On linear systems of P_3 with nine base points

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- The final publication is available at Springer via http://dx.doi.org/10.1007/s10231-015-0528-5

Metadata Record: https://dspace.lboro.ac.uk/2134/23077

Version: Accepted for publication

Publisher: © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
ON LINEAR SYSTEMS OF \mathbb{P}^3 WITH NINE BASE POINTS

MARIA CHIARA BRAMBILLA, OLIVIA DUMITRESCU, AND ELISA POSTINGHEL

Abstract. We study special linear systems of surfaces of \mathbb{P}^3 interpolating nine points in general position having a quadric as fixed component. By performing degenerations in the blown-up space, we interpret the quadric obstruction in terms of linear obstructions for a quasi-homogeneous class. By degeneration we also prove a Nagata type result for the blown-up projective plane in points that implies a base locus lemma for the quadric. As an application we establish Laface-Ugaglia Conjecture for linear systems with multiplicities bounded by 8 and for homogeneous linear systems with multiplicity m and degree up to $2m + 1$.

1. Introduction

The theory of linear systems is a classical object of study which is related to secant varieties, polynomial interpolation and to several interesting recently discovered applications. Even if linear systems have been studied for more than a century, basic questions, such as the dimensionality problem, are still open in general.

We denote by $L = L_{n,d}(m_1, \ldots, m_s)$ the linear system of hypersurfaces of degree d in \mathbb{P}^n interpolating s points in general position with multiplicities respectively m_1, \ldots, m_s. A linear system is said to be non-special if it has the (affine) expected dimension, which is $\text{edim}(L) = \max(\text{vdim}(L), 0)$, where the (affine) virtual dimension $\text{vdim}(L)$ is defined as

$$\text{vdim}(L) = \binom{n + d}{n} - \sum_{i=1}^{s} \binom{n + m_i - 1}{n}.$$

Special linear systems are those that have dimension strictly higher than the expected one and the speciality of the system is the difference

$$\text{dim}(L) - \text{edim}(L) = h^1(L) \geq 0.$$

In general, computing the dimension of the linear systems is a challenging task. In order to classify the special linear systems, one has to understand first what are the obstructions, namely what are the varieties that, whenever contained with multiplicity in the base locus of L, generate speciality. In [3, 4] these obstructions are named special effect varieties.

The well-known Alexander-Hirschowitz Theorem ([1], see also [7, 30]), which concerns the case of linear systems with double points in \mathbb{P}^n, provides a list of

Key words and phrases. Fat points, degeneration techniques, Laface-Ugaglia Conjecture, base locus, quadric surface.

The first author is partially supported by MIUR and INDAM. The second author is a member of the Simion Stoilow Institute of Mathematics of the Romanian Academy. The third author is supported by the Research Foundation - Flanders (FWO)
special systems where the special effect varieties are linear cycles (when $d = 2$), a rational normal curve (when $d = 3$) or a quadric hypersurface (when $d = 4$).

For higher multiplicities, the planer case has been deeply investigated by many authors. For $n = 2$, the famous Segre-Harbourne-Gimigliano-Hirschowitz Conjecture states that the obstructions are given by $(−1)$-curves [19, 23, 24, 32] (see also [14, 11, 12]).

For the higher dimensional case, in [5, 18] the authors extensively studied the linear special effect varieties in \mathbb{P}^n. In particular, knowing the exact contribution to the speciality of any multiple linear cycle contained in the base locus allows to introduce the notion of \textit{linear expected dimension}, (see [5, Definition 3.2]). We say that a system is \textit{linearly non-special} whenever its dimension is equal to the linear expected dimension. This happens exactly when the only special effect varieties are linear cycles.

The authors devote the paper [6] to the investigation of linear systems in \mathbb{P}^n with $n + 3$ base points having non linear obstructions. More precisely, the rational normal curve through the points is a special effect curve.

It is a well-known fact that Cremona reduced linear systems of \mathbb{P}^3 do not contain rational normal curves in their base locus. Laface and Ugaglia conjectured [27] that for a Cremona reduced linear system the only special effect varieties are lines and quadric surfaces determined by nine points. The conjecture of Laface-Ugaglia is known to be true if the number of points is less or equal than eight [15], and when the maximal multiplicity of the points is five [2].

In this paper we study linear systems in \mathbb{P}^3 with at least nine fat points in general position for which the quadric hypersurface through nine of the base points, namely the fixed surface $Q := L_{3,2}(1^9)$, is a special effect variety.

The first step is to prove a base locus lemma for quadric surfaces. Even a weak base locus lemma is not obvious to obtain. In fact, such results can be obtained as a consequence of Nagata type results, i.e. theorems which prove emptiness, for linear systems in \mathbb{P}^2 with ten points. In Section 4 we establish a base locus lemma for the quadric surface through nine points (see Theorem 4.1) for a particular class of linear systems in \mathbb{P}^3. In order to prove this result, we study the emptiness of linear systems with ten points in \mathbb{P}^2, via a suitable degeneration technique inspired by [10, 13].

The next step is to classify the special linear systems whose special effect varieties are quadrics. In particular, we focus on the case of (Cremona reduced) linear systems with nine points in \mathbb{P}^3, which is the first case where the speciality is not due only to linear obstructions.

Our goal is to understand precisely how much the quadric surface in the base locus contributes to the speciality of the system. Differently than in the linear case, to give a formula which computes exactly the contribution to the speciality seems difficult in general (see Remark 5.5 for more details).

Hence we focus first on some particular classes of linear systems, that are the homogeneous and the quasi-homogeneous ones.

The first case we study is given by the quasi-homogeneous linear systems $L_{3,2m}(m^8,a)$, for $1 \leq a \leq m$. This class of systems behaves surprisingly well, indeed we are able to find an easy formula which relates the speciality with the multiplicity of the quadric in the base locus, see Theorem 3.1. The proof of this result is based on a degeneration argument, which allows to reduce the “mysterious”
ON LINEAR SYSTEMS OF \mathbb{P}^3 WITH NINE BASE POINTS

Contribution of the quadric to the sum of two contributions given by linear special effect varieties in the degenerated systems.

We recall that in literature various degeneration arguments have been used to prove non-speciality results of linear systems in the plane [11, 12, 17] and in higher dimension [26, 30].

In the case of degree $2m + 1$, the relation between the speciality and the quadric becomes less clear even in the homogeneous case. However in Theorem 4.12 we classify all the special homogeneous linear systems with nine points of multiplicity m and degree $2m + 1$. In order to prove this result we apply the emptiness results mentioned above and proved in Section 4.1.

In the last section, as an application of Theorems 3.1 and 4.12, we show that the Laface-Ugaglia Conjecture holds for linear systems of any degree and nine points of multiplicity at most 8. In order to complete this proof as well as the proof of Theorem 4.12, some of the computations are made by means of the computer algebra system Macaulay2 [22].

We want to point out finally that the quadric hypersurfaces are sporadic special effect varieties. Indeed, it is expected (see e.g. the Fröberg-Iarrobino Conjecture for homogeneous linear systems, [9, Conjecture 4.8]) that they give contribution to the speciality of a linear system only in \mathbb{P}^3 and \mathbb{P}^4. We think that the understanding of the case of linear systems in \mathbb{P}^3 with nine points is the initial step in order to investigate the special systems obstructed by a quadric.

This article is organized as follows. In Section 2 we give a brief description of the tools that we will use to prove our results.

In Section 3 we classify the case $L_{3,2m}(m^8, a)$ and we give a geometric interpretation, via degenerations, of the quadric as special effect surface.

In Section 4 we completely classify the case $L_{3,2m+1}(m^9)$; the main results are Theorem 4.1 and Theorem 4.2.

In Section 5, we prove that Laface-Ugaglia Conjecture holds for linear systems with 9 base points of multiplicities $m_i \leq 8$.

Acknowledgements. The authors would like to thank the referee for his/her many useful comments.

2. Preliminaries

In this preliminary section we collect general results and techniques that will be used throughout the paper. We point out that by dimension of a linear system \mathcal{L} we mean the affine dimension $\dim(\mathcal{L}) = h^0(\mathcal{L})$, and not the projective dimension.

2.1. Degenerations. A natural approach to the dimensionality problem of linear systems is via degenerations. Degenerations allow to move the multiple base points of a linear system in special position and compute the dimension via a semi-continuity argument.

In [11, 12] Ciliberto and Miranda exploited a degeneration of the plane, originally proposed by Ran [31] to study higher multiplicity interpolation problems for planar linear systems with general multiple base points. This approach consists in degenerating the plane to a reducible surface, with two components intersecting along a line, and simultaneously degenerating the linear system to a limit linear system which is somewhat easier than the original one. In particular this degeneration argument allows to use induction either on the degree or on the number of
imposed multiple points. This method was generalized by the third author to the higher dimensional cases of \mathbb{P}^n [30] and of $\left(\mathbb{P}^1\right)^n$ with Laface [26].

Let $X \subseteq \mathbb{P}^N$ be a variety, let Δ be a complex disc with center at the origin and let $X \to \Delta$ be a 1-dimensional embedded degeneration of X to the union of two varieties X^1, X^2, i.e. a 1-parameter family $\{X_t\}_{t \in \Delta}$ such that $X_t \cong X$, $t \neq 0$, and $X_0 = X^1 \cup X^2$. Let $L_t := \mathcal{L}$ be a line bundle on the general fibre.

A limit L_0 of L_t is a line bundle on X_0 obtained as fibred product of a line bundle L^1 on X^1 and a line bundle L^2 on X^2 over the intersection of the restricted line bundles $L^1|_Y$ and $L^2|_Y$. This provides a recursive formula for the dimension of L_0 in terms of the dimensions of the involved linear systems on the two components:

$$\dim(L_0) = \dim(\hat{L}^1) + \dim(L^1) + \dim(L^1|_Y \cap L^2|_Y),$$

where \hat{L}^i is the kernel of the restriction map $L^i \to L^i|_Y$, $i = 1, 2$. Upper semi-continuity implies the inequality $\dim(L_t) \leq \dim(L_0)$.

2.2. Linear systems on $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$. In order to study the base locus of linear systems on \mathbb{P}^3 through 9 general points, we want to understand their restrictions to the quadric surface $Q = L_{3,2}(1^3) \cong \mathbb{P}^1 \times \mathbb{P}^1$. The restriction of $L = L_{3, d}(m_1, \ldots, m_9)$ will be the linear series of curves of bidegree (d, d) on Q with 9 multiple points in general position, that we will denote as

$$L_{\mathbb{P}^1 \times \mathbb{P}^1, (d, d)}(m_1, \ldots, m_9).$$

Not very much is known about such linear systems: Giuffrida, Maggioni, and Ragusa were among the first to study linear systems on a quadric surface in [20], see e.g. [21]. As far as we know the only cases completely classified are those of double points [33] and triple points [25].

The following result allows to transform linear systems of given bidegree on the quadric $\mathbb{P}^1 \times \mathbb{P}^1$ with multiple base points to linear systems on \mathbb{P}^2 with multiple base points, and vice-versa, by means of cut-and-sew of polygons.

The image of \mathbb{P}^3 blown-up at two points via the embedding given by the linear system $L_{2, d_1 + d_2 - m}(d_1 - m, d_2 - m)$ based at two torus-invariant points (e.g. two coordinate points) is a toric projective surface whose defining polytope is combinatorially equivalent to the pentagon obtained by the triangle $(d_1 + d_2 - m)\Delta$ by cutting two triangles $(d_1 - m)\Delta$ and $(d_2 - m)\Delta$ from two corners, where Δ is the 2-simplex of \mathbb{R}^2, see Figure 1 on the left hand side.

Notice that the same polytope can be obtained from the rectangle $[0, d_1] \times [0, d_2] \subset \mathbb{R}^2$ by cutting off the triangle $m\Delta$ from a corner. This interprets the above toric surface as the embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ via the linear system of curves of bidegree (d_1, d_2) with a point of multiplicity m, that is $L_{\mathbb{P}^1 \times \mathbb{P}^1, (d_1, d_2)}(m)$, see Figure 1 on the right hand side.

In other terms, this is the birational map that factors in the blow-up of \mathbb{P}^2 at two points and the blow-down of the (-1)-line joining them.

This proves the following result.

Lemma 2.1. If $m \leq d_1, d_2$, then the following equality holds

$$\dim(L_{\mathbb{P}^1 \times \mathbb{P}^1, (d_1, d_2)}(m, m_1, \ldots, m_s)) = \dim(L_{2, d_1 + d_2 - m}(d_1 - m, d_2 - m, m_1, \ldots, m_s)).$$

Remark 2.2. In [8, Theorem 1.1] the authors show how to convert linear systems on products of projective spaces \mathbb{P}^n_i interpolating multiple points into linear systems in the projective space $\mathbb{P}^{\sum n_i}$ interpolating multiple points and multiple linear
ON LINEAR SYSTEMS OF P^3 WITH NINE BASE POINTS

Figure 1. Two equivalent polytopes

subspaces, and back. We point out that the case $m = 0$ in Lemma 2.1 falls into those equivalences, in the particular case of $P^1 \times P^1$ and P^2.

2.3. Cremona transformations. We recall that the standard Cremona transformation of P^n is the birational transformation defined by the following rational map:

$$\text{Cr} : (x_0 : \cdots : x_n) \rightarrow (x_0^{-1} : \cdots : x_n^{-1}).$$

This map induces an action on the Picard group of the n-dimensional space blown-up at s points. Let $\mathcal{L} = \mathcal{L}_{n,d}(m_1, \ldots, m_s)$ be a linear system based on s points in general position; we can assume, without loss of generality, that the first $n + 1$ points are the coordinate points. The Cremona action on \mathcal{L} is described by the following rule (see for example [16, 27]). Set

$$c := m_1 + \cdots + m_{n+1} - (n-1)d,$$

then

$$\text{Cr}(\mathcal{L}) = \mathcal{L}_{n,d-c}(m_1 - c, \ldots, m_{n+1} - c, m_{n+2}, \ldots, m_s)$$

and

$$\dim(\mathcal{L}) = \dim(\text{Cr}(\mathcal{L})).$$

We will use this transformations in the cases $n = 2, 3$ to reduce the computation of the dimension of a linear system \mathcal{L} to the computation of the dimension of its Cremona transform $\text{Cr}(\mathcal{L})$ that has lower degree and multiplicities whenever $c > 0$.

If $c \leq 0$ we will say that the linear system \mathcal{L} is Cremona reduced.

2.4. Computing with Macaulay2. In this paper we will need to perform some explicit computation in order to complete our classifications. In particular the proofs of Proposition 4.9, Lemma 4.10, Lemma 5.7 and Theorem 5.8 are computer aided. We perform these computations by means of the computer algebra system Macaulay2. The procedure we use consists essentially in checking that several square matrices, randomly chosen, have maximal rank. We work over a field of characteristic 31991 and the proofs hold also in characteristic zero.

We use two scripts (one for linear systems in P^2 and one in P^3) available at this url http://dipmat.univpm.it/~brambilla/NinePointsP3.html, which allow to compute the dimension and the speciality of a linear system with given degree and multiplicities.
3. Quasi-homogeneous linear systems $\mathcal{L}_{3,2m}(m^8, a)$

In this section we describe a class of special linear systems in \mathbb{P}^3 with nine base points for which the quadric surface Q is the only special effect variety. We employ a double degeneration argument, similar to the one employed in [30] for linear systems with arbitrary general double points, that is based on the degeneration of the space described in Section 2.1. The linear system will degenerate into one that has only linear special effect varieties, and that is therefore understood by the results in [5, 18].

Fix non-negative integers a, m. Consider the quasi-homogeneous linear system in \mathbb{P}^3

$$\mathcal{L}(m, a) := \mathcal{L}_{3,2m}(m^8, a).$$

The main result of this section is the following.

Theorem 3.1. If $1 \leq a \leq m$, the linear system (3.1) satisfies

$$\dim(\mathcal{L}(m, a)) = m - a + 1,$$

$$h^1(\mathcal{L}(m, a)) = \binom{a + 1}{3} + \binom{a}{2},$$

hence it is special if and only if $2 \leq a \leq m$. Moreover the only special effect variety for $\mathcal{L}(m, a)$ is the quadric through nine points which is contained in the base locus with exact multiplicity a.

It was proved already in [28, Section 5] that for $a = m$ the linear system (3.1) has one element, that is the m-multiple of the quadric through the 9 points. This also implies that if $a > m$, the linear system (3.1) is empty. The case $a = 0$ was proved to be non-special in [15]. So the remaining cases to explore are $1 \leq a \leq m - 1$; for the sake of completeness we include here the proof of the case $a = m$ as well.

Theorem 3.1, shows that the linear system (3.1) is special with dimension being a linear function of m and a. The only special effect variety is the quadric through the nine points which is contained with multiplicity a in the base locus and moreover, quite surprisingly, its contribution to the speciality, namely $h^1(\mathcal{L}(m, a))$ only depends on the multiplicity of containment of the quadric.

Remark 3.2. If we define $q(\mathcal{L}(m, a)) := \chi(\mathcal{L}(m, a)|_Q)$ to be the Euler characteristic of the restriction of $\mathcal{L}(m, a)$ to the quadric, (see (5.1) in Section 5), then one can easily check the following:

$$q(\mathcal{L}(m, a)) = 1 - \binom{a + 1}{2} < 0 \text{ if } a \geq 2, \text{ and } q(\mathcal{L}) = 0 \text{ if } a = 1.$$

This in particular shows that Theorem 3.1 has the following immediate consequence:

Corollary 3.3. Laface-Ugaglia Conjecture (see Conjecture 5.1 in Section 5) is true for any quasi-homogeneous linear system of the form (3.1).

3.1. Degeneration of the blown-up \mathbb{P}^3 at 9 points. In this section we give a detailed description of the degeneration techniques that we will employ to prove Theorem 3.1.
3.1.1. First degeneration. Consider the trivial family \(V = \mathbb{P}^3 \times \Delta \to \Delta \) with fibres \(V_t \cong \mathbb{P}^3 \), \(t \in \Delta \). The blow-up of a point \(p_0 \in V_0 \) produces a flat morphism \(\mathcal{X}' \to \Delta \) with general fibre \(X'_t \cong \mathbb{P}^3 \) and central fibre \(X'_0 = \mathbb{F} \cup \mathbb{P} \), where \(\mathbb{F} \cong \text{Bl}_{p_0} \mathbb{P}^3 \) is the pull-back of \(V_0 \) and \(\mathbb{P} \cong \mathbb{P}^3 \) is the exceptional divisor in the total space \(\mathcal{X}' \). The two components \(\mathbb{F} \) and \(\mathbb{P} \) meet transversally along a surface \(Y \cong \mathbb{F}^2 \) that, as a divisor, belongs to the exceptional class of \(\mathbb{F} \) and to the hyperplane class of \(\mathbb{P} \). More precisely, if \(E_0 := \mathbb{P} \mid_{\mathbb{F}} \) denotes the exceptional divisor of \(p_0 \in V_0 \), \(H^0 \) the hyperplane class of \(\mathbb{F} \) and \(H^\mathbb{P} \) that of \(\mathbb{P} \), with \(H^0 \sim E_0 \), we have \(\text{Pic}(\mathbb{F}) = \langle H^\mathbb{F}, E_0 \rangle \) and \(\text{Pic}(\mathbb{P}) = \langle H^\mathbb{P} \rangle \).

We choose 7 general points on \(\mathbb{F} \) and 2 points on \(\mathbb{P} \) and we consider them as limits of 9 general points in the general fibre \(X'_t \). More precisely, for \(t \in \Delta \) let \(\{p_1(t), \ldots, p_9(t)\} \) be a general collection of points and assume that \(p_1(0), \ldots, p_7(0) \in \mathbb{F} \) while \(p_8(0) \) and \(p_9(0) \in \mathbb{P} \). Consider \(\mathcal{X}'' \) the blow-up of \(\mathcal{X}' \) along the horizontal curves \(\{p_i(t)\}_{t \in \Delta} \), with exceptional divisors \(E_i \), \(i = 1, \ldots, 9 \). Denote by \(\tilde{X}'_t \), \(t \in \Delta \) the fibres of the new family. Write also \(E_i := E_i \mid_{\tilde{X}'_t} \), for \(t \in \Delta \), \(i = 1, \ldots, 9 \).

The general fibre is \(\tilde{X}'_t \cong \text{Bl}_{p_1, \ldots, p_9}(\mathbb{P}^3) \), the blow-up of \(\mathbb{P}^3 \) at 9 general points, so that \(\text{Pic}(\tilde{X}_t) = \langle H, E_1, \ldots, E_9 \rangle \). The central fibre is described by \(\text{Pic}(\mathbb{F}) = \langle H^\mathbb{F}, E_0, E_1, \ldots, E_7 \rangle \) and \(\text{Pic}(\mathbb{P}) = \langle H^\mathbb{P}, E_8, E_9 \rangle \), where by abuse of notation \(\mathbb{F} \) and \(\mathbb{P} \) are also the pull-backs in \(\mathcal{X}'' \) of the components of \(X'_0 \).

3.1.2. Second degeneration. We further specialize the points by sending a point from each component of \(X'_0 \) to the intersection. More precisely, consider the trivial family \(\mathcal{X}''' := X'_0 \times \Delta' \) and, on each fibre over \(s \in \Delta' \), take a collection of general points \(\{p_1(s), \ldots, p_7(s)\} \subset \mathbb{F} \) and \(\{p_8(s), p_9(s)\} \subset \mathbb{P} \) such that, on the central fibre, \(p_1(0) \) and \(p_9(0) \in \mathbb{F} \cap \mathbb{P} \).

Consider \(\mathcal{X}''' \) the blow-up of \(\mathcal{X}'' \) along the horizontal curves \(\{p_i(s)\}_{s \in \Delta'} \), with \(E_i \) exceptional divisors, \(i = 1, \ldots, 9 \). The components of the fibres are described by the same Picard groups as the components of \(\tilde{X}'_0 \) (see Section 3.1.1). We use the symbols \(F_0 \) and \(P_0 \) to denote the pull-backs of the components of the central fibre over \(\Delta' \), \(X''_0 \), and the symbol \(Y_0 \) for their intersection. Notice that \(Y_0 \cong \text{Bl}_{p_1, p_9}(\mathbb{F}^2) \) is a plane blown-up at two points.

The combination of the two above subsequent degenerations produces a degeneration of \(\text{Bl}_{p_1, \ldots, p_9}(\mathbb{P}^3) \) to the union of blown-up spaces \(\tilde{X}''' = F_0 \cup P_0 \) intersecting along a blown-up plane \(Y_0 \).

3.1.3. Intersection table on the central fibre. Notice that, as a divisor on \(F_0 \) (or on \(P_0 \)), the surface \(Y_0 \) is represented by the class \(E_0 - E_9 \) (resp. \(H^P - E_1 \)).

One can compute the restrictions of any divisor on \(F_0 \) or on \(P_0 \) to \(Y_0 \), by means of the following intersection table for the generators of the Picard groups:

- \(H^F \mid_{Y_0} = h \),
- \(E_1 \mid_{Y_0} = e_1 \),
- \(E_2 \mid_{Y_0} = 0 \),

and

- \(H^P \mid_{Y_0} = 0 \),
- \(E_0 \mid_{Y_0} = -h \),
- \(E_i \mid_{Y_0} = 0 \), \(i = 3, \ldots, 8 \),
- \(E_9 \mid_{Y_0} = e_9 \).

In this notation we have \(\text{Pic}(Y_0) = \langle h, e_1, e_9 \rangle \).
3.2. The limit linear system. Let $\mathcal{L} \subset |O_{P^3}(d)|$ be a linear system of degree-d surfaces in P^3 with nine assigned multiple points in general position. Let D be the corresponding divisor in the blown-up space $Bl_{p_1, \ldots, p_9}(P^3)$.

In the notation of Section 3.1.1, consider on X' the twisted line bundle $O_X(-\delta F)$ on F and to $O_{F}(\delta H)$ on F. By following the first degeneration we can consider the linear system $L_t = L \subset |O_{P^3}(d)|$ on $X'_t \cong P^3$ and its limit L'_0 on X'_0. We denote by D'_0 the corresponding divisor class in the blown-up central fibre \tilde{X}'_0.

By following the second degeneration and blowing-up the nine points on each fibre (see Section 3.1.2), we obtain the limit divisor D''_0 in the blown-up central fibre \tilde{X}''_0 that is given by divisors D''_0 and D''_0 on the two components. We consider the restriction maps to Y_0, $D''_0 \rightarrow R'' := D''_0|_{Y_0}$ and $D''_0 \rightarrow R'' := D''_0|_{Y_0}$ and denote by D''_0 and D''_0 the kernels respectively. Let $R_0 := R'' \cap R''$ denote the intersection of the restricted divisors.

Lemma 3.4. In the notation of above, for $i \geq 0$ we have

$$h^i(\tilde{X}_0'', D''_0) = h^i(\tilde{P}_0, D''_0) + h^i(\tilde{F}_0, D''_0) + h^i(Y_0, R_0).$$

Proof. Notice first of all that the assertion holds if we replace h^i by χ, the Euler characteristic. The equality holds for $i = 0$ by construction. Indeed, the divisor D''_0 on \tilde{X}_0'', or its associated line bundle, is obtained as fibred product of D''_0 and D''_0 over R_0, see Section 2.1. Finally, since all cohomology groups with $i \geq 2$ vanish, the assertion holds for $i = 1$. □

Lemma 3.5. In the notation of above, we have

$$h^i(Bl_{p_1, \ldots, p_9}(P^3), D) \leq h^i(?''_0, D''_0) \leq h^i(?''_0, D''_0)'', \quad i = 0, 1.$$

Proof. The inequalities hold for $i = 0$ by the property of upper semi-continuity of the two degenerations. As $\chi(Bl_{p_1, \ldots, p_9}(P^3), D) = \chi(?''_0, D''_0) = \chi(?''_0, D''_0)'', \quad i = 0, 1$, and all higher cohomology groups vanish, the inequalities hold for $i = 1$ as well. □

Remark 3.6. The above construction as well as Lemma 3.4 and Lemma 3.5 is potentially applicable in a more general context for linear systems in any P^n and with arbitrary number of points and multiplicities by choosing different specializations and twists, as it was done for instance by the last author in [30]. Nevertheless, it is not easy to find a good degeneration in general.

3.3. Proof of Theorem 3.1. In order to prove the theorem, we need the following result.

Proposition 3.7. The following linear systems are non-special with dimension equal to the virtual dimension: $\mathcal{L}_{3,2m}(m + 1, m^6, m - 1)$, $\mathcal{L}_{3,2m-1}(m^4, (m - 1)^4)$.

This can be easily deduced from [15] where the authors deal with Cremona reduced linear systems with eight base multiple points. However, we include the proof here for the sake of completeness.

Proof. One can easily check that $\text{vdim}(\mathcal{L}_{3,2m}(m + 1, m^6, m - 1)) = 0$. The statement is obviously true for $m = 1$. By performing two subsequent Cremona transformations of P^3 (see Section 2.3) we reduce from m to $m - 1$. Hence we conclude by induction on m.
Similarly, one proves that \(\dim(L_{3,2m-1}(m^4,(m-1)^4)) = \text{vdim}(L_{3,2m-1}(m^4,(m-1)^4)) = 0 \) by induction on \(m \).

\(\square \)

Proof of Theorem 3.1. Let \(Q = L_{3,2}(1^9) \) be the quadric surface through the nine base points. The obvious inclusion of linear systems \(L - aQ \subseteq L \) implies the inequality \(\dim(L - aQ) \leq \dim(L) \). But \(L - aQ = L_{3,2(m-a)}((m-a)^8) \) and, by Proposition 3.7, \(\dim(L_{3,2(m-a)}((m-a)^8)) = \text{vdim}(L_{3,2(m-a)}((m-a)^8)) = m-a+1 \geq 1 \). Hence \(m-a+1 \leq \dim(L(m,a)) \).

We prove the inverse inequality by degeneration. Let \(D \) denote the divisor in \(\text{Bl}_{p_1,\ldots,p_9}(\mathbb{P}^3) \) corresponding to \(L(m,a) \):

\[
D = 2mH - m \sum_{i=1}^{8} E_i - aE_9.
\]

In the notation of Section 3.2, now with \(d = 2m \), choose \(\delta = m \). In the space \(\tilde{X}'' \) of the second degeneration, we have the following divisors on the components of the central fibre \(\tilde{X}''_0 \):

\[
D^{\tilde{X}_0} = 2mH^a - mE_0 - m \sum_{i=1}^{7} E_i,
\]

\[
D^{\tilde{X}_0} = mH^a - mE_8 - aE_9.
\]

We consider the restriction maps to \(Y_0 \), and we obtain the following kernel divisors

\[
\tilde{D}^{\tilde{X}_0} = 2mH^a - (m+1)E_0 - (m-1)E_1 - m \sum_{i=2}^{7} E_i,
\]

\[
\tilde{D}^{\tilde{X}_0} = (m-1)H^a - mE_8 - (a-1)E_9.
\]

Firstly, on the component \(F_0 \) of the central fibre we have the following. By Proposition 3.7, we obtain that both \(D^{\tilde{X}_0} \) and \(D^{\tilde{X}_0} \) are non-special, so that the first cohomology groups vanish; moreover, the second is non-effective, namely \(h^0 = 0 \).

Secondly, on the exceptional component of \(\tilde{X}''_0 \) we have the following. The divisor \(\tilde{D}^{\tilde{X}_0} \) is (only) linearly obstructed and has \(h^1(D^{\tilde{X}_0}) = \binom{a+1}{3} \) caused by a line of multiplicity \(a \), see [5]. Moreover the kernel \(\tilde{D}^{\tilde{X}_0} \) is non-effective and has \(h^1(D^{\tilde{X}_0}) = \binom{a+1}{3} \), see [18].

The above implies that both \(D^{\tilde{X}_0} \) and \(D^{\tilde{X}_0} \) cut the complete linear series on the intersection \(Y_0 \) of the components. Using Sections 3.1.3 and 3.2 and the notation there introduced, we have

\[
R^{\tilde{X}_0} = mh - ae_9, \quad R^{\tilde{X}_0} = mh - me_1.
\]

Since \(R^{\tilde{X}_0} \) and \(R^{\tilde{X}_0} \) meet transversally on \(Y_0 \), their intersection is given by

\[
R_0 = mh - me_1 - ae_9.
\]

One computes \(h^0(R_0) = m-a+1 \) and \(h^1(R_0) = \binom{a}{2} \), the speciality being given by a line of multiplicity \(a \), see [5]. Finally, by Lemma 3.4 we obtain \(h^0(D^{\tilde{X}_0}_0) = m-a+1 \) and \(h^0(D^{\tilde{X}_0}_0) = \binom{a+1}{3} + \binom{a}{2} \). Now we conclude the proof of the first part of the theorem by upper semi-continuity, see Lemma 3.5.
To prove the last sentence of the theorem, we simply notice that the linear system $\mathcal{L}(m, a)$ splits as follows:

$$\mathcal{L}(m, a) = aQ + \mathcal{L}_{3,2(m-a)}((m-a)^8).$$

The second addend in the right hand side is the moving part of \mathcal{L} and is non-special by Proposition 3.7. This concludes the proof. □

Remark 3.8. In the proof of Theorem 3.1, we argued that the speciality of $\mathcal{L}(m, a)$ is given by aQ and equals the speciality of the limit D''_0 that, using Lemma 3.4, is given by a line of multiplicity a in the base locus of \hat{D}'_0 and a line of multiplicity a in the base locus of R_0.

A geometric interpretation is the following. Let us denote by $\mathcal{L}_{P_0}^m$ the matching linear system defined by the matching conditions imposed by R_{P_0} to R_{P_0}, so that we have the following exact sequence of sheaves

$$0 \to \vert \hat{D}'_0 \vert \to \mathcal{L}_{P_0}^m \to \vert R_0 \vert \to 0.$$

The emptiness of $\vert \hat{D}'_0 \vert$ implies that the limit linear system $\vert D''_0 \vert$ is the matching linear system; it is of the form $\mathcal{L}_{3,m}(m, m, a)$ where the second and third points, p_8, p_9, are general in P_0, while the first point, p_1, is on the intersection and is the one giving the matching.

In particular, if we follow the quadric $Q = \mathcal{L}(1, 1)$ in the degeneration process, by simply setting $m = a = 1$ in the above, we see that its limit is given by a matching linear system on P_0 of the form $\mathcal{L}_{3,1}(1, 1, 1)$, based at the points p_8, p_9 and p_1 of the central fibre as above. This linear system has only one element that is the plane spanned by the three points. This plane is the special effect variety for the limit of $\mathcal{L}(m, a)$; it is contained with multiplicity a in the base locus and it contributes by $a + 1 \choose 3$ to the speciality.

A weak base locus lemma for the quadric Q in the case of $\mathcal{L}(m, a)$ is just an easy application of Lemma 2.1. Indeed to prove that Q is contained in the base locus of $\mathcal{L}(m, a)$ with multiplicity at least a, it is enough to show that for every m and a, the restriction $\mathcal{L}(m, a)|_Q$ is empty and this is equivalent to prove that $\mathcal{L}_{2,3,m}(m^8, a)$ is empty, which is a well-known fact.

In the next section we will see that in general to obtain such a result is extremely difficult, mostly because of the very little knowledge of linear systems on $P^1 \times P^1$.

4. Homogeneous linear systems $\mathcal{L}_{3,2m+1}(m^3)$

In this section we consider linear systems with nine points of multiplicity m and degree $2m + 1$. For this class of linear system it is more difficult to understand the relation between the speciality and the presence of the quadric as special effect variety. Even to compute the multiplicity of containment of the quadric in the base locus is not an obvious task. The main result of this section is in fact a vanishing result for linear systems in P^2 which allows to deduce a base locus lemma for the quadric.

Given a linear system $\mathcal{L} = \mathcal{L}_{3,d}(m_1, \ldots, m_s)$ with $s \geq 9$, let Q be the unique quadric surface through the first nine points. Consider the restriction exact sequence

$$0 \to \mathcal{L} - Q \to \mathcal{L} \to \mathcal{L}|_Q \to 0.$$
The linear system $\mathcal{L}|_Q$ is contained in the linear system of the curves of bidegree (d,d) in $Q \cong \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ with nine multiple points and denoted by $\mathcal{L}_{\mathbb{P}^1 \times \mathbb{P}^1}(d,d)(m_1,\ldots,m_9)$ as in Section 2.2.

By Lemma 2.1 we know that the system $\mathcal{L}_{\mathbb{P}^1 \times \mathbb{P}^1}(d,d)(m_1,\ldots,m_9)$ has the same dimension as the system $\mathcal{L}_{2d-m_1}(d-m_1,d-m_1,m_2,\ldots,m_s)$ in \mathbb{P}^2 and in particular the first system is empty if and only if the second one is.

The main part of this chapter is devoted to prove, via degeneration techniques, emptiness results for linear systems in \mathbb{P}^2 with ten multiple points. As a straightforward consequence of Theorem 4.2 below, we obtain the following (weak) base locus lemma for the quadric. Let α be any positive integer.

Theorem 4.1 (Quadric base locus lemma). Let $\mathcal{L} = \mathcal{L}_{3m+\alpha}(m^9,m_{10},\ldots,m_s)$ be a non-empty linear system. If $m > 9\alpha$, then the quadric Q through the first nine points is contained in the base locus of \mathcal{L}.

We remark that a major difference between the quadric through nine points in \mathbb{P}^3 and the linear cycles in \mathbb{P}^n is in the geometry of their normal bundles. For the last ones the normal bundles are toric bundles so we understand their cohomology groups [5, 18] while for the first one the cohomological information is highly non-trivial.

4.1. **Emptiness of linear systems with ten points in \mathbb{P}^2**. The goal of this section is to find a good bound for m to have emptiness of certain linear systems in \mathbb{P}^2. More precisely we will prove the following result, which implies Theorem 4.1.

Theorem 4.2. The linear system $\mathcal{L} = \mathcal{L}_{2,3m+2\alpha}((m+\alpha)^2,m^8)$ is empty for any $m > 9\alpha$.

We will prove this result via degeneration techniques similar to the ones introduced in Section 3.1. More precisely, we will simultaneously degenerate the blown-up projective plane at ten points in general position and the line bundle \mathcal{L}. Even though this technique was applied before in [10, 13] for homogeneous linear systems with ten points, we will present here in detail our approach.

4.1.1. **The first degeneration.** By blowing-up a point in the central fibre of a trivial family of projective planes over a disc, Δ, one obtains a new family, call it $\mathcal{X} \rightarrow \Delta$. The fibre over zero, \mathcal{X}_0, decomposes as the union of two surfaces, a projective plane denoted by \mathbb{P} and the Hirzebruch surface \mathbb{F}_1, call it \mathbb{F}. In this notation \mathbb{P} represents the exceptional divisor of the blown-up point, while \mathbb{F} is the proper transform of the central fibre of the original family. We will denote by E the curve of intersection between \mathbb{P} and \mathbb{F}.

Consider now ten points on the general fibre of the trivial family of planes, such that four of them collide in the zero fibre. Correspondingly, on the central fibre of \mathcal{X}, we place six points on \mathbb{F} and four points on \mathbb{P} and we consider them as ten limit points of general points on \mathcal{X}_t. Blowing-up these ten sections of \mathcal{X} creates a new family $\mathcal{X}' \rightarrow \Delta$. The fibre over zero consists of two surfaces, \mathbb{P}_0 and \mathbb{F}_0, that intersect along a double curve, E. The component \mathbb{F}_0 represents a blown-up plane at four general points, \mathbb{P}_0 represents the blown-up ruled surface \mathbb{F}_1, at six general points while the double curve E is the negative section on the component \mathbb{F}_0 and also represents the class of a line on \mathbb{P}_0. The general fibre \mathcal{X}'_t is the blown-up projective plane at ten general points.
Remark 4.3. We point out that colliding four points in the zero fibre works well for the analysis of linear systems with ten points. In general, by colliding s' points from a collection of s general points, one produces a degeneration of the blown-up projective plane at s general points, i.e., the general fibre X'_s, to the union of two surfaces (for any choice of s' and s). The components of the central fibre are: F_0 that is a blown-up plane at s' general points, and F_0 that is the blown-up ruled surface F_1 at $s-s'$ general points, the two surfaces meeting along a double curve.

4.1.2. The second degeneration. This degeneration was first introduced in [13], we provide the construction of the degeneration together with the limit bundles computation for the sake of completeness. The interested reader should also consult [10]. We denote by C the unique (-1)-curve on F passing through six points that meets the double curve E in two points p_1 and p_2, at the form $L_3(2,1^6)$. We consider the family obtained in Section 4.1.1, $X' \to \Delta$, and we blow-up twice the cubic C on F and then contract the first exceptional divisor created. In this way, we will obtain a new family $X'' \to \Delta$ whose general fibre is still a plane blown-up at ten points and whose special fibre over the origin becomes the union of four surfaces. We abuse notations and denote by F and P the surfaces of the central fibre in the second degeneration and by S and T the exceptional divisors created by the double blow-up of C.

The first blow-up of C in the threefold X' creates as exceptional divisor a Hirzebruch surface F_1, that we will denote by T. The rational curve C represents the intersection between T and F. In particular, C represents the (-1)-curve of T, while G_1 represent the fibre class on T, see Figure 2.

The second blow-up of C in X', creates the exceptional divisor S that is isomorphic to $P^1 \times P^1$ and blows-up the surface P twice. Denote by F_1 and F_2 the exceptional divisors introduced on P. Notice that the proper transforms of G_1 and G_2 become (-2)-curves. We abuse the notation and denote by G_i to be these proper transforms with self-intersection (-2).

Since the normal bundle of S has bidegree $(-1,-1)$ one can contract the ruling direction of S. Blowing-down S will affect the surfaces of the central fibre as follows. On the surface P the cubic C will get contracted, T will become a projective plane, while on P the (-1)-curves, F_1 and F_2, will get identified. In [10, 13] this operation is called a 2-throw of C on P, see again Figure 2.

4.1.3. Degenerating the line bundles. We will now describe limits of line bundles on P^2 via the double degeneration. The limit bundles are bundles in the central fibre, X''_0, of the family $X'' \to \Delta$ that agree on the intersection of the double curves.

Remark 4.4. The double blow-up of C in X' affected the surface P by creating two pairs of points that are infinitely near. We will use the notation of $[13]$ $[m_1, m_2]$, to indicate a fat point with multiplicity m_1 and an infinitely near fat point with multiplicity m_2. More precisely, we adopt the notation $[m_1, m_2]$ to denote $m_2F_1 + m_1(F_1 + G_1)$.

Remark 4.5. In this section, as in Section 3.2, we will describe limits of divisors, and not limits of linear systems. This difference is emphasized in Remark 4.4. In particular, Proposition 4.6 should be understood as describing all possible limit divisors D in the linear system $L_{2,\alpha}((m+\alpha)^2, m^8)$ on the central fibre X''_0. However, in order to simplify the language and also to be consistent with notation previously used in [10, 13], in this section we abuse notations and we use the linear system
Figure 2. The 2-throw operation of the double curve C.

terminology. We must also emphasize now that this degeneration is different than the one we exploited in Section 3.2. More precisely, only the first degeneration of the blown-up projective space \mathbb{P}^3, described in Sections 3.2 and 4.1.1 coincide. In Section 3.2 this degeneration was denoted by \tilde{X}' while in Section 4.1.1 it was denoted by X''. However, in Section 3.2 the second degeneration was obtained by specializing points on the intersection of the two components while in Section 4.1.2 the second degeneration is obtained from flopping a negative curve. In order to highlight this major difference we choose different notations. More precisely even if both represent degenerations of blown-up projective projective spaces (\mathbb{P}^3 in Section 3.2 and \mathbb{P}^2 here) we will denote them by \tilde{X}'' and X'' in Sections 3.2 and Sections 4.1.2 respectively.

We will now determine all possible limit bundles of the linear system $L_{2,d}(m + \alpha)^2, m^8)$ on the general fibre.

- The line bundle on \mathbb{P} must be of the form $L_\delta(m^4, [a, b], [a, b])$, where δ, a, b represent the twisting parameters. This line bundle meets the 4 times blown-up line $\delta - 2a - 2b$ times, see Remark 4.7 below. The system on F is of the form $L_F = L_{2,4}(\delta - 2a - 2b, y^4, y'^2)$, for some t, y, y'. The assumption that L_F doesn’t meet the cubic C implies that the degree of L_F has to be even, write $t = 2e$. Indeed $0 = L_F \cdot C = 3t - 2\delta + 4a + 4b - 4y - 2y'$.

 Moreover, because $y = m - a - b$ and $y' = m - a - b + \alpha$, then one can check that

 $\delta = 3e - 3m + 5a + 5b - \alpha$.

- Consider the intersection of S and F that is a fibre on S and the cubic on F. Note that L_S is a horizontal bundle so it must have bidegree $(b, 0)$.

Moreover, \mathcal{L}_F meets a fibre $a - b$ times and does not meet the negative section B. Hence

$$\mathcal{L}_T = \mathcal{L}_{2,a-b}.$$

- The last parameter to be determined is e. We compute it by observing that the limit bundle should have degree d, that is the degree on the bundle on the general fibre. By pulling-back a line in the plane we get a line on \mathbb{P}, a fibre on \mathbb{F}, a fibre on \mathbb{T} and a fibre on \mathbb{S}. Therefore, the intersection number with all the bundles from above will have to add up to d. We obtain

$$e = \frac{d - 3(a + b)}{2}.$$

Solving this system of linear equations we obtain

$$\mathcal{L}_F = \mathcal{L}_{2,d-3a-3b} \left(\frac{3d}{2} - 3m - \frac{3(a + b)}{2} - \alpha, (m - a - b)^4, (m - a - b + \alpha)^2 \right).$$

The surface \mathbb{S} will be contracted in the ruling direction. This last blow-down will affect the surface \mathbb{F} by contracting the cubic C to a point by performing a series of Cremona transformations to \mathcal{L}_F, see Section 2.3. After contracting the surface \mathbb{S} the bundle on \mathbb{F} becomes

$$\mathcal{L}_F = \mathcal{L}_{2,3m - \frac{d}{2} - \frac{3(a + b)}{2} + \alpha} \left(0, \left(2m - \frac{d}{2} - \frac{a + b}{2} + \alpha \right)^4, \left(2m - \frac{d}{2} - \frac{a + b}{2} \right)^2 \right).$$

The zero multiplicity of \mathcal{L}_F represents the image of the cubic after the Cremona transformations. Since we are contracting the surface \mathbb{S} we will simply ignore this multiplicity. We recall that contracting the cubic on \mathbb{F} will also affect the surface on \mathbb{P} by identifying the two last (-1)-curves created on \mathbb{P}, namely F_1 and F_2.

For the future analysis we will work with the normalization of \mathbb{P}, so we will consider F_1 and F_2 disjoint as before. We obtain the following result.

Proposition 4.6. All limits of the bundle $\mathcal{L}_d((m + \alpha)^2, m^8)$ are of the following form, for some choice of the parameters a and b:

- $\mathcal{L}_F = \mathcal{L}_{2,\frac{d}{2} - 3m + \frac{a+b}{2} - \alpha} \{m^4, [a, b], [a, b]\}$,
- $\mathcal{L}_F = \mathcal{L}_{2,3m - \frac{d}{2} - \frac{3(a + b)}{2} + \alpha} ((2m - \frac{d}{2} - \frac{a + b}{2} + \alpha)^4, (2m - \frac{d}{2} - \frac{a + b}{2})^2)$,
- $\mathcal{L}_T = \mathcal{L}_{2,a-b}$.

Remark 4.7. We describe here how our degeneration method works. The choice of the number of points that one collides in the central fibre in the first degeneration (in this case is four, see Section 4.1.1) determines at each step of the degeneration the (-1)-curves that one must flop in order to obtain better ratios for proving emptiness or non-speciality results. In the analysis of linear systems with ten points both approaches of proving emptiness or non-speciality lead to the same degeneration, see [10] and [13].

Namely, in any degeneration one computes a fixed limit ratio $\frac{d}{m}$ such that for any choice of the twisting parameters, all line bundles on the central fibre are non-empty. But this ratio satisfies the Nagata bound, so one of the linear systems is special. According to Segre-Harbourne-Gimigliano-Hirschowitz Conjecture this effective linear system is special because of the existence of a negative curve. In the first degeneration this curve is precisely the special cubic passing through seven
points, denoted by C, that distinguishes by splitting off the line bundle on \mathbb{P}. To improve the limit ratio, $\frac{d}{m}$, one needs to flop the curve creating speciality.

In general, if the curve creating speciality of one of the linear systems of the central fibre intersects the double curve E once, then one performs a one-throw as explained in [13]. In other words, by blowing-up the curve creating speciality, the exceptional divisor introduced is a ruled surface isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$, so one can contract the other ruling.

However in our case, the special curve is the cubic C intersecting the double curve E twice. It follows by the general intersection theory that the exceptional divisor created after the first blow-up, denoted by T, is a Hirzebruch surface F_1 that can not be contracted. So a second blow-up is necessary creating two infinitely near points; the new exceptional divisor, denoted by S, is the ruled surface $\mathbb{P}^1 \times \mathbb{P}^1$. This can be seen by intersection theory of surfaces in \mathbb{P}^3. This affects the double curve of intersection, transforming E to the strict transform of a line blown-up four times. Finally, the fibre direction of S can be blown-down. This blow-down simplifies the geometry of \mathbb{P} but it increases the difficulty of the study of the linear system on \mathbb{P}.

We would like to point our that each degeneration is uniquely determined by the number of points we decide to collide in the first step, the degree and multiplicities of the linear system. In this case the same degeneration as in [10] and [13] can be applied, but for the sake of simplicity the computations that lead to this degeneration were omitted.

We study now the effectivity of L_P and $L_\mathbb{F}$ for $d = 3m + 2\alpha$ and $m \geq 8\alpha$. Notice that by substituting $d = 3m + 2\alpha$ we obtain the following bundles on \mathbb{P} and \mathbb{F}:

$$L_\mathbb{P} = L_{2, \frac{3m}{2} + \frac{a+b}{2} + 2\alpha}(m^4, [a, b], [a, b]),$$

$$L_\mathbb{F} = L_{2, \frac{3m}{2} - \frac{3(a+b)}{2}}\left(\left(\frac{m}{2} - \frac{a+b}{2}\right)^4, \left(\frac{m}{2} - \frac{a+b}{2} - \alpha\right)^2\right).$$

Remark 4.8. The following two statements are obvious.

- The linear system on T, $L_T = L_{2, a-b}$, is nonempty if and only if $a \geq b$.
- The linear system on \mathbb{F}, $L_\mathbb{F}$ is non-empty if any only if $a + b \leq m$.

We will now analyse the linear system on \mathbb{P}. We denote by Q_1 the four quartics $L_4(2^3, 1, [1, 1]^2)$ on \mathbb{P} and we see that these (-1)-curves split off the system if $m \geq 8\alpha$. Indeed,

$$L_\mathbb{P}Q_1 = L_{2, \frac{3m}{2} + \frac{a+b}{2} + 2\alpha}(m^4, [a, b], [a, b]) L_{2, 4}(2^3, 1, [1, 1]^2) =$$

$$4 \left(\frac{3m}{2} + \frac{a+b}{2} + 2\alpha\right) - 3 \cdot 2 \cdot m - m - 2a - 2b = 8\alpha - m.$$

We further apply a series of four Cremona transformations to the linear system $L_\mathbb{F}$ (which contains 8 base points p_1, \ldots, p_8) based respectively at the points $\{p_1, p_2, p_3\}, \{p_4, p_5, p_8\}, \{p_4, p_6, p_7\}$ and $\{p_1, p_2, p_3\}$. Note that this series of Cremona transformations contracts the four quartics to a point at the same time.

$$Cr(L_\mathbb{F}) = L_{2, \frac{3m}{2} + \frac{a+b}{2} + 18\alpha}(8\alpha - m)^4, [a-m+4\alpha, b-m+4\alpha], [a-m+4\alpha, b-m+4\alpha]).$$

For $m \geq 8\alpha$ the exceptional divisors corresponding to the first four points are (-1)-curves that split off the system. These exceptional divisors represent the
four quadrics; we will remove them and forget the zero multiplicities created. The residual system is
\[L' \mathcal{P} = L_2 a^2 - 5m^2 + 18 \alpha (a - m + 4 \alpha, b - m + 4 \alpha) \]
It is obvious that \(L \mathcal{P} \) is empty if and only if \(L'_\mathcal{P} \) is empty.

We are now ready to prove the main result of this section.

Proof of Theorem 4.2. We want to prove that \(L = L_2, 3m + 2 \alpha (((m + \alpha)^2, m^8) \) is empty for \(m > 9 \alpha \).

We assume by contradiction that there are some values of the parameters \(a \) and \(b \) for which both linear systems \(L \mathcal{P} \) and \(L \mathcal{F} \) are non-empty in the central fibre of the degeneration. If \(L \mathcal{P} \) is non-empty then the degree of \(L'_\mathcal{P} \) is positive. In particular
\[a + b \geq 5m - 36 \alpha. \]

On the other hand, since \(L \mathcal{F} \) is non-empty, by Remark 4.8, we must have
\[a + b \leq m. \]

These two inequalities lead to a contradiction, hence the linear system \(L_2, 3m + 2 \alpha ((m + \alpha)^2, m^8) \) is empty.

In particular, Theorem 4.2 gives the following consequence.

Proposition 4.9. If \(m \geq 8 \), then the linear system \(L_2, 3m + 2 \alpha ((m + \alpha)^2, m^8) \) is empty.

Proof. First, we check cases \(m = 8, 9 \) by computer. For \(m \geq 10 \) we apply Theorem 4.2 with \(\alpha = 1 \). \(\square \)

4.2. Classification of homogeneous linear systems \(L_{2m+2}(m^9) \).

In this section we completely classify homogeneous linear systems in \(\mathbb{P}^3 \) of degree \(2m + 1 \) with nine points. We start with the following lemma, which is an easy consequence of Proposition 4.9.

Lemma 4.10. The linear system \(L_{2m+2}((m + 1)^2, m^8) \) satisfies:
\[\dim(L_{2m+2}((m + 1)^2, m^8)) = \chi(L_{\mathbb{P}^1 \times \mathbb{P}^1, (2m+1,2m+1)}(m^9)) \]
for \(m \leq 8 \) and it is empty for \(m \geq 8 \).

Proof. We check by computer the statement for \(m \leq 7 \). For \(m \geq 8 \) we use Proposition 4.9. \(\square \)

By Lemma 2.1, the previous lemma has the following straightforward consequence.

Corollary 4.11. The linear system \(L_{\mathbb{P}^1 \times \mathbb{P}^1, (2m+1,2m+1)}(m^9) \) is non-special for every \(m \geq 1 \) and it is empty for \(m \geq 8 \).

We are ready now to prove the following classification result:

Theorem 4.12. A linear system \(L = L_{2m+1}(m^9) \) is special if and only if \(m \geq 9 \).

In particular we have:
- \(\dim(L_{2m+1}(m^9)) = \text{vdim}(L_{2m+1}(m^9)) \) for \(m \leq 8 \);
- \(\dim(L_{2m+1}(m^9)) = 60 \) for \(m \geq 7 \);
- the quadric \(Q \) through the nine base points is in the base locus of \(L \) with multiplicity \(m - 7 \), for any \(m \geq 8 \).
Proof. The restriction exact sequence (4.1) gives in this case:

\[0 \to \mathcal{L}_{3,2(m-1)+1}\left((m-1)^9\right) \to \mathcal{L}_{3,2m+1}(m^9) \to \mathcal{L}_{\mathbb{P}^3\times \mathbb{P}^1,(2m+1,2m+1)}(m^9) \to 0. \]

We use induction on \(m \geq 1 \). The case \(m = 1 \) is obvious. By Corollary 4.11, we deduce that the linear system is non-special if and only if \(m \leq 8 \) (notice that if \(m = 8 \) we have \(\chi(\mathcal{L}_{\mathbb{P}^3\times \mathbb{P}^1,(17,17)}(8^9)) = 0 \)). Moreover, again from Corollary 4.11, it follows that \(\dim(\mathcal{L}_{3,2m+1}(m^9)) = \dim(\mathcal{L}_{3,15}(7^9)) = 60 \) for all \(m \geq 7 \).

In order to prove that, for \(m \geq 8 \), the quadric is contained in the base locus of \(\mathcal{L} \) with multiplicity \(m - 7 \), it is enough to use Corollary 4.11 and to notice that \(\dim(\mathcal{L}_{3,15}(7^9)) \neq \dim(\mathcal{L}_{3,13}(6^9)) \). \(\square \)

A straightforward consequence of Theorem 4.12 is the following:

Corollary 4.13. Conjecture 5.1 holds for any homogeneous linear system with nine points of multiplicity \(m \) and degree \(d \leq 2m + 1 \).

5. **Proof of Laface-Ugaglia Conjecture for Linear Systems with 9 Points and Multiplicities Bounded by 8**

Let \(\mathcal{L} = \mathcal{L}_{3,d}(m_1, \ldots, m_9) \) be the linear system of degree \(d \) hypersurfaces of \(\mathbb{P}^3 \) with 9 general multiple points of multiplicities \(m_1, \ldots, m_9 \). In this section we will assume that \(d \geq m_1 \geq m_2 \geq \ldots \geq m_9 \). Let \(Q = \mathcal{L}_{3,2}(1^9) \) be the unique quadric surface through the nine base points. We adopt the following notation

\[
q(\mathcal{L}) = \chi(\mathcal{L}|_Q) = (d+1)^2 - \sum_{i=1}^9 \left(\frac{m_i + 1}{2}\right).
\]

Laface and Ugaglia formulated their conjecture in [27, Conjecture 4.1] and [29, Conjecture 6.3]. Following the definition of linear speciality introduced in [5], we can reformulate this conjecture in the following way.

Conjecture 5.1 (Laface-Ugaglia Conjecture). Given a Cremona reduced linear system \(\mathcal{L} \) in \(\mathbb{P}^3 \), we have

1. if \(q(\mathcal{L}) \leq 0 \), then \(\dim(\mathcal{L}) = \dim(\mathcal{L} - Q) \);
2. if \(q(\mathcal{L}) > 0 \), then \(\mathcal{L} \) is linearly non-special.

Remark 5.2. Since \(\mathcal{L} \) is Cremona reduced, i.e. \(m_1 + m_2 + m_3 + m_4 \leq 2d \), it does not contain any plane in the base locus. Hence Conjecture 5.1 says that if \(q(\mathcal{L}) > 0 \), then \(\mathcal{L} \) is special if and only if \(m_1 + m_2 - d \geq 2 \) and in this case:

\[
\dim(\mathcal{L}) = \text{ldim}(\mathcal{L}) + \chi(\mathcal{L}) + \sum_{i,j} \left(\frac{m_i + m_j - d + 1}{3}\right),
\]

where \(\text{ldim} \) denotes the affine linear dimension, see [18, Definition 1.2].

Remark 5.3. If \(q(\mathcal{L}) \leq 0 \) and \(\dim(\mathcal{L}) = \dim(\mathcal{L} - Q) \), from the exact sequence (4.1) we obtain that

\[
h^1(\mathcal{L}) = h^1(\mathcal{L} - Q) - q(\mathcal{L}).
\]

This means that the quadric \(Q \) is a special effect surface for the linear system \(\mathcal{L} \).

Remark 5.4. We point out that a quadric surface in the base locus can give speciality even if it is contained with multiplicity one. Consider for instance the linear system \(\mathcal{L} = \mathcal{L}_{3,8}(4^7,3^2) \) for which \(\dim(\mathcal{L}) = 6 \), \(h^1 = -q(\mathcal{L}) = 1 \). This system contains in its base locus the quadric \(Q \) through the nine points, but does not contain \(2Q \).
This behaviour is different from the case of linear special effect varieties, for which any linear cycle of dimension \(l \) contributes to the speciality only if its multiplicity in the base locus is at least \(l + 1 \).

Remark 5.5. Notice that when a linear system \(\mathcal{L} \) has a quadric surface as special effect variety, computing \(h^1(\mathcal{L}) \) is quite difficult in general. In fact the quasi-homogeneous systems classified in Section 3 form a very special family for which we understand completely the situation, but this is not the case in general.

Let \(\mathcal{L} \) be a linear system with \(q(\mathcal{L}) \leq 0 \). Assume there exists \(k \) such that

- \(q(\mathcal{L} - kQ) \leq 0 \) for any \(0 \leq k \leq k \) and \(q(\mathcal{L} - (k + 1)Q) > 0 \),
- \(\mathcal{L} - kQ \) restricts to non-special linear systems on the quadric \(Q \), for any \(0 \leq k \leq k \).

Then, by using Remark 5.3, we get the following formula:

\[
(5.2) \quad h^1(\mathcal{L}) = -\sum_{k=0}^{\infty} q(\mathcal{L} - kQ).
\]

By using (5.2) in the case of quasi-homogeneous systems \(\mathcal{L}_{3,2m}(m^8, a) \) and using Remark 3.2, we recover exactly the formula \(h^1(\mathcal{L}) = \left(\frac{a+1}{3}\right) + \left(\frac{a}{2}\right) \) of Theorem 3.1. In this case \(k = a \).

The problem in general is to determine the value of \(k \). Let us see an example:

- If \(\mathcal{L} = \mathcal{L}_{3,13}(8,6^8) \), then \(q(\mathcal{L}) = -8 \), \(q(\mathcal{L} - q) = -4 \), \(q(\mathcal{L} - 2Q) = -1 \), while \(q(\mathcal{L} - 3Q) = 1 > 0 \), hence we have \(h^1(\mathcal{L}) = 8 + 4 + 1 = 13 \) and in this case \(k = 2 \).

Remark 5.6. Given two vectors \(v = (m_1, \ldots, m_s) \) and \(v' = (m_1', \ldots, m_s') \) in \(\mathbb{N}^s \), we write \(v' \leq v \) if and only if \(m_i' \leq m_i \) for any \(1 \leq i \leq s \).

It is easy to see that if a linear system \(\mathcal{L}_{n,d}(v) \) is non-special and non-empty, then also any linear system \(\mathcal{L}_{n,d}(v') \) is non-special and non-empty for any vector \(v' \leq v \).

Now we establish Laface-Ugaglia Conjecture for any linear system with nine points of multiplicities bounded by 8. We start with a lemma whose proof is essentially computational.

Lemma 5.7. If a linear system \(\mathcal{L} = \mathcal{L}_{3,d}(m_1, \ldots, m_9) \) is such that \(m = \max(m_i) \leq 8 \) and \(d < 2m \), then it satisfies Conjecture 5.1.

Proof. First of all it is clear that if \(d < m \) the system is empty, so we assume \(d \geq m \). Assume that \(\mathcal{L} \) is Cremona reduced, that is

\[
(5.3) \quad m_1 + m_2 + m_3 + m_4 \leq 2d.
\]

Now if \(d = m \), then by (5.3) we have that \(m_1 = m \) and \(m_2 < m \). Therefore by applying [5, Theorem 5.3], we have that if \(\sum_{i=1}^{9} m_i \leq 3d + 2 \) then \(\mathcal{L} \) is linearly non-special. Hence we can also assume

\[
(5.4) \quad \sum_{i=1}^{9} m_i > 3d + 2.
\]

For any \(m \leq 8 \), only the following systems satisfy conditions (5.3) and (5.4): \(\mathcal{L}_{3,6}(6,2^8) \) and \(\mathcal{L}_{3,7}(7,3,2^7) \). It is easy to check that these two systems are linearly non-special.
Assume now that $d \geq m + 1$. We know, by [2], that Laface-Ugaglia Conjecture is true for any linear system with multiplicities bounded by 5. So we can assume $6 \leq m \leq 8$.

Moreover, by applying again [5, Theorem 5.3], we have that if $\sum_{i=1}^{9} m_i \leq 3d + 3$ then \mathcal{L} is linearly non-special. Hence we can also assume

\[
\sum_{i=1}^{9} m_i > 3d + 3.
\]

Now we list all the possible linear systems which satisfy conditions (5.3) and (5.5), for any $5 \leq m \leq 8$ and any $m + 1 \leq d \leq 2m - 1$. Then we prove that all the cases in the list satisfy the conjecture using the following procedure. For any degree we start to check the cases $\mathcal{L} = \mathcal{L}_{3,d}(m_1, \ldots, m_8) = \mathcal{L}_{3,d}(v)$ for the largest vectors v. We compute $\dim(\mathcal{L})$ by means of the computer system Macaulay2 as explained in Section 2.4.

If \mathcal{L} is non-special and non-empty, then by Remark 5.6, also the linear system $\mathcal{L}_{3,d}(v')$ is non-special and non-empty, for any vector $v' \leq v \in \mathbb{Z}^9$, hence we greatly reduce the number of cases to be checked.

If \mathcal{L} is linearly non-special, then we apply [5, Lemma 5.5 and Remark 5.6] and [9, Theorem 1.2] and we obtain again that any system $\mathcal{L}_{3,d}(v')$, for $v' \leq v \in \mathbb{Z}^9$, is linearly non-special. Hence we further reduce the number of cases to be checked and we obtain at the end the lists contained in Tables 1, 2, 3. Notice that in the tables the special and linearly non-special systems are marked with *. By applying this procedure we complete the proof of the lemma.

We give now the main result of this section:

Theorem 5.8. Conjecture 5.1 is true for any linear system $\mathcal{L}_{3,d}(m_1, \ldots, m_9)$ such that $m = \max(m_i) \leq 8$.

Proof. If the degree $d \leq 2m - 1$ the result follows from Lemma 5.7.

If $d = 2m$, by Theorem 3.1, we know that the quasi homogeneous linear systems $\mathcal{L}_{3,2m}(m^8, a)$ are special if and only if $2 \leq a \leq m$ and they satisfy Conjecture 5.1. Arguing as in Lemma 5.7, in order to complete the proof we need to check all linear systems satisfying (5.3) and (5.5) for any $6 \leq m \leq 8$.

The list of these cases (reduced by Remark 5.6) is contained in Table 4 and we checked all of them by computer.

Now if $d \geq 2m + 1$, by Theorem 4.12 the linear system $\mathcal{L}_{3,2m+1}(m^9)$ is non-special and non-empty. Hence any homogeneous linear system $\mathcal{L}_{3,d}(m^9)$ for $d \geq 2m + 1$ is also non-special and non-empty.

Finally we deduce that any (non-homogeneous) linear system $\mathcal{L}_{3,d}(m_1, \ldots, m_9)$ with $m_i \leq m$ is non-special and non-empty, by Remark 5.6. This completes the proof. \(\square\)

5.1. Future directions. We conclude this paper by pointing out possible future directions (both theoretical and computational) in establishing Laface-Ugaglia Conjecture for nine points. On the one hand, one can introduce further degenerations of \mathbb{P}^2 in order to obtain a better bound in the base locus lemma, Theorem 4.1. On the other hand, the combination of the results of Section 4 and of similar computer-based computations as the one performed in this section could improve the bound on the multiplicities of Theorem 5.8.
5.2. Tables. The linear systems marked with * in Table 1, Table 2 and Table 3 are linearly non-special, namely their dimension equals the linear expected dimension. All other linear systems have the quadric surface through nine points as special effect component, namely it splits off the system and gives speciality.

Table 1. The case $m = 6$

<table>
<thead>
<tr>
<th>degree</th>
<th>$(m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9)$</th>
<th>q</th>
<th>h^0</th>
<th>h^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$(6, 5, 5, 5, 5, 5, 5, 5, 5)$</td>
<td>3</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>$(6, 6, 5, 5, 5, 5, 5, 4)$</td>
<td>2</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>$(6, 6, 5, 5, 5, 5, 5, 5)$</td>
<td>-3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>$(6, 6, 6, 4, 4, 4, 4, 4, 4)$</td>
<td>21</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>$(6, 5, 4, 4, 4, 4, 4, 4, 4)$</td>
<td>10</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>(6, 6, 4, 4, 4, 4, 4, 4, 4)</td>
<td>9</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>(6, 6, 5, 3, 3, 3, 3, 3, 3)</td>
<td>28</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>$(6, 4, 4, 4, 4, 4, 4, 4, 3)$</td>
<td>3</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>(6, 4, 4, 4, 4, 4, 4, 4, 4)</td>
<td>-1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*(6, 5, 4, 3, 3, 3, 3, 3, 3)</td>
<td>18</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>*(6, 6, 3, 3, 3, 3, 3, 3, 3)</td>
<td>16</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>*(6, 4, 3, 3, 3, 3, 3, 3, 3)</td>
<td>8</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. The case $m = 7$

<table>
<thead>
<tr>
<th>degree</th>
<th>$(m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9)$</th>
<th>q</th>
<th>h^0</th>
<th>h^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$(7, 6, 6, 6, 6, 6, 6, 6, 6)$</td>
<td>0</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>*(7, 7, 6, 6, 6, 6, 5, 5)</td>
<td>5</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>*(7, 7, 6, 6, 6, 6, 6, 6)</td>
<td>4</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>*(7, 7, 6, 6, 6, 6, 6, 6)</td>
<td>-1</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>*(7, 7, 6, 6, 6, 6, 6, 6)</td>
<td>-7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>*(7, 7, 7, 5, 5, 5, 5, 5, 5)</td>
<td>22</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>*(7, 6, 6, 6, 5, 5, 5, 5, 5)</td>
<td>9</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>*(7, 7, 5, 5, 5, 5, 5, 5, 5)</td>
<td>8</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>*(7, 7, 6, 6, 4, 4, 4, 4, 4, 4)</td>
<td>32</td>
<td>112</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>*(7, 5, 5, 5, 5, 5, 5, 5, 5, 5)</td>
<td>1</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>*(7, 5, 5, 5, 5, 5, 5, 5, 5, 5)</td>
<td>-4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>*(7, 6, 5, 4, 4, 4, 4, 4, 4, 4)</td>
<td>20</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>*(7, 6, 3, 3, 3, 3, 3, 3, 3, 3)</td>
<td>38</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>*(7, 7, 4, 4, 4, 4, 4, 4, 4, 4)</td>
<td>18</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>*(7, 7, 5, 3, 3, 3, 3, 3, 3, 3)</td>
<td>37</td>
<td>105</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>*(7, 5, 4, 4, 4, 4, 4, 4, 4, 4)</td>
<td>8</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>*(7, 5, 5, 3, 3, 3, 3, 3, 3, 3)</td>
<td>27</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>*(7, 6, 4, 3, 3, 3, 3, 3, 3, 3)</td>
<td>26</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>*(7, 7, 3, 3, 3, 3, 3, 3, 3, 3)</td>
<td>23</td>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>*(7, 4, 4, 3, 3, 3, 3, 3, 3, 3)</td>
<td>16</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>*(7, 5, 3, 3, 3, 3, 3, 3, 3, 3)</td>
<td>15</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>*(7, 3, 3, 3, 3, 3, 3, 3, 3, 3)</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 3. The case \(m = 8 \)

<table>
<thead>
<tr>
<th>degree</th>
<th>((m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9))</th>
<th>(q)</th>
<th>(h^0)</th>
<th>(h^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>((8, 7, 7, 7, 7, 7, 7, 7, 6))</td>
<td>3</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>((8, 7, 7, 7, 7, 7, 7, 7, 7))</td>
<td>-4</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>((8, 8, 7, 7, 7, 7, 6, 6))</td>
<td>2</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>((8, 8, 7, 7, 7, 7, 7, 5))</td>
<td>1</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>((8, 8, 7, 7, 7, 7, 7, 6))</td>
<td>-5</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>((8, 8, 7, 7, 7, 7, 7, 7))</td>
<td>-12</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>((8, 8, 8, 6, 6, 6, 6, 6, 6))</td>
<td>22</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>((8, 7, 7, 6, 6, 6, 6, 6, 6))</td>
<td>7</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>*(8, 8, 6, 6, 6, 6, 6, 6, 6))</td>
<td>6</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>*(8, 8, 7, 5, 5, 5, 5, 5, 5))</td>
<td>35</td>
<td>147</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>*(8, 8, 4, 4, 4, 4, 4, 4, 4))</td>
<td>57</td>
<td>203</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>((8, 6, 6, 6, 6, 6, 5, 5))</td>
<td>4</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>((8, 6, 6, 6, 6, 6, 6, 6))</td>
<td>3</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>((8, 6, 6, 6, 6, 6, 6, 6))</td>
<td>-2</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>((8, 6, 6, 6, 6, 6, 6, 6))</td>
<td>-8</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>*(8, 7, 6, 5, 5, 5, 5, 5, 5))</td>
<td>21</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>*(8, 7, 4, 4, 4, 4, 4, 4, 4))</td>
<td>44</td>
<td>154</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>*(8, 8, 5, 5, 5, 5, 5, 5, 5))</td>
<td>19</td>
<td>79</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>*(8, 8, 4, 4, 4, 4, 4, 4, 4))</td>
<td>43</td>
<td>148</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>*(8, 6, 5, 5, 5, 5, 5, 5, 5))</td>
<td>7</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>*(8, 6, 4, 4, 4, 4, 4, 4, 4))</td>
<td>31</td>
<td>105</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>*(8, 5, 4, 4, 4, 4, 4, 4, 4))</td>
<td>30</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>*(8, 4, 4, 4, 4, 4, 4, 4, 4))</td>
<td>27</td>
<td>85</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>*(8, 9, 4, 4, 4, 4, 4, 4, 4))</td>
<td>18</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>*(8, 6, 5, 3, 3, 3, 3, 3, 3))</td>
<td>17</td>
<td>52</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>*(8, 6, 5, 3, 3, 3, 3, 3, 3))</td>
<td>36</td>
<td>98</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>*(8, 6, 5, 3, 3, 3, 3, 3, 3))</td>
<td>34</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>*(8, 6, 3, 3, 3, 3, 3, 3, 3))</td>
<td>30</td>
<td>74</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>*(8, 4, 4, 4, 4, 4, 4, 4, 4))</td>
<td>5</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>*(8, 5, 4, 3, 3, 3, 3, 3, 3))</td>
<td>24</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>*(8, 6, 3, 3, 3, 3, 3, 3, 3))</td>
<td>22</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>*(8, 4, 3, 3, 3, 3, 3, 3, 3))</td>
<td>12</td>
<td>21</td>
<td>11</td>
</tr>
</tbody>
</table>
Table 4. The case $d = 2m$

<table>
<thead>
<tr>
<th>$(m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9)$</th>
<th>q</th>
<th>h^0</th>
<th>h^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(6, 6, 6, 6, 6, 5, 5, 5, 5)$</td>
<td>4</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>$(6, 6, 6, 6, 6, 5, 5, 4, 4)$</td>
<td>3</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>$(6, 6, 6, 6, 6, 5, 5, 5, 5)$</td>
<td>-2</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>$(6, 6, 6, 6, 6, 6, 4, 4, 4)$</td>
<td>2</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>$(6, 6, 6, 6, 6, 5, 5, 4, 3)$</td>
<td>1</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>$(6, 6, 6, 6, 6, 5, 5, 4, 4)$</td>
<td>-3</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>$(6, 6, 6, 6, 6, 5, 5, 5, 3)$</td>
<td>-8</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 6, 6, 6, 6)$</td>
<td>1</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 5, 5, 6, 6)$</td>
<td>0</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 6, 6, 5, 6)$</td>
<td>-6</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 5, 4, 4, 4)$</td>
<td>4</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 5, 5, 5, 5)$</td>
<td>-1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 5, 6, 3, 3)$</td>
<td>2</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 6, 4, 4, 4)$</td>
<td>-2</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 5, 5, 5, 5)$</td>
<td>-7</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>$(7, 7, 7, 7, 7, 5, 5, 3, 3)$</td>
<td>-13</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 7, 7, 7, 7, 7)$</td>
<td>5</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 7, 7, 7, 6)$</td>
<td>4</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 7, 7, 7, 7)$</td>
<td>-3</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 6, 6, 6, 6)$</td>
<td>3</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 7, 7, 5, 5)$</td>
<td>2</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 7, 7, 6, 6)$</td>
<td>-4</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 7, 7, 7)$</td>
<td>-11</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 6, 5)$</td>
<td>1</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 6, 6)$</td>
<td>-5</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 7, 3)$</td>
<td>3</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 7, 4)$</td>
<td>-1</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 7, 5)$</td>
<td>-6</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 7, 6)$</td>
<td>-12</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>$(8, 8, 8, 8, 8, 8, 8, 7, 7)$</td>
<td>-19</td>
<td>6</td>
<td>45</td>
</tr>
</tbody>
</table>

References

ON LINEAR SYSTEMS OF \mathbb{P}^3 WITH NINE BASE POINTS

E-mail address: brambilla@dipmat.univpm.it
Università Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona, Italy

E-mail address: dumitrescu@math.uni-hannover.de
Institut für Algebraische Geometrie GRK 1463, Welfengarten 1, 30167 Hannover, Germany

E-mail address: elisa.postinghel@wis.kuleuven.be
KU Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Heverlee, Belgium