Partition of mixed-mode fractures in 2D elastic beams with through-thickness shear forces

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: WOOD, J.D., HARVEY, C.M. and WANG, S., 2016. Partition of mixed-mode fractures in 2D elastic beams with through-thickness shear forces. Presented at the 19th International Conference on Composite Structures, Sheraton Hotel, Porto, 5-9th September.

Additional Information:

- This is a powerpoint presentation presented at (ICCS19) 19th International Conference on Composite Structures. The abstracts of the papers delivered at the conference were published in Antonio J.M. Ferreira (ed.) (ICCS19) 19th International Conference on Composite Structures. Bologna: Società Editrice Esculapio, 2016. ISBN 9788874880778, ISSN 2421-2822

Metadata Record: https://dspace.lboro.ac.uk/2134/22608

Version: Accepted for publication

Publisher: © The Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Partition of Mixed-Mode Fractures in 2D Elastic Beams with Through-Thickness Shear Forces

Joe Wood, Chris Harvey, Simon Wang
J.Wood@lboro.ac.uk

Department of Aeronautical & Automotive Engineering
Loughborough University, LE11 3TU, UK

19th International Conference of Composite Structures
Interfacial cracks

• Cracks tend to propagate along interfaces in laminated materials because they represent a plane of weakness.

• They do not kink in order to propagate under pure mode I opening conditions, as they would tend to in an isotropic material.

• Interfacial cracks therefore propagate in a mixed-mode with a combination of mode I opening, mode II shearing, and/or mode III tearing.
Fracture toughness

- Fracture toughness depends on the fracture mode partition.
- Predicting fracture toughness requires the knowledge of the partition of a mixed-mode fracture.
- Essential to have a correct analytical partition theory to predict the fracture toughness.
One-dimensional fractures

- Delamination during drilling
- Thermal barrier cracking
- Helicopter blade delamination
 Robert Davies, Dreamstime.com
- Needle puncture of red blood cell/IVF treatment
 Alamy
Mixed-mode interfacial fracture

- 1D fracture of DCB is fundamental case for study
 - Bending moments M_1 and M_2
 - Axial forces N_1 and N_2
 - Shear forces P_1 and P_2
 - $\eta = E_2/E_1$, $N = \nu_2/\nu_1$, $\gamma = h_2/h_1$
Total energy release rate (ERR)

- Quadratic form and non-negative definite
- Partition total ERR G into its pure mode components, G_I and G_{II}
- Use the orthogonal pure fractures modes

$$G = \begin{bmatrix} M_{1B} \\ M_{2B} \\ N_{1B} \\ N_{2B} \end{bmatrix}^T \begin{bmatrix} M_{1B} \\ M_{2B} \\ N_{1B} \\ N_{2B} \end{bmatrix}$$

$$C_{ij} = f(E_1, E_2, \nu_1, \nu_2, h_1, h_2, b)$$

Mixed Mode = Mode I + Mode II + Mode III
Pure fracture modes

- The inner product matrix transforms the $\{M_{1B} \ M_{2B}\}$ vectors into ERR space.
- In ERR space, orthogonality between two $\{M_{1B} \ M_{2B}\}$ vectors means
 $$\{M_{1B} \ M_{2B}\}_1 [C] \{M_{1B} \ M_{2B}\}_2^T = 0$$
- Orthogonal pairs of $\{M_{1B} \ M_{2B}\}$ vectors exist that represent pure fracture modes:
 - Denote pure mode I as $\{1 \ M_{2B}/M_{1B}\} = \{1 \ \theta_1\}$
 - Denote pure mode II as $\{1 \ M_{2B}/M_{1B}\} = \{1 \ \beta_1\}$, etc.
 - With θ_i and $\beta_i = f(E_1, E_2, v_1, v_2, h_1, h_2, b)$

Contours of ERR with $E = 1$, $b = 1$, $h = 1$, $\gamma = 1$, $\eta = 1$
ERR partitions general theory

- Euler beam partitions:
 \[G_{IE} = c_{IE} \left(M_{1B} \frac{M_{2B}}{\beta_1} - \frac{N_{1B}}{\beta_2} - \frac{N_{2B}}{\beta_3} \right) \left(M_{1B} \frac{M_{2B}}{\beta_1'} - \frac{N_{1B}}{\beta_2'} - \frac{N_{2B}}{\beta_3'} \right) \]
 \[G_{IIE} = c_{IIE} \left(M_{1B} \frac{M_{2B}}{\theta_1} - \frac{N_{1B}}{\theta_2} - \frac{N_{2B}}{\theta_3} \right) \left(M_{1B} \frac{M_{2B}}{\theta_1'} - \frac{N_{1B}}{\theta_2'} - \frac{N_{2B}}{\theta_3'} \right) \]

- Timoshenko beam partitions:
 \[G_{IT} = c_{IT} \left(M_{1B} \frac{M_{2B}}{\beta_1} - \frac{N_{1B}}{\beta_2} - \frac{N_{2B}}{\beta_3} - \frac{P_{1B}}{\beta_4} - \frac{P_{2B}}{\beta_5} \right)^2 \]
 \[G_{ITT} = c_{ITT} \left(M_{1B} \frac{M_{2B}}{\theta_1} - \frac{N_{1B}}{\theta_2} - \frac{N_{2B}}{\theta_3} - \frac{P_{1B}}{\theta_4} - \frac{P_{2B}}{\theta_5} \right)^2 \]

- 2D elasticity partitions:
 \[G_{I-2D} = c_{I-2D} \left(M_{1B} \frac{M_{2B}}{\beta_{1-2D}} - \frac{N_{1B}}{\beta_{2-2D}} - \frac{N_{2B}}{\beta_{3-2D}} - \frac{P_{1B}}{\beta_{4-2D}} - \frac{P_{2B}}{\beta_{5-2D}} \right)^2 \]
 \[G_{II-2D} = c_{II-2D} \left(M_{1B} \frac{M_{2B}}{\theta_{1-2D}} - \frac{N_{1B}}{\theta_{2-2D}} - \frac{N_{2B}}{\theta_{3-2D}} - \frac{P_{1B}}{\theta_{4-2D}} - \frac{P_{2B}}{\theta_{5-2D}} \right)^2 \]
General 2D elasticity partition theory

- Bending moments M_{1B} and M_{2B} and axial forces N_{1B} and N_{2B}
- Revisit the orthogonal pure fracture modes (θ_i, β_i)
 - Condition using beam theories does not produce the same stress distribution in 2D elasticity theory
 - Apply a correction factor for 2D elasticity to the part of the condition that represents the intact portion of the beam
 - Calibrate correction factor for θ_{1-2D} using $\theta_1 \leq \theta_{1-2D} \leq \theta_1'$
 - Obtain other pure modes $(\theta_{2-2D}, \beta_{1-2D}, \beta_{2-2D}, \text{etc.})$ using orthogonality
Timoshenko beam partition theory

- Crack tip through-thickness shear forces P_{1B} and P_{2B} only
 \[M_{1B} = M_{2B} = N_{1B} = N_{2B} = 0 \]

- \[G_{\theta P-T} = \frac{1}{2b^2 h_1 \kappa \mu} \left(1 + \frac{\theta_{P-T}^2}{\gamma}\right) \quad G_{\beta P-T} = \frac{1}{2b^2 h_1 \kappa \mu} \left(1 + \frac{\beta_{P-T}^2}{\gamma} - \frac{(1 + \beta_{P-T})^2}{1 + \gamma}\right) \]

- \((\theta_{P-T}, \beta_{P-T}) = (-1, \gamma) \therefore G_{II} = 0 \)

- Shear correction factor \(\kappa = 5/6 \)
2D elasticity partition theory

- Crack tip through-thickness shear forces P_{1B} and P_{2B} only
 - $M_{1B} = M_{2B} = N_{1B} = N_{2B} = 0$

\[
G_{\theta_{P-2D}} = \frac{1}{2b^2 h_1 \kappa(\gamma) \mu} \left(1 + \frac{\theta_{P-2D}^2}{\gamma} \right),
G_{\beta_{P-2D}} = \frac{1}{2b^2 h_1 \kappa(\gamma) \mu} \left(1 + \frac{\beta_{P-2D}^2}{\gamma} - \frac{(1 + \beta_{P-2D})^2}{1 + \gamma} c(\gamma) \right)
\]

- $(\theta_{P-2D}, \beta_{P-2D}) = (??, ??)$
- Shear correction factor now γ dependent $\kappa(\gamma)$
- $G_{II} \neq 0$ and introduce pure-mode-II correction factor $c(\gamma)$
Shear Force Pure Modes

- \((\theta_{P-2D}, \beta_{P-2D})\)
- FEM simulations
- \(-1.7 \leq \log_{10}(1/\gamma) \leq 1.7\)

- Pure mode I \(\theta_{P-2D}\)
 - \(G_{II} = 0, \ \theta_{P-2D} = -1\)
 - \(\therefore P_{2B} = -P_{1B}\)

- Pure mode II \(\beta_{P-2D}\)
 - \(G_I = 0\)
 - \(\beta_{P-2D} = \gamma \exp(-1.986060 \text{ atanh}(0.563483\gamma_I))\)
Shear & Pure Mode II Correction Factors

- FEM Simulations
- $M_{1B} = M_{2B} = N_{1B} = N_{2B} = 0$
- $-1.7 \leq \log_{10}(1/\gamma) \leq 1.7$

- Shear Correction Factor
 - $\kappa(\gamma)$
 - $P_{2B}/P_{1B} = \theta_{P-2D} = -1$

- Pure-mode-II ERR Correction Factor
 - $c(\gamma)$
 - $P_{2B}/P_{1B} = \beta_{P-2D}$
Numerical Verification

\[
\frac{1}{10} \leq \gamma \leq 10
\]
\[\frac{1}{10} \leq \gamma \leq 10 \]
Blister Test

- Interface fracture toughness

Image from Koenig (2011)
Adhesion of graphene membranes

\[\gamma = \frac{h_2}{h_1} \rightarrow \infty \]

\[G_I = \frac{6M_{Be}^2}{Eh^3} (1 - \nu^2) \left(1 - \frac{N_{Be}h}{4.450M_{Be}} - \lambda \right)^2 0.6227 \]

\[G_{II} = \frac{6M_{Be}^2}{Eh^3} (1 - \nu^2) \left(\frac{N_{Be}h}{2.697M_{Be}} \right)^2 0.3773 \]
• Pressure loaded blister test
 – Linear failure criterion
 – $G_{Ic} = 0.226 \, J/m^2$
 – $G_{IIc} = 0.683 \, J/m^2$
Adhesion of graphene membranes

- Pressure loaded blister test
 - Linear failure criterion
 - $G_{Ic} = 0.226 \text{ J/m}^2$
 - $G_{IIc} = 0.683 \text{ J/m}^2$
 - $\rho_{mono} = G_I/G_{II} = 0.431$
 - $\rho_{multi} = G_I/G_{II} = 0.764$
Experimental validation

• Pressure loaded blister test – Koenig et al. (2011)
 – Linear failure criterion
 – $G_{Ic} = 0.226 \, J/m^2$ and $G_{IIc} = 0.683 \, J/m^2$

• Point loaded blister – Zong et al. (2012)
 – Experimental Results
 – $\delta/R_B = 0.2309$, $E = 1TPa$, $nt = 1.7nm$ and $n = 5$.
 – $G_{exp} = 0.438 \, J/m^2$
 – Mode mixity $\rho_{th} = G_I/G_{II} = 0.381$
 – Linear failure criterion $G_{th} = 0.438 \, J/m^2$
Conclusion

• 2D elasticity partition theory
 – Developed for general loading conditions (bending moments, axial forces and shear forces).
 – Numerically verified for a number of loading conditions

• Application to:
 – Adhesion of graphene membranes
 – Adhesion energy has been explained and well-predicted
Thank you very much for your attention

Questions are now welcome

• Submitted for publication at Composite Structures
 – Partition of mixed-mode fractures in 2D elastic orthotropic laminated beams under general loading (2016).