High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: YANG, Y. ... et al, 2014. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Transactions on Industrial Informatics, 10 (1), pp.604-614

Additional Information:

- © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Metadata Record: https://dspace.lboro.ac.uk/2134/23110

Version: Accepted for publication

Publisher: © IEEE

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
High-Order Mismatched Disturbance Compensation for Motion Control Systems via A Continuous Dynamic Sliding-Mode Approach

Jun Yang, Member, IEEE, Jinya Su, Shihua Li, Senior Member, IEEE, and Xinghuo Yu, Fellow, IEEE

Abstract—A new continuous dynamic sliding-mode control (CDSMC) method is proposed for high-order mismatched disturbance attenuation in motion control systems using a high-order sliding-mode differentiator. Firstly, a new dynamic sliding surface is developed by incorporating the information of the estimates of disturbances and their high-order derivatives. A CDSMC law is then designed for a general motion control system with both high-order matched and mismatched disturbances, which can attenuate the effects of disturbances from the system output. The proposed control method is finally applied for the airgap control of a MAGnetic LEViation (MAGLEV) suspension vehicle. Simulation results show that the proposed method exhibits promising control performance in the presence of high-order matched and mismatched disturbances.

Index Terms—Motion control systems, high-order mismatched disturbances, dynamic sliding-mode control, MAGLEV Suspension vehicle.

I. INTRODUCTION

In almost all modern motion control systems, various uncertainties including parameter perturbations, unmodeled dynamics and external disturbances, always bring undesirable influence on the performance specification [1]. For example, see robot manipulator [2], [3], magnetic balance beam [4], MAGnetic LEViation (MAGLEV) suspension vehicle [5], [6], permanent magnet synchronous motor (PMSM) [7], [8], hard-disk drive [9]. Due to the growing interest in smart and precision motion devices, the development of disturbance rejection technique has received more and more attentions in motion controller design. Many elegant control approaches, such as H_2/H_∞ control [10], sliding model control [11], [12], adaptive control [13], robust control [14], [15] and backstepping control [16], [17], have been widely investigated in the literature for motion control systems. Although these methods have gained extensive applications and been proved to be efficient, they mainly focus on the stability (or robust stability) of uncertain systems [18], and in general, the robustness is achieved at a price of sacrificing the nominal performance [18], [19], [20]. In addition, most of those advanced feedback control approaches are designed without active feedforward disturbance compensation, and they can only attenuate the nonvanishing disturbances to a prescribed level rather than completely remove them from system [20], [21].

As a practical alternative approach, disturbance observer based control (DOB) has been proved to be effective in compensating the effects of unknown external disturbances and model uncertainties in motion control systems [2], [7], [9], [23]. The major merit of the DOB is that the robustness of the closed-loop system is obtained without sacrificing its nominal control performance [19], [20]. Another remarkable feature of DOB lies in that it could completely remove the nonvanishing disturbances from system as long as they can be accurately estimated [22]. Despite the above excellent features, most of the existing DOBCs are only insensitive to matched disturbances but sensitive to mismatched ones. However, in many practical systems, the uncertainties would not rigorously satisfy the matching condition, for instance, see the MAGLEV suspension vehicle [23], the PMSM system [7], [14] and magnetically suspended balance beam system [4].

Due to the importance of compensating mismatched disturbances in both theory and engineering applications, several researchers have engaged in solving such a problem via DOBC, for example see [20]-[27]. In [24], the offset caused by mismatched disturbance is removed in the context of model predictive control by correcting the prediction error via a disturbance observer. An equivalent-input-disturbance based control framework is proposed for mismatched disturbance attenuation in [25]. By designing a specific disturbance compensation gain, a new DOBC framework was proposed to compensate mismatched disturbances for linear systems in [23] and also nonlinear systems in [20]. In [26] and [27], a new DOBC method was proposed to counteract the mismatched uncertainties in the system via designing a dynamic sliding surface incorporating the information of mismatched disturbances. When the sliding motion is realized, the prescribed specification including robust stability and disturbance attenuation can be achieved. However, it is noticed that, the mismatched disturbances in [20]-[27] are required to be a constant, which is not reasonably satisfied for many practical engineering issues [5], [28]. Taking the MAGLEV suspension vehicle as an example, the track input disturbance would not be
a constant but fluctuates continuously with a high-order time-varying feature [5]. The presence of high-order mismatched disturbances will result in undesirable static and dynamic performance for methods in [20]-[27], which may constrain their applications in practical systems.

It is also noticed that in sliding mode control societies, much effort has been taken to the sliding surface design of systems under mismatched uncertainties (see e.g. Refs. [29]-[33] and references therein). However, the mismatched uncertainties therein considered should satisfy the condition of being H_2 norm-bounded, that is, the mismatched uncertainties are vanishing ones [26]. In addition, those methods suppress the mismatched uncertainties and disturbances in a robust way, that is, the ability against uncertainties is obtained at a price of sacrificing the nominal performance of control systems.

In this paper, a new continuous dynamic sliding-mode control (CDSMC) method is proposed to completely counteract the effects of both high-order matched and mismatched disturbances on the output of motion control systems. By fully taking into account the information of estimates of disturbances and their high-order derivatives, a new dynamic sliding surface is firstly designed which is insensitive to not only matched disturbances but also mismatched ones. As a result, the system output can be driven to the desired setpoint asymptotically by sliding motion along the new dynamic sliding surface even under both matched and mismatched disturbances. A continuous control law without any chattering is designed to drive the states to the designed dynamic sliding surface in finite time.

The proposed method exhibits the following attractive features. Firstly, the effects of both matched and mismatched disturbances are completely removed from the system output, where the disturbances are not constrained to be constant ones but could be high-order time-varying ones. Secondly, the nominal performance is retained with the proposed method, which means the proposed method acts the same as the baseline SMC in the absence of disturbances. Thirdly, the proposed control law is continuous without any chattering since the disturbances have been attenuated in finite time due to the finite-time convergence of the high-order sliding-mode differentiator and thus no switching control is required for disturbance rejection. The stability of the closed-loop system under the proposed method is addressed by means of Lyapunov stability method.

As a typical motion control system, recently, MAGLEV suspension vehicle has been attracting ever-increasing attention as a means of achieving noncontact transportation [34], [35] due to various advantages in practice including no direct environmental pollution and high safety and reliability [23]. As compared with the conventional wheel-on-rail ones, it does not have any mechanical contact with tracks, therefore, the friction, vibration, mechanical losses and acoustic noise are significantly reduced [5]. However, essentially, MAGLEV suspension vehicle is a nonlinear system subject to both external disturbances and parameter variations [23], which poses challenges to control designers. To this end, a great deal of elegant control methods for MAGLEV vehicles have been proposed in the past few decades including PI control [5], adaptive control [13], H-infinity control [10], sliding mode control [26], and so on. Simulation results of the MAGLEV suspension vehicle show that the proposed approach enables faster and higher-precision tracking performance as compared with other traditional control methods in the presence of high-order mismatched disturbances.

II. MOTIVATIONS

Without loss of generality, the following second-order motion system subject to mismatched high-order disturbance is taken as an example to show the motivations of this paper

$$\dot{\eta}_1 = \eta_2 + d(t),$$
$$\dot{\eta}_2 = a(\eta) + b(\eta)u,$$
$$y = \eta_1,$$

where η_1 and η_2 are states, u is the control input, $d(t)$ is the mismatched high-order disturbance, and y is the output. $a(\eta)$ and $b(\eta) \neq 0$ are smooth nonlinear functions in terms of η.

The sliding-mode control (SMC) and integral SMC (I-SMC) methods are taken as representatives to show how high-order mismatched disturbances affects the control performance of the closed-loop systems. The sliding surface as well as control law of baseline SMC are generally designed as [36]

$$\sigma = \eta_2 + c\eta_1, u = -b^{-1}(\eta)[a(\eta) + c\eta_2 + k\text{sign}(\sigma)].$$

Combining (1) with (2) gives

$$\dot{\sigma} = -k\text{sign}(\sigma) + cd(t).$$

As shown in Eq. (3), the states in system (1) which are initially outside sliding surface $\sigma = 0$ will reach it in finite time if the switching gain in (2) is selected such that $k > \max\{|cd(t)|\}$. Considering the condition $\sigma = 0$ in (2), the sliding motion dynamics is governed by

$$\dot{\eta}_1 = -c\eta_1 + d(t).$$

It is noticed from Eq. (4) that, if the disturbance $d(t)$ is non-zero, then the output η_1 can not be driven to the desired equilibrium point.

An effective method to suppress the mismatched uncertainties would be I-SMC [36], which generally employs the following sliding surface

$$\sigma = \eta_2 + c_1\eta_1 + c_2 \int \eta_1.$$

The control law of I-SMC is then designed as

$$u = -b^{-1}(\eta)[a(\eta) + c_1\eta_2 + c_2\eta_1 + k\text{sign}(\sigma)].$$

Combining (1) with (5) and (6) yields

$$\dot{\sigma} = -k\text{sign}(\sigma) + c_1d(t).$$

The states of system (1) will arrive the sliding surface $\sigma = 0$ in (5) in finite time if the switching gain in (6) is selected such that $k > \max\{|c_1d(t)|\}$. Taking the condition $\sigma = 0$, we have

$$\dot{\eta}_1 + c_1\dot{\eta}_1 + c_2\eta_1 = d(t).$$

It can be derived from (8) that, the I-SMC method is efficient to eliminate the offset caused by mismatched disturbance with
a constant steady-state value. However, in the presence of high-order disturbance \(\lim_{t \to \infty} d(t) \neq 0 \), the I-SMC method is unavailable for offset removal, i.e., the output \(\eta_t \) can not be driven to the desired equilibrium point asymptotically. In addition, it is well known that the integral action of I-SMC method may bring some undesirable impacts to system performance, e.g., destroying its nominal control performance and introducing overshoot.

Another alternative approach to attenuate mismatched uncertainties is proposed in [26], [27], which is called enhanced SMC (ESMC) via a disturbance observer. The sliding surface in [26], [27] for system (1) is designed as

\[
\sigma = \eta_2 + c_1 \eta_1 + \hat{d},
\]

where \(\hat{d} \) denotes the estimate of the disturbance \(d \) by a disturbance observer. The ESMC law could attenuate the mismatched disturbances without sacrificing its nominal performance, and the chattering problem can be relieved to some extent. However, the control law of ESMC is still discontinuous indicating that the chattering problem is unavailable.

In order to attenuate the effect of mismatched disturbance on the system output, the aforementioned control methods make some conservative assumptions on the mismatched disturbance. That is, the disturbance is required to be a vanishing one for traditional SMC method, and with a constant steady-state value for I-SMC and ESMC methods. However, the disturbance in practical applications may not satisfy those assumptions, which has been showed by MAGLEV suspension vehicle [26] and PMSM system [7], [14], etc. In those cases, the offset caused by high-order mismatched disturbance can not be eliminated effectively by the traditional SMC methods. In addition, when those methods are extended to control higher-dimension system, the high-order derivatives of the mismatched disturbances would have an adverse impact on both the dynamic and static performances. This motivates the research topic of this paper, that is, designing a new control law for nonlinear system with both high-order matched and mismatched disturbances such that the offset caused by disturbances is completely removed from the system output.

III. New Dynamic Sliding-Mode Control Design

Consider a single-input single-output motion control system with input relative degree (IRD) of \(\rho \) which is subject to high-order mismatched disturbances [37]:

\[
\begin{align*}
\dot{\eta}_i &= \eta_{i+1} + d_i, \quad 1 \leq i \leq \rho - 1, \\
\dot{\eta}_\rho &= a(\eta) + b(\eta)u + d_\rho, \\
y &= \eta_1,
\end{align*}
\]

where \(\eta = [\eta_1, \cdots, \eta_\rho]^T \) are the state vectors, \(u \) is the control input, \(y \) is the controlled output, \(d_i \) is the disturbance with at least \((\rho - i)\)th order bounded derivatives. \(a(\eta) \) and \(b(\eta) \neq 0 \) are smooth functions in terms of \(\eta \).

The objective is to design a feedback controller for system (10), which could drive the control output \(y \) to the desired setpoint asymptotically in spite of the presence of both high-order matched and mismatched disturbances.

A. Controller Design

A new dynamic sliding surface for system (10) is designed as

\[
\sigma = c_1 \eta_1 + \sum_{i=2}^{\rho} c_i (\eta_i + \sum_{j=1}^{i-1} z_{i-j}^j) \quad (11)
\]

where \(c_i > 0 \), \((i = 1, \cdots, \rho)\) are parameters to be designed, and \(z_{i-j}^j \) is the state of the following high-order sliding-mode differentiator

\[
\begin{align*}
\dot{z}_0^j &= v_0^j + \eta_{i+1}, \\
v_0^j &= v_1^j, \\
\dot{v}_0^j &= \cdots = \dot{v}_r^j, \\
v_0^j &= -\lambda_1^j L_1^{-1} |z_0^j - \eta_{i}| \frac{\sigma}{\eta_{i}} \text{sign}(z_0^j - \eta_{i}) + z_1^j, \\
v_1^j &= -\lambda_1^j L_1^{-1} |z_1^j - v_0^j| \frac{\sigma}{\eta_{i}} \text{sign}(z_1^j - v_0^j) + z_2^j, \\
\vdots
\end{align*}
\]

\[
\begin{align*}
v_{r-2}^j &= -\lambda_1^j L_1^{-1} \frac{2}{3} |z_{r-2}^j - v_{r-1}^j| \frac{\sigma}{\eta_{i}} \text{sign}(z_{r-2}^j - v_{r-1}^j) + z_{r-1}^j, \\
v_{r-1}^j &= -\lambda_1^j L_1^{-1} \text{sign}(z_{r-1}^j - v_{r-1}^j),
\end{align*}
\]

where \(\eta_{i+1} \) denotes \(a(\eta) + b(\eta)u \) for the simplicity of expression, \(r_i \) is the order of differentiator, \(\lambda_1^j > 0 \), \((j = 0, 1, \ldots, r_i; \quad i = 1, 2, \ldots, \rho - 1)\) are the coefficients of the differentiator to be designed. Suppose that \(d_i^\rho \) has a Lipschitz constant \(L_i^\rho \).

Remark 1: The high-order sliding-mode differentiator (12) is referred to [38], where the only slight difference is design of the first equation \(z_0^j \). However, it will be shown next that the differentiator error system derived by (12) is the same as that in [38]. The order of \(r_i \) differentiator is determined by \(r_i = \rho - i + 1 \), since only \(d_i, d_i, \ldots, d_{\rho-1} \) have an impact on the system output. In order to completely compensate the effects of disturbances from the output dynamics, we make an assumption that the disturbance \(d_i \) has \((\rho - i)\)th order bounded derivatives.

A continuous dynamic sliding-mode control (CDSMC) law based on the dynamic sliding surface (11) for system (10) is designed as

\[
u = \frac{\sigma}{\eta_{i}} \left(c_1 \eta_2 + z_1^1 \right) + \sum_{i=2}^{\rho-1} c_i (\eta_{i+1} + z_1^i + \sum_{j=1}^{i-1} v_{i-j}^j) + c_\rho [a(\eta) + z_0^\rho + \sum_{j=1}^{\rho-1} v_{\rho-j}^j] + k\text{sign}(\sigma)\sigma|\sigma|, \quad (13)
\]

where \(0 < \alpha < 1 \) is a design parameter, \(z_1^1, v_{\rho-j}^j \) have been given in (12), \(k > 0 \) is a controller gain, and \(c_i \) are the parameters to be designed such that the polynomial

\[
p_\alpha(s) = c_\rho s^{\rho-1} + \cdots + c_2 s + c_1 = 0, \quad (14)
\]

is Hurwitz. The block diagram of CDSMC is described by Fig. 1.

B. Stability Analysis

The stability of the closed-loop system is analyzed in this part based on the Lyapunov stability method. The following Lemma is firstly presented as an essential preliminary.
Lemma 1: The differentiator error system governed by
\[
\begin{align*}
\dot{e}_0^i &= -\lambda_i^1 L_i \dot{\eta} + \sum_{j=1}^{i-1} |e_j^i|/\rho_{j} \text{sign}(e_j^i) + e_t^i, \\
\dot{e}_1^i &= -\lambda_i^1 L_i \dot{\eta} + \sum_{j=1}^{i-1} |e_j^i|/\rho_{j} \text{sign}(e_j^i - e_{j-1}^i) + e_t^i, \\
&\vdots \\
\dot{e}_{r_i-1}^i &= -\lambda_i^1 L_i \dot{\eta} + \sum_{j=1}^{i-1} |e_j^i|/\rho_{j} \text{sign}(e_j^i - e_{j-1}^i) + e_t^i, \\
\dot{e}_{r_i}^i &= -\lambda_i^1 L_i \dot{\eta} + \sum_{j=1}^{i-1} |e_j^i|/\rho_{j} \text{sign}(e_j^i - e_{j-1}^i),
\end{align*}
\]
where the errors are defined as \(e_t^i = \dot{\eta}_i - \dot{\eta}_i \), \(e_0^i = \dot{\eta}_i - d_i \), \(e_1^i = \dot{\eta}_i - c_i d_i + \ldots + c_{r_i-1} d_{r_i-1} + c_{r_i} \), is finite-time stable [38], [39], that is, there exists a time constant \(t_f > t_0 \) such that \(e_i(t) = 0 \) \((i = 0, 1, \ldots, r_i) \) for \(t \geq t_f \). The proof of this lemma can be followed from [38], which is omitted here for space. \(\square \)

The main results of the paper are presented by the following theorem.

Theorem 1: For system (10) with the proposed dynamic sliding surface (11) under control law (13), the system output \(y \) will converge to the desired setpoint asymptotically and the states remain bounded.

Proof: For the proposed dynamic sliding surface (11), its derivative along the system dynamics (10) is
\[
\dot{\sigma} = c_i (\eta_2 + d_i) + \sum_{j=2}^{r_i} c_i (\eta_{j+1} + d_i + \sum_{j=1}^{i-1} e_j^i).
\]
Combining (10), (13) and (16) gives
\[
\dot{\sigma} = \sum_{i=1}^{\rho} c_i (d_i - z_i) - k \text{sign}(\sigma) |\sigma|^{\alpha} - e_t
\]
where \(e_t = \sum_{i=1}^{\rho} c_i e_i^i \) is bounded due to the finite-time convergence of error system (15).

It will be shown that a bounded estimation error \(e_t \) will not drive the sliding variable to infinity in a finite time. To this end, define a finite-time bounded (FTB) function \(V(\sigma) = \frac{1}{2} \sigma^2 \) for the sliding mode dynamics (17). Taking derivative of \(V(\sigma) \) along (17) yields
\[
\dot{V}_1(\sigma) = \dot{\sigma} \sigma = -k |\sigma|^{\alpha+1} - \dot{\sigma} \sigma \leq -k |\sigma|^{\alpha} - e_t \sigma \leq \frac{1}{2} \sigma^2 + \frac{1}{2} e_t^2 \leq K_{V_1} V_1(\sigma) + L_{V_1}
\]
where \(K_{V_1} = 1 \), \(L_{V_1} = \frac{1}{2} \max\{|e_t^i|\} \). Then, it can be obtained from (18) that \(V(\sigma) \) and so \(\dot{\sigma} \) are bounded in any finite time.

Note that error system (15) is finite-time stable, which implies that \(e_t \) will converge to zero in a finite time \(t_f \). In addition, it has been shown by (18) that the sliding variable \(\sigma \) will not be driven to infinity in the finite-time convergent process of differentiator. So after the finite-time stability of error system (15) is achieved, the sliding mode dynamics (17) will reduce to \(\dot{\sigma} = -k \text{sign}(\sigma) |\sigma|^\alpha \), which means the sliding variable \(\sigma \) will converge to zero in a finite time \(t_f \).

Defining \(\tilde{\eta}_1 = \eta_1 \), \(\tilde{\eta}_i = \eta_i + \sum_{j=1}^{i-1} z_j \), \(i = 2, \ldots, \rho \), the dynamics of states \(\tilde{\eta}_i \) are obtained from (11), governed by
\[
\dot{\tilde{\eta}}_i = \tilde{\eta}_{i+1} + \tilde{e}_i, \quad i = 1, \ldots, \rho - 1,
\]
where \(\tilde{e}_i = -\tilde{e}_1^i, \tilde{e}_i = \sum_{j=1}^{i-1} (\tilde{e}_j^i - \tilde{e}_{j-1}^i) - \tilde{e}_i^i \) for \(i = 2, \ldots, \rho - 1 \). The dynamics of states (19) can be expressed in the following compact form
\[
\dot{\tilde{\eta}} = A \tilde{\eta} + \tilde{u}
\]
where \(\tilde{\eta} = [\tilde{\eta}_1, \ldots, \tilde{\eta}_\rho]^T \), \(A \) is the companion matrix of the Hurwitz polynomial \(p_\sigma(s) = c_\rho s^{\rho-1} + \cdots + c_2 s + c_1 \), \(\tilde{u} = [\tilde{e}_1, \ldots, \tilde{e}_{\rho-1}, \tilde{\sigma}] \) is the input vector with a bounded norm since both \(\sigma \) and \(e_t^i \) are bounded.

Next we will show the sliding surface dynamics (17) and the observer error dynamics (15) will not drive the state dynamics (19) to infinity in finite time. Define a FTB function \(V_2(\tilde{\eta}) = \frac{1}{2} \tilde{\eta}^T \tilde{\eta} \) for system (20). Taking derivative of \(V(\tilde{\eta}) \) along dynamics (20), one obtains
\[
\dot{V}_2(\tilde{\eta}) = \frac{1}{2} \tilde{\eta}^T \tilde{\eta} A \tilde{\eta} + \frac{1}{2} \tilde{\eta}^T \tilde{u} \tilde{u} \leq \lambda_{\max} \tilde{\eta}^T \tilde{A} \tilde{\eta} + \frac{1}{2} \tilde{\eta}^T \tilde{u} \tilde{u}
\]
where \(K_{V_2} = 2 \lambda_{\max} + 1 \), \(L_{V_2} = \frac{1}{2} \max\{|\tilde{u}|^2\} \). \(\lambda_{\max} \) is the largest eigenvalue of matrix \(A \).

It can be concluded from (21) that \(V(\tilde{\eta}) \) and so the state \(\tilde{\eta} \) will not escape to infinity in finite time. This implies that the system dynamics (19) will reduce to the following system
\[
\dot{\tilde{\eta}}_i = \tilde{\eta}_{i+1}, \quad \tilde{\eta}_\rho = -\sum_{i=1}^{\rho} k_i \tilde{\eta}_i
\]
for \(i = 1, \ldots, \rho - 1 \) with a finite time after the stabilities of sliding surface dynamics (17) and observer error dynamics (15) are achieved in finite time. Since \(A \) is a Hurwitz matrix, system (22) is asymptotically stable, which implies that \(\tilde{y}(t) = \eta_1(t) \) will converge to the desired setpoint asymptotically. \(\square \)
will reduce to the traditional sliding surface \(\sigma = \sum_{i=1}^{\rho} c_i(\eta_i) \).

In addition, \(z_i^j(t) = 0, j = 1, \cdots, r_i \) for \(t > t_0 \) implies that \(v_{i-j}^j \equiv 0 \) holds for \(t > t_0 \), which indicates that the CDSMC law (13) reduces to the traditional SMC law

\[
u = -[c_i b(\eta)]^{-1} \left\{ \sum_{i=1}^{\rho-1} c_i \eta_i + c_i \alpha(\eta) + k \text{sign}(\sigma) |\sigma|^\alpha \right\}
\]

(23)

This implies that the proposed CDSMC acts the same as the baseline SMC in the absence of uncertainties, that is, the nominal control performance of the proposed control method is retained. \(\square \)

Remark 3: The CDSMC proposed in this paper can be seen as a nontrivial extension of the existing ESMC method in [26]. Actually, the CDSMC method reduces to ESMC in [26] under the assumption that the mismatched disturbance satisfies \(d_i = 0 (i = 1, \cdots, \rho) \). Since under the assumption that \(d_i = 0 \), only the estimate of \(d_i \) is required to be included in the dynamic sliding surface (11), which means that the dynamic sliding surface (11) reduces to the sliding surface in ESMC

\[
sigma = c_i \eta_i + \sum_{i=2}^{\rho} c_i (\eta_i + z_i^{-1})
\]

(24)

where \(z_i^{-1} = \hat{d}_i^{-1} \) is the estimation of \(d_i^{-1} \). However, if the assumption on mismatched disturbances \(d_i = 0 \) does not hold, the system dynamics is then governed by

\[
\sum_{i=1}^{\rho} c_i \eta_i[i] = \sum_{i=2}^{\rho} c_i [(d_i^{-1} - \hat{d}_i^{-1}) + \sum_{j=1}^{i-2} d_j^{-1-i}]
\]

(25)

for ESMC, which means the derivatives and high-order derivatives of disturbances still have an undesirable effect on the system states even the sliding mode \(\sigma = 0 \) in (24) is realized. To eliminate the offset caused by the high-order derivatives of disturbances but not only the estimations of disturbances \(z_i^1 \) but also the estimations of high-order derivatives of the disturbances \(z_i^1 \) are incorporated in the dynamic sliding surface (11). As a result, when the dynamic sliding surface (11) is reached together with the convergence of the high-order sliding mode differentiator, the system dynamics will be governed by \(\sum_{i=1}^{\rho} c_i \eta_i[i] = 0 \), which means that the offset caused by high-order derivatives of disturbances is completely removed from system output. \(\square \)

IV. A MAGLEV SUSPENSION VEHICLE DESIGN EXAMPLE

A. Dynamic Model of MAGLEV Suspension Vehicle

1) Nonlinear Dynamic Model: The complete nonlinear model dynamics for a MAGLEV suspension vehicle are given by [5], [23],

\[
B = \frac{K_b I}{G},
\]

(26)

\[
F = K_f B^2,
\]

(27)

\[
dI = \frac{V_c - IR_c + \frac{N_A K_b}{G} (\frac{dz}{dt} - \frac{dG}{dt})}{\frac{N_A K_b}{G} + L_c},
\]

(28)

\[
M_d \frac{d^2 Z}{dt^2} = M_s g - F + d_{load}, \quad (29)
\]

\[
dG = \frac{dz}{dt} - \frac{dZ}{dt}, \quad (30)
\]

where variables \(I, Z, z_1, \frac{dz}{dt}, \frac{dZ}{dt}, G, F, B \) and \(V_c \) denote the current, the electromagnet position, the rail position, the electromagnet vertical velocity, the rail vertical velocity, the air gap, the force, the flux density and the coil voltage, respectively. A little difference from the model in [23] is that the load variation \(d_{load} = m_s \frac{\dot{g}}{g} \) caused by weight of passengers is explicitly included in the model. The rest symbols in Eqs. (26)-(30) represent system parameters as shown in Table I.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_s)</td>
<td>Vehicle mass</td>
<td>1000kg</td>
</tr>
<tr>
<td>(K_b)</td>
<td>Flux coefficient</td>
<td>0.0015T-m/A</td>
</tr>
<tr>
<td>(K_f)</td>
<td>Force coefficient</td>
<td>9810N/T²</td>
</tr>
<tr>
<td>(R_c)</td>
<td>Coil’s inductance</td>
<td>10Ω</td>
</tr>
<tr>
<td>(g)</td>
<td>Gravity constant</td>
<td>9.81m/s²</td>
</tr>
<tr>
<td>(L_c)</td>
<td>Coil’s inductance</td>
<td>0.1H</td>
</tr>
<tr>
<td>(N_c)</td>
<td>Number of turns</td>
<td>2000</td>
</tr>
<tr>
<td>(A_p)</td>
<td>Pole face area</td>
<td>0.01m²</td>
</tr>
</tbody>
</table>

2) Model Linearization: In order to utilize the proposed control method, model linearization is required to transform the model of MAGLEV suspension system to meet the design formation as described in (10). The model here is linearized based on small perturbations around its operating point [5]. The following definitions are used, where the lower case letters denote a small variation around operating point while the subscript ‘o’ represents the operating condition

\[
B = B_o + b, \quad F = F_o + f, \quad I = I_o + i, \quad \frac{dz}{dt} = z_o + z, \quad \frac{dZ}{dt} = Z_o + Z,
\]

\[
G = G_o + (z_o - z), \quad V_c = V_o + u_c.
\]

The nominal values of MAGLEV vehicle in operating point are provided in Table II [5].

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Meaning</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{o})</td>
<td>Nominal current</td>
<td>10A</td>
</tr>
<tr>
<td>(G_{o})</td>
<td>Nominal air gap</td>
<td>0.015m</td>
</tr>
<tr>
<td>(V_{o})</td>
<td>Nominal voltage</td>
<td>100V</td>
</tr>
</tbody>
</table>

Then the linearized dynamic model of MAGLEV suspension vehicle is obtained, which is depicted by

\[
\dot{x} = Ax + B_u u + B_d d(t) + \Delta A x + O(x, u, d), \quad (31)
\]

where the states \(x = [x, z, (z_o - z)]^T \) represent variations of current, vertical velocity of electromagnet and air gap; the input \(u = u_c \) denotes the voltage; the disturbances \(d(t) = [z_t, m_s \frac{\dot{g}}{g}]^T \) are the vertical velocity of rail and the load variation; the controlled variable is air gap variation \(y = z_t - z \); \(\Delta A \) is the perturbation matrix; nonlinear function \(O(x, u, d) \) represents the high order nonlinearities in terms of \(x, u \) and
Due to linearization. Suppose that the external disturbances \(d(t)\) have at least twice order bounded derivatives. Here the system matrices in (31) are directly given as follows:

\[
A = \begin{bmatrix}
-\frac{B_0}{L_0 + K_b N_c \frac{\partial}{\partial x}} & -\frac{K_b N_c A_p I_0}{G_0^2(L_0 + K_b N_c \frac{\partial}{\partial x})} & 0 \\
-2K_\eta I_0 & 2K_\eta \frac{I_0^2}{M_c G_0^2} & 0 \\
0 & 0 & -1
\end{bmatrix},
\]

\[
B_u = \begin{bmatrix}
1 \\
\frac{L_c}{L_c + K_b N_c A_p} \\
0
\end{bmatrix},
\]

\[
B_d = \begin{bmatrix}
\frac{K_b N_c A_p I_0}{G_0^2(L_0 + K_b N_c \frac{\partial}{\partial x})} \\
0 \\
1
\end{bmatrix},
\]

\[
C = \begin{bmatrix}
0 & 0 & 1
\end{bmatrix}.
\]

The diagram of a MAGLEV vehicle is shown by Fig. 2.

B. Controller Design

The high-order nonlinear term \(O(x, u, d)\) in Eq. (31) is usually neglected in controller design due to its smaller magnitude as compared with the dominated linear dynamics. In this paper, however, such a nonlinear term is not neglected any more but handled as a part of lumped disturbances. As a result, the lumped disturbances include external disturbances, parameter variation and high-order nonlinearities, described as

\[
d_t = B_3 d + \Delta A x + O(x, u, d).
\]

Remark 4: The lumped disturbances (36) in the MAGLEV system contain some state and input variables. It is well known that for disturbance estimation based control including extended state observer (ESO) based control [7], DOBC [2], [6], [22], [26], and equivalent input disturbance (EID) based control [25], it is not easy to verify the boundedness assumptions of the uncertainties \(d_u = f(x, u, d) = \Delta A x + O(x, u, d)\) in lumped disturbances. In many practical engineering systems, however, the dominated dynamics have been stabilized by feedback control, while the uncertainties \(d_u\) in the lumped disturbance are usually very weak as compared with the dominated dynamics, which in general will not affect the stability of the closed-loop system. In this case, such uncertainties are generally reasonably regarded as a part of lumped disturbance and then handled by the proposed method.

Substituting (36) into (31), the full dynamic model of the nonlinear MAGLEV suspension vehicle is described as

\[
\dot{x} = Ax + Bu + B_3 d_t, \\
y = C x,
\]

where \(B_t = I\) is a \(3 \times 3\) identity matrix.

To simplify the control design, the following transformation is employed [26], which can transform the original system into a system in Byrnes-Isidori normal form but subject to both matched and mismatched disturbances

\[
\eta = T x,
\]

where

\[
T = \begin{bmatrix}
C \\
CA \\
CA^2
\end{bmatrix}.
\]

The MAGLEV system under such a coordinate transformation is then represented as

\[
\dot{\eta} = \bar{A}\eta + \bar{B}_u u + \bar{B}_3 d_t, \quad d_t = [d_{t1}, d_{t2}, d_{t3}]^T \in \mathbb{R}^3
\]

where \(\bar{A} = T A T^{-1}, \bar{B}_u = T B_u, \) and \(\bar{B}_t = T B_t\).

Substituting (32)-(35) into (39) gives

\[
\dot{\eta}_1 = \eta_2 + d_{t3}, \\
\dot{\eta}_2 = \eta_3 - d_{t2}, \\
\dot{\eta}_3 = C A^2 \bar{T}^{-1} \eta + CA^2 B_u u + CA^2 B_t d_t.
\]

where \(d_t = [d_{t1}, d_{t2}, d_{t3}]^T\) in (40) is a vector with the dimension three, and \(d_{t1} = [d_{t1}, d_{t2}, d_{t3}]^T\) denotes the lumped disturbances entering the \(i\)th channel.

Remark 5: It can be observed from (40) that the MAGLEV suspension vehicle is subject to both matched disturbance \(CA^2 B_t d_t\) and mismatched ones \(d_{t1}\) and \(d_{t2}\). The matched

Table III: Control Specifications for MAGLEV Vehicle

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum air gap deviation, ((z_t - z_i)_p)</td>
<td>(\leq 0.0075m)</td>
</tr>
<tr>
<td>Maximum input coil voltage, ((u_{coil})_p)</td>
<td>(\leq 300V/3I_s R_e)</td>
</tr>
<tr>
<td>Settling time, ((t_s))</td>
<td>(\leq 3s)</td>
</tr>
<tr>
<td>Air gap steady state error, ((z_t - z_{i_{ss}}))</td>
<td>(= 0)</td>
</tr>
</tbody>
</table>
disturbance \(CA^2B_1d_1 \) can be attenuated in conventional SMC by high-frequency switching control force, however, the mismatched disturbances \(d_{13} \) and \(d_{23} \) cannot be attenuated by traditional SMC which have an adverse effect on the system output.

Based on the above analysis, the CDSMC law (13) proposed in Section III can be directly applied to the control design of such a MAGLEV suspension vehicle in this section.

V. SIMULATION RESULTS AND ANALYSIS

Simulation results are provided to validate the performance of the proposed method. To evaluate the efficiency of the proposed control method, the traditional SMC, the I-SMC and ESMC [26] methods are also employed in the simulations for the purpose of comparisons. The simulations are implemented for the full nonlinear dynamics of the MAGLEV system in a measurement noise environment for practicality. The control parameters of all the four control methods are listed in Table IV.

Table IV

<table>
<thead>
<tr>
<th>Controllers</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC</td>
<td>(c_1 = 100, c_2 = 20, c_3 = 1, k = 80)</td>
</tr>
<tr>
<td>I-SMC</td>
<td>(c_0 = 200, c_1 = 100, c_2 = 20, c_3 = 1, k = 80)</td>
</tr>
<tr>
<td>ESMC</td>
<td>(c_1 = 100, c_2 = 20, c_3 = 1, k = 30, \lambda(\eta) = 100\eta)</td>
</tr>
<tr>
<td>CDSMC</td>
<td>(c_1 = 100, c_2 = 20, c_3 = 1, k = 30, L_1 = L_2 = 20), (\lambda_1^1 = 3, \lambda_1^2 = 2, \lambda_2^1 = \lambda_2^2 = 1.5 \lambda_1^1 = \lambda_2^2 = 2.5)</td>
</tr>
</tbody>
</table>

A. External Disturbances Rejection

The track input components considered in this part are referred to [5] and shown in Fig. 3. They represent a gradient of 5% at a vehicle speed of 15 m/s, a vertical acceleration of 0.5 m/s² and a jerk level of 1 m/s³. In practical applications, the track input disturbance would vary continuously due to the ups and downs of the rail. To this end, an additional time-varying track input disturbance \(\dot{z}_t = 0.1 \sin(\pi t) \) m/s is taken and imposed on the vehicle at \(t = 4 \) second to imitate the real engineering.

The initial states of MAGLEV suspension vehicle (31) are taken as \([i(0), \dot{i}(0), z(0) - \dot{z}(0)]^T = [0, 0, 0.003]^T \). Simulation results are shown in Figs. 4-6.

![Fig. 4. Response curves of output \(z_t - \dot{z} \) of MAGLEV vehicle with external disturbances under four controllers: CDSMC (blue line), ESMC (red line), I-SMC (black line), SMC (green line).](image)

![Fig. 5. Response curves of control input \(u_{coil} \) of MAGLEV vehicle with external disturbances under four controllers: (a) CDSMC; (b) ESMC; (c) I-SMC; (d) SMC.](image)

As shown by Figs. 4 and 6, the proposed method has obtained the same response curves as those of the SMC method during the first sec when there is no disturbance in such a interval, which demonstrates the nominal performance recovery property of the proposed methods. In addition, Figs. 4 and 6 show that the conventional SMC severely suffers from
the mismatched non-vanishing disturbances. The I-SMC and ESMC methods can remove the offset caused by track input disturbances represented in Fig. 3. However, the proposed CDSMC in this paper obtains better transient performance for disturbance rejection as compared with the I-SMC and ESMC. Also note that, in the presence of high-order time varying disturbances (for $t > 4$ second), both I-SMC and ESMC can not reject or compensate these disturbances effectively, while the proposed CDSMC achieves prominent disturbance compensation performance. Fig. 5 shows that the CDSMC does not lead to any chattering phenomenon due to the continuous control action, while traditional SMC, I-SMC and ESMC result in the chattering phenomenon due to the discontinuous sign function.

B. Robustness Against Load Variation

Simulation studies are performed to verify the robustness of the CDSMC against load variation in this part. The load variation under consideration is 40% of the total vehicle mass in 10 seconds, i.e., the disturbance load will vary from 0 kg (fully unladen vehicle) to 400 kg (fully laden vehicle). The load variation profile is shown in Fig. 7. The external disturbance in Fig. 3 is also considered and added on system at $t = 15$ sec. The initial states for MAGLEV suspension vehicle (31) are taken as $[i(0), \dot{z}(0), z_t(0) - z(0)]^T = [0, 0, 0]^T$. The control parameters for all the four control methods are the same as the ones in the case of external disturbance rejection.

As shown by Fig. 8, the proposed CDSMC obtains satisfying dynamic and static performance in the presence of both load variation and track input disturbances. The I-SMC and ESMC can obtain a satisfying static performance but quite poorer dynamic performance. In addition, it can be observed from Figs. 9 and 10 that the proposed CDSMC has a relatively lower control energy as compared with the rest control methods. In addition, the controller of the proposed CDSMC is continuous and no chattering phenomenon appears.

VI. CONCLUSIONS

The high-order mismatched disturbance compensation problem for motion control systems has been investigated in this paper. A new CDSMC approach based on a high-order sliding-mode differentiator has been proposed to attenuate the effects caused by high-order mismatched disturbances on the output.

Fig. 7. Profile of the load variation.

The output and input response curves of the MAGLEV vehicle with load variation and external disturbance input under the four control methods are described by Figs. 8 and 9, respectively. The corresponding states response curves are shown in Fig. 10.
in finite time. The main contribution here is to design a new dynamic sliding surface which incorporates the information of the estimations of disturbances and their high-order derivatives such that the sliding motion along the sliding surface can drive the system output to the desired equilibrium even in the presence of high-order mismatched disturbances. Simulation results of a MAGLEV suspension vehicle have demonstrated that the proposed method exhibits much better dynamic and static performances in the presence of high-order mismatched disturbances as compared with the traditional SMC, I-SMC and ESMC methods.

REFERENCES

