas and drop into the ash hopper, explaining its absence in the rig samples.

The different silicates present in each set of samples can be attributed to the non-equilibrium state of the combustion rig and therefore, whilst the laboratory ashed samples provide some prediction of phases likely to form, in the temperatures of the rig there are some deviations in those found in the rig samples due to the different conditions.

3.2.3 Eucalyptus and Coal Co-Fire P-XRD

Comparison of the PXRD data collected for eucalyptus and coal (Table V, Figure 11) to that of the hemp and coal co-fire (Table IV, Figure 10) shows the eucalyptus and coal blend deposits to be much more uniform throughout the combustion run. The lower ash content of the eucalyptus in comparison to coal (0.6 and 16.2% respectively) suggests that as there is less variation in the phases capable of forming the ash. The similarities in phases formed in the eucalyptus co-fire (sample E1-E4) also suggest much more uniform oxidation/reduction conditions. However it should be noted that the sample collection time for eucalyptus was two-three times longer than the hemp samples (Table III) suggesting that residence time in the combustion environment plays a key role in reaching conditions where phases become more uniform and stable.

![Figure 10: XRD Pattern for combustion rig samples for hemp and coal co-fire. A selected range (20-40°2θ) presented for clarity. Q (Quartz, SiO₂), M (Microcline, KAlSi₃O₈), Di (Diopside, CaMgSi₂O₆), K (Kalsilite, KAlSiO₄), S (Sanidine, KAlSi₃O₈), Ak (Akermanite, Ca₂MgSi₂O₇), L (Leucite, KAlSi₂O₆), HA (hydroxyapatite Ca₉.₀₄(PO₄)₆(OH)₁.₆₈), Mo (monticellite, CaMgSiO₄), Ao (Anorthite CaAl₂Si₂O₈), An (Anhydrite CaSO₄), Do (Dolomite CaMg(CO₃)₂) The highest intensity reflection of Periclase (MgO) is observed at 42.923 2θ and Mullite (Al₉.₃₅Si₆.₆₄O₂₈.₃₂) main peak at 16.₅₂₉ 2θ outside the range presented.](image)

| Table IV: Phases identified in samples H1-H4 from hemp and coal co-fired combustion run |
|---|---|---|---|---|
| H1 | H2 | H3 | H4 |
| Quartz (SiO₂) | • | • | • | • |
| Akermanite (Ca₂MgSi₂O₇) | • | • | • | • |
| Diopside (CaMgSi₂O₆) | • | • | • | • |
| Hematite (Fe₂O₃) | • | • | • | • |
| Anhydrite (CaSO₄) | • | • | • | • |
| Leucite (KAlSiO₄) | • | • | • | • |
| Kalsilite (KAlSi₃O₈) | • | • | • | • |
| Albite (NaAlSi₃O₈) | • | • | • | • |
| Periclase (MgO) | • | • | • | • |
| Microcline (KAlSi₃O₈) | • | • | • | • |
| Gæhlenite (Ca₉Al₂SiO₇) | • | • | • | • |
| Wollastonite (CaSiO₃) | • | • | • | • |
| Sanidine (KAlSiO₄) | • | • | • | • |
| Mullite (Al₉.₃₅Si₆.₆₄O₂₈.₃₂) | • | • | • | • |
Alongside Ca-Mg-silicates, Mg-silicates are also present. As has been previously stated, CaCO₃ preferentially reacts with SiO₂ during dolomite decomposition favouring diopside and akermanite formation, the presence of forsterite (Mg₂SiO₄) indicates that a longer residence time may lead to a greater number of chemical reactions in the ash.

Table V: Phases identified in samples E1-E4 from a eucalyptus and coal co-fired combustion run

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz (SiO₂)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Akermanite (CaMgSi₂O₅)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Diopside (CaMgSi₂O₆)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hematite (Fe₂O₃)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Anhydrite (CaSO₄)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Leucite (KAlSi₂O₆)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Dolomite (CaMg(CO₃)₂)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Aluminium Oxide (Al₂O₃)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Forsterite (Mg₂SiO₄)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Anorthite (CaAl₂Si₂O₈)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Rutile (TiO₂)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Albite (NaAlSi₃O₈)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

The lack of kalsilite, but presence of leucite, once again suggests that longer exposure to a high temperature environment has an effect on sample composition. *Equation* 7 gives a mechanism of formation for both leucite and anorthite, with the presence of both illite and calcite in the fuel. Future work ashing the eucalyptus and coal under laboratory conditions for longer time periods would be useful for predicting the ash compounds in the combustion rig.

3.2.4 Microscopy of the Co-Fired Rig Samples

Micrographs of the co-fired samples show a distinct spherical morphology for the vast majority of particles in the deposits. The mechanism of deposition for these fly ash particles is inertial impaction, which occurs when large particles (>10µm) have too much mass/inertia to deviate from the gas flow and therefore hit the surface of the tube/deposit[32].

These deposits form a characteristic elliptical shape as they form on the same side as the gas flow[34], this elliptical shape is shown in *Figure* 1. Inertial impaction in these deposits is also evidenced by the agglomerated particle morphology. Clear fusion between some of the spheres was observed (*Figure* 12b) suggesting reactions may be occurring at these interfaces.

The thorn-like structures which were present in the SEM analysis of hemp and coal (Section 3.1.2), are still observed in deposits from the hemp and coal. *Figure* 13 shows EDS analysis of one of these structures which is similar to the analysis presented in *Figure* 7, suggesting the parameters for ash formation have little effect.

In comparison to the morphology of the laboratory ashed samples the spherical particles seen in the rig deposits are much larger. Raask investigated the formation of cenospheres and plerospheres...
(aluminosilicate glass microspheres encapsulating gas and smaller pre-existing particles respectively) during coal combustion[35].

Figure 13: EDS analysis of thorn-like structure from sample H3.

The spheres, which must contain a small amount of Fe and C, form through the expansion of silicate droplets to form a hollow sphere. It is likely that this is a formation mechanism for some of the spheres present in the deposit. These spheres may also form due to the gas conditions present in the combustion rig as one of the main mechanisms in fly ash formation is agglomeration [36].

Figure 14: An SEM electromicrograph showing a spherical particle from the hemp and coal co-fire with surface enrichment of cubic crystals.

4 CONCLUSIONS

This paper highlights the benefits from carrying out controlled laboratory ashing studies of fuels to predict fly ash deposition of the same fuels in a combustion rig/power plant. There are many similarities between samples ashed in a controlled environment, at temperatures analogous to those logged during deposition of samples in the combustion rig. The differences between laboratory ashed and combustion rig fired samples indicate that the amount of time a deposit spends in the high temperature environment can have a significant effect on the phases formed.

At high temperatures the main phases, other than quartz identified as present in deposits are Ca-silicates and Ca-Mg-silicates. These are likely to have formed through a reaction between calcite, dolomite, periclase and quartz. The formation conditions of the phases present in ash samples are similar to those conditions used during ceramic phase formation.

SEM studies have shown that the morphology of particles/phases formed during laboratory ashing of the fuels differs to the morphology from those formed under combustion rig conditions. The morphology of particles formed in the rig were more spherical with the spheres present from the combustion rig being larger and are likely formed through a cenosphere/plerosphere mechanism. The conditions required for the formation of these spheres is challenging to replicate under laboratory conditions.

We have shown that controlled laboratory studies produce useful data that can allow predictions of the phase composition of ash deposits in the combustion rig to be made. This could be used alongside modelling to provide a relatively quick, cheap and effective method of assessing a fuel prior to large scale combustion tests.

Future work on the samples includes longer ashing of the coal-biomass blends in the laboratory to determine if the phases formed are similar in composition to those exposed to the high-temperature rig environment for periods longer than 60 minutes. Phase quantification of the PXRD data is also underway to investigate how the proportions of phases alter as a function of temperature.

5 REFERENCES

6 ACKNOWLEDGEMENTS

The authors are grateful to the staff at LMCC for the help given during sample analysis. E.On Technology (Ratcliffe) Limited, for providing samples used in the analysis and funding alongside the EPRSC for the provision of funding.

7 APPENDIX

Due to the inhomogenous nature of the samples certain phases are only present in very small amounts and therefore may not always be observed.
Table V: Phases present in laboratory ashed samples of hemp

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°C)</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz (SiO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite (CaCO₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvite (KCl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairchildite (K₂Ca(CO₃)₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyapatite (Ca₉.₀₄(PO₄)₆(OH)₁.₆₈)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcline (K₂(MgSi₂O₆)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halite, potassian (K₂Na₀.₆Cl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite (CaMg(CO₃)₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illite (K(Al₄Si₂O₉(OH)₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepheline (NaAlSiO₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wollastonite (CaSiO₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diopside (CaMgSi₂O₆)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akermanite (Ca₂MgSi₂O₇)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larnite (Ca₂SiO₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalsilite (KAlSiO₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anorthite (CaAl₂Si₂O₈)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mullite (Al₂.₃₅Si₉.₆₄O₄.₈₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VI: Phases present in laboratory ashed samples of coal

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°C)</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz (SiO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite (CaCO₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite (CaMg(CO₃)₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illite (K(Al₂Si₂O₆(OH)₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrite (CaSO₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuprite (Cu₂O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite (Fe₂O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albite (NaAlSi₂O₅)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labradorite (Ca₉.₆₄Na₉.₆₄Al₁.₄₂Si₉.₆₄O₄).₈₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mullite (Al₂.₃₅Si₉.₆₄O₄.₈₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VII: Phases present in laboratory ashed samples of hemp and coal
Table VIII: Phases present in laboratory ashed samples of eucalyptus

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Quartz (SiO₂)</td>
<td>•</td>
</tr>
<tr>
<td>Calcite (CaCO₃)</td>
<td>•</td>
</tr>
<tr>
<td>Fairchildite (K₂Ca(CO₃)₂)</td>
<td>•</td>
</tr>
<tr>
<td>Microcline (K₂Si₂O₅)</td>
<td>•</td>
</tr>
<tr>
<td>Sylvite (KCl)</td>
<td>•</td>
</tr>
<tr>
<td>Periclase (MgO)</td>
<td>•</td>
</tr>
<tr>
<td>Hematite (Fe₂O₃)</td>
<td>•</td>
</tr>
<tr>
<td>Arcanite (K₂SO₄)</td>
<td>•</td>
</tr>
<tr>
<td>Cristobalite (SiO₂)</td>
<td>•</td>
</tr>
<tr>
<td>Wollastonite (CaSiO₃)</td>
<td>•</td>
</tr>
<tr>
<td>Diopside (CaMgSi₂O₆)</td>
<td>•</td>
</tr>
<tr>
<td>Akermanite (Ca₃MgSi₂O₇)</td>
<td>•</td>
</tr>
<tr>
<td>Leucite (K₂Si₂O₅(OH)₃)</td>
<td>•</td>
</tr>
<tr>
<td>Kalsilite (K₂SiO₄)</td>
<td>•</td>
</tr>
<tr>
<td>Mullite (Al₂₃Si₆₆O₄₈₂)</td>
<td>•</td>
</tr>
</tbody>
</table>

Table IX: Phases present in laboratory ashed samples of eucalyptus and coal

<table>
<thead>
<tr>
<th>Phase</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Quartz (SiO₂)</td>
<td>•</td>
</tr>
<tr>
<td>Calcite (CaCO₃)</td>
<td>•</td>
</tr>
<tr>
<td>Fairchildite (K₂Ca(CO₃)₂)</td>
<td>•</td>
</tr>
<tr>
<td>Microcline (K₂Si₂O₅)</td>
<td>•</td>
</tr>
<tr>
<td>Illite (K₂Al₂Si₅O₁₄(OH)₃)</td>
<td>•</td>
</tr>
<tr>
<td>Periclase (MgO)</td>
<td>•</td>
</tr>
<tr>
<td>Hematite (Fe₂O₃)</td>
<td>•</td>
</tr>
<tr>
<td>Anhydrite (CaSO₄)</td>
<td>•</td>
</tr>
<tr>
<td>Arcanite (K₂SO₄)</td>
<td>•</td>
</tr>
<tr>
<td>Cristobalite (SiO₂)</td>
<td>•</td>
</tr>
<tr>
<td>Wollastonite (CaSiO₃)</td>
<td>•</td>
</tr>
<tr>
<td>Diopside (CaMgSi₂O₆)</td>
<td>•</td>
</tr>
<tr>
<td>Anorthite</td>
<td>•</td>
</tr>
</tbody>
</table>