3D printing with extraterrestrial materials

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: GOULAS, A. ... et al., 2016. 3D printing with extraterrestrial materials. Loughborough University Wolfson School Research Conference 2016, poster presentation.

Additional Information:

- This is a poster presentation.

Metadata Record: https://dspace.lboro.ac.uk/2134/23557

Version: Published

Publisher: Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
INTRODUCTION

Additive manufacturing and its related powder bed fusion process category, consists of a group of key enabling technologies that allow the fabrication of various structures, directly from computer aided design data by selectively fusing parts of a powder bed, using a thermal source (laser, electron beam etc.) on a successive layer-by-layer manner allowing the fabrication of both intrinsic and complex structures for various applications and in critical environments such as aerospace and aeronautics.

PROJECT SCOPE

The prospect of this research approach is to propose and discuss the application of in-space additive manufacturing/3D printing for onsite fabrication of structures [1] and parts [2], using the already available natural resources on site as feedstock. The realisation of such a challenging manufacturing approach in a highly demanding off-world environment, could pose as a key to achieve a sustainable presence in space by providing the ability to build assets and tools needed for long duration/distance missions in deep space.

METHODOLOGY

This study was carried out by using a range of simulants of terrestrial origin, mimicking the bulk chemistry, mineralogy and mechanical properties of those respective materials found extra terram. The candidate materials were processed with commercially available additive manufacturing equipment. An investigation towards material characterisation for powder bed fusion and the results after processing, was conducted via elemental analysis [3], spectrometry [4], optical and scanning electron microscopy [5] and also thermal analyses [6].

*Thanos Goulas*, Daniel Southcott-Engstrom¹, Russell A. Harris², Ross J. Friel¹
¹Wolfson School of Mechanical, Electrical & Manufacturing Engineering
²School of Mechanical Engineering, University of Leeds

*a.goulas@lboro.ac.uk, d.engstrom@lboro.ac.uk, r.harris@leeds.ac.uk, r.j.friel@lboro.ac.uk*