HMI integration for driver systems: INTEGRATE and VIVID

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a powerpoint presentation.

Metadata Record: https://dspace.lboro.ac.uk/2134/2319

Please cite the published version.
HMI Integration for Driver Systems
INTEGRATE and VIVID

TTEC: Tailoring Transport Technology to People

Tracy Ross (t.ross@lboro.ac.uk)
Andrew May (a.j.may@lboro.ac.uk)
Transport Technology Ergonomics Centre
Loughborough University
(formerly HUSAT)
What was INTEGRATE?

- 2 year project, 1997 - 1999, EPSRC IMI Programme
- HUSAT, MIRA, Coventry Univ. KBE Centre
- HMI design advice for integrated in-vehicle systems
- ‘Whole Vehicle’ approach:
 - Future-proof / flexible / modular integration
System scope

STANDARD
- Primary driving controls
- HVAC
- Vehicle status
- ICE

EMERGING
- Navigation
- Traffic information
- Mobile office
- Tolling

FUTURE
- ACC
- Collision warning
- Vision enhancement
- Driver status
Implications for the driver

Potential for:

• Reduced performance with individual systems
• Negative effects on primary driving task
• Increased driver stress, frustration etc.
Industry Requirements

- Ford, Jaguar, Rover, Honda, Nissan
- TRW Automotive, Alpine, Visteon
- Human Factors staff and Engineers
- Aimed at HF expert
- Procedural
- Early input
- Future-proof
Overview of the INTEGRATE Process

A
System definition

B
Design independent conflict analysis

C
Design dependent conflict analysis

D
Select design solution(s)

E
Apply basic HF

F
Priority setting

G
Integration/data fusion

H
Re-allocation of IP/OP
B. Design indep. conflict analysis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Pre-trip</th>
<th>Urban cruise</th>
<th>Urban mnvr</th>
<th>M’way cruise</th>
<th>M’way mnvr</th>
<th>Slow mnvr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn by turn instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced cruise control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward collision warning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral collision warning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse parking aid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TTEC
F. Priority setting

<table>
<thead>
<tr>
<th>Priority rating</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision warning</td>
<td></td>
</tr>
<tr>
<td>Route guidance instructions</td>
<td></td>
</tr>
<tr>
<td>Black ice on road</td>
<td></td>
</tr>
</tbody>
</table>
Exploitation of output

‘VIVID’ Virtual In-vehicle Information Displays
- UK Foresight Vehicle LINK project
- Oct 2000 - Sep 2002
- PERA, TTEC, Thales Optronics, OCF

A Simulation Tool to:
- Rapidly simulate voice/display options
- Develop ‘typical’ driving scenarios
- Test prioritisation/timing algorithms
VIVID Tool

Information management and presentation

- Priority rules
- Message exclusion zones

- Visual characteristics of HUDs
- Location of displays

- Adaptable HMIs
- Other events on the road
- Real time driver behaviour
How do we convince management to spend on HF?

We have a few ideas, how can we try them out quickly?

Here’s our chosen solution. Is it viable?

The solution is almost complete.
We just have a problem with x and y

Earlier involvement of T1 supplier
Potential applications of VIVID

1. Dealing with conflicts
2. Scheduling of information
3. User understanding of systems
4. User differences & customer segmentation
1a. Dealing with conflicts

Potential solutions:

<table>
<thead>
<tr>
<th>Navigation System</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Presented</td>
<td>Accepted</td>
</tr>
<tr>
<td>2. Presented</td>
<td>Diverted</td>
</tr>
<tr>
<td>3. Not presented</td>
<td>Accepted</td>
</tr>
<tr>
<td>4. Visual only</td>
<td>Accepted</td>
</tr>
</tbody>
</table>
1b. Conflicts: types of navigation messages

- Will solution vary depending on point of conflict?
- Solution may depend on:
 - Importance of next manoeuvre
 - What driver has already received
 - Complexity of manoeuvre
2. Scheduling

- What should the time windows be?
- What should they depend on?
3. User understanding: inconsistent HMI

- Will drivers understand why systems may behave differently?
- Will they accept such systems?
- Driver expectations
- System design, training?

TTEC
4. User differences, segmentation

- Designing for novice customers
- Designing for 3rd generation customers
- Gradual evolution of ‘intelligence’
- ‘Taking away’ information or features seen as retrograde step by by customers
Exploitation of VIVID Tool

• For researchers to generate new knowledge in appropriate dialogue management methods

• For vehicle or system manufacturers to investigate options for integration

• For experts to test already proposed algorithms

• An illustrative tool

• Plus potential for evaluation