Delamination of thermal barrier coatings under thermal shock

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: HARVEY, C.M. and WANG, S., 2016. Delamination of thermal barrier coatings under thermal shock. Presented at the 2nd International Conference on Mechanics of Composites, Universidade do Porto, July 11-14th.

Additional Information:

- This is a powerpoint presentation entitled “Thin Film Cracking Part 2” which was presented at 2nd International Conference on Mechanics of Composites. The abstracts of the papers delivered at the conference were published in: Antonio J.M. Ferreira ...et al. (eds.) 2nd International Conference on Mechanics of Composites, Universidade do Porto, July 11-14th, Bologna: Società Editrice Esculapio, 2016. ISBN 9788874889631 ISSN 2421-2822.

Metadata Record: https://dspace.lboro.ac.uk/2134/22611

Version: Accepted for publication

Publisher: © The Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Thin Film Cracking: Part 2

Christopher Harvey
c.m.harvey@lboro.ac.uk

Simon Wang
s.wang@lboro.ac.uk

Department of Aeronautical and Automotive Engineering
Loughborough University, UK

2nd International Conference on Mechanics of Composites
Agenda

Part 1 (15 min)
1. Introduction
2. Partition of mixed-mode cracks
3. Macroscopic fracture
4. Thin film delamination

Part 2 (15 min)
5. Room temperature α-alumina spallation
Spallation of α-alumina

- Tolpygo and Clarke’s (2000) experimental study

- α-alumina films formed on the surface of Fe-Cr-Al alloy substrate by oxidation at 1200°C

- Cooling causes compressive in-plane residual stress due to thermal expansion mismatch

- No separation or spallation failure occurs during cooling at any rate

- 5°–200°C min$^{-1}$: Circular interfacial separations between film and substrate nucleate, grow in separation distance and propagate radially

- $\leq 2^\circ$C min$^{-1}$: No separation or spallation occurs at any point

- $\geq 500^\circ$C min$^{-1}$: No separation or spallation occurs at any point

- After a period of slow and stable growth, some separations then grow abruptly and spall off
Specimens with 1.05-mm thick substrate and 4.9-µm oxide after 25 h oxidation at 1200°C cooled to room temperature at the rates indicated.

Nucleation and growth of a separation bubble with time at room temperature. ▶

Images from Tolpygo and Clarke (2000)
Possible explanations

• **Flaw** on oxide-substrate interface:
 – pre-existing defects
 – pre-existing inclusions such as Zirconium oxides
 – Impurity segregation
 – All invalidated with microscopy
 – Zr oxide particles too small to cause buckling

• Stress corrosion due to moisture:
 – specimens placed zero humidity environment
 – Spallation still as prevalent as in ambient atmosphere

• Metal **plastic strain** during cooling:
 – Not sufficient to cause spallation
Pockets of energy concentration

• A new hypothesis: Pockets of energy concentration (PECs) in the film-metal material system
 – Exist due to dynamic and non-uniform plastic relaxation or creep in the film and substrate during cooling
 – Are formed during cooling and are randomly distributed
 – Energy depends on cooling rate, film thickness, metal thickness, etc.
Pockets of energy concentration

<table>
<thead>
<tr>
<th>Rate of Cooling</th>
<th>Plastic or Creep Relaxation</th>
<th>Stress in Film</th>
<th>Stress at Interface</th>
<th>Pockets of Energy Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast cooling rates</td>
<td>No plastic or creep relaxation, i.e. closely thermo-elastic</td>
<td>Uniform in-plane compressive stress in film; no interfacial stress</td>
<td>No PECs even though the film has the largest residual stress</td>
<td></td>
</tr>
<tr>
<td>Extremely slow cooling rates</td>
<td>‘Complete’ plastic or creep relaxation</td>
<td>Uniform in-plane compressive stress in film; no interfacial stress</td>
<td>No PECs (with the film having the smallest residual stress)</td>
<td></td>
</tr>
<tr>
<td>Intermediate cooling rates</td>
<td>Unable to produce steady and uniform plastic relaxation</td>
<td>Time dependence of the process is apparent</td>
<td>Pockets of tensile stress and shear stress on the interface and in its adjacent material</td>
<td></td>
</tr>
</tbody>
</table>
Mechanical model

- Assume bubble separation shape:
- Can now calculate:
 - Crack tip loads (bending moment only)
 - Energy release rate G and 2D partitions, G_I and G_{II}
 - (1) bending strain energy U_b, (2) in-plane strain energy U_i, (3) surface energy U_s
- Separation causes combined U_b, U_i, U_s to increase by U_a

Separation grows if PEC energy can provide $(U_a)_{GR}$

\[w(r) = A \left[1 + \cos \left(\frac{\pi r}{R_B} \right) \right] / 2 \]
Predicted growth behaviour

\[(U_a)_{GR} \times 10^{-5} \text{ N/mm} \]

\[(R_B/h)^2 \]

\[(R_B/h)_{UG}^2 \]

\[(R_B/h)_{MU}^2 \]

Kink-off angle, β

\[(R_B)_{SP} \]
Comparison with test

Separation bubble radius versus time at room temperature for three different samples, each with the oxide under a similar residual stress (~4.5 GPa) but with a different oxide thickness.
Comparison with test

- 23 specimens
- Different substrate thicknesses
- Oxidized for 25 h at 1200°C
- Oxide thickness of 4.9 µm
- Cooled at different rates (5°–200°C min⁻¹)
- Spallation radius measured on 50–60 circular spalls on each specimen
- Residual compressive stress measured far from the spalls.
Comparison with test
Conclusions

• Model predicts several aspects of the α-alumina spallation behavior very well
 – Initiation of unstable growth
 – Size of spallation

• Hypothesized PEC is a new failure mechanism of thin films under compressive residual stress

• Failure mechanism might occur in other situations:
 – E.g. In TBC material systems.

Suggests that 2D elasticity-based partitions are appropriate for micro. scale
A ‘postcard’ from Loughborough University