Can exercise protect against vertebral deformity? The proact65+bone study

[Abstract]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is an abstract of a paper presented at the Osteoporosis Conference 2016, Birmingham, UK, 7-9 November 2016. The final publication is available at link.springer.com via http://dx.doi.org/10.1007/s00198-016-3743-z.

Metadata Record: https://dspace.lboro.ac.uk/2134/23856

Version: Accepted for publication

Publisher: © International Osteoporosis Foundation and National Osteoporosis Foundation. Published by Springer.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
CAN EXERCISE PROTECT AGAINST VERTEBRAL DEFORMITY? THE PROACT65+ BONE STUDY

Background: Exercise may protect against vertebral fracture by increasing bone strength or producing postural adaptation that may modify loading to the vertebrae but very few studies have examined the influence of exercise on vertebral deformity.

Objective: The Otago Exercise Programme (OEP) involves home based strength and balance training. The Falls Management Exercise (FaME) programme also incorporates group exercise including further spinal extensor training. This study aimed to compare effectiveness of FaME and OEP interventions relative to usual care on vertebral heights and incidence of vertebral deformity.

Methods: Participants were 319 men and women, aged (mean ± SD) 72 ± 5 years who were recruited through primary care and randomised by practice to FaME, OEP or a usual care group. The spine was scanned in lateral decubitus position using Dual-energy X-ray Absorptiometry (DXA) (GE-Lunar Prodigy) prior to randomisation and following the 24-week intervention. Dual-energy Vertebral Assessment was used to calculate the anterior, middle and posterior heights of T8-L4 vertebral bodies, and detect vertebral deformities. Repeated measures general linear model (GLM), adjusted for gender and age was used to assess vertebral dimensions over time. Alpha level was set at \(P<0.05 \).

Results: A total of 268 participants (FaME n=95; OEP n=74; usual care n=99) with sufficient vertebral morphometry data were included in the analysis. Four new deformities (OEP: 1, FaME: 2 and Usual care: 1) were detected over the 6-month intervention. Changes in mean vertebral heights were small (ranging from -0.1 to 0.2 mm). There was no significant main effect of time (\(p=0.69 \)) and changes over time did not differ between groups (time x group interaction \(p=0.49 \)).

Discussion: The number of incident deformities was low and there were no statistically significant changes in vertebral height over the six month period. There is a need for longer-term studies to examine the potential role of exercise in preventing vertebral deformity.

Conclusion: Exercise interventions targeted at preventing falls, that included progressive strength exercises, did not influence vertebral height or prevent vertebral deformity.