Synthesis and characterization of porous polymer-based adsorbents for CO2 capture [Abstract]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: FAYEMIWO, K.A. ...et al., 2016. Synthesis and characterization of porous polymer-based adsorbents for CO2 capture. Presented at the 2nd Annual InterPore UK Chapter Conference, Loughborough, 5-6th. September, pp. 38.

Additional Information:

- This is an abstract of a conference poster. This was a joint meeting with the Particle Characterisation Interest Group of the Royal Society of Chemistry)

Metadata Record: https://dspace.lboro.ac.uk/2134/22592

Version: Accepted for publication

Publisher: © the Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Synthesis and Characterization of Porous Polymer-Based Adsorbents for CO₂ Capture

Kehinde A. Fayemiwo*, Seyed A. Nabavi¹, Goran T. Vladisavljević¹, Brahim Benyahia¹

¹Loughborough University, Chemical Engineering Department, LE11 3TU, Loughborough, UK
²Cranfield University, Centre for Combustion, Carbon Capture & Storage, MK43 0AL, Cranfield, UK

This study investigates a series of porous polymer-based materials (PPMs) synthesizing using methacrylamide, ethylene glycol dimethacrylate, azobisisobutyronitrile, and acetonitrile as monomer, cross-linker, initiator and porogen, respectively. The PPMs were characterized by XPS, FTIR, and TGA and their CO₂ uptake capacities were measured in a fixed bed adsorption column. The effect of porogen and cross-linker on the surface area and sorption capacity was also investigated. The FTIR and XPS spectra revealed a high density of NH₂ groups on the surface of the PPMs, which enhanced the ability of the material to selectively bind CO₂. The PPM particles show porosity, and exhibit Brunauer-Emmett-Teller (BET) surface area of up to 297 m²/g, and were thermally stable up to 240 °C. The CO₂ capacities of the PPM reached 0.64 mmol/g at 313 K and 0.15 bar CO₂ partial pressure. The isotherms of all the samples exhibited a typical shape of type II featuring a non-uniform distribution of pore sizes, and possessed an average density of 1.3 g/cm³ as measured with helium pycnometer. Thus, the PPMs are promising candidate for post combustion CO₂ capture owing to their thermal stability, porosity, selectivity, ease of regeneration, reproducibility, inexpensiveness and suitable density for fluidized bed applications.

Keywords

CO₂ capture, Nitrogen-functionality, Adsorption, Methacrylamide

*Corresponding author: Kehinde Fayemiwo (K.A.Fayemiwo@lboro.ac.uk)