Production of functional porous polymeric particles with CO2 recognition properties and tuned morphology [Abstract]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: NABAVI, S.A. ...et al., 2016. Production of functional porous polymeric particles with CO2 recognition properties and tuned morphology. Presented at the 2nd Annual InterPore UK Chapter Conference, Loughborough, 5-6th. September., pp. 14.

Additional Information:
- This is an abstract of a conference poster. This was a joint meeting with the Particle Characterisation Interest Group of the Royal Society of Chemistry.

Metadata Record: https://dspace.lboro.ac.uk/2134/22590

Version: Accepted for publication

Publisher: © the Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
In this study, novel spherical molecularly imprinted polymer (MIP) microparticles containing amide-decorated nanocavities with CO$_2$ recognition properties in poly[acrylamide-co-(ethyleneglycoldimethacrylate)] mesoporous matrix were synthesized by suspension polymerization in an oil-in-water emulsion, using oxalic acid and acetonitrile/toluene as dummy template and porogen mixture, respectively [1,2]. The presence of nanocavities was revealed and quantified using Horvath-Kawazoe (HK) approach. The performance of MIP particles for CO$_2$ uptake was assessed by means of imprinting factor (IP), and a maximum IP of 3.7 was achieved. It was found that higher contents of functional monomer (acrylamide) and low-polar solvent (toluene) in the organic phase prior to polymerization led to higher CO$_2$ capture capacity of the particles due to stronger hydrogen bonding interactions between the template and the monomer during complex formation and larger number of CO$_2$-philic NH$_2$ moieties in the polymer network. The degradation temperature at 5% weight loss was 240–255 °C and the maximum equilibrium CO$_2$ adsorption capacity was 0.56 and 0.62 mmol/g at 40 and 25 °C, respectively, and 0.15 bar CO$_2$ partial pressure. The volume median diameter (120–211 μm) and density (1.3 g/cm3) of the produced particles were within the range suitable for CO$_2$ capture in fixed and fluidized bed systems.

References:
