Measurement of thin film interfacial surface roughness by coherence scanning interferometry

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: YOSHINO, H. ... et al., 2017. Measurement of thin film interfacial surface roughness by coherence scanning interferometry. Journal of Applied Physics, 121, 105303; doi: 10.1063/1.4978066

Additional Information:

- All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

Metadata Record: https://dspace.lboro.ac.uk/2134/24605

Version: Published

Publisher: AIP Publishing LLC © Author(s)

Rights: This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Please cite the published version.
Measurement of thin film interfacial surface roughness by coherence scanning interferometry

H. Yoshino, A. Abbas, P. M. Kaminski, R. Smith, J. M. Walls, and D. Mansfield

Citation: Journal of Applied Physics 121, 105303 (2017); doi: 10.1063/1.4978066
View online: http://dx.doi.org/10.1063/1.4978066
View Table of Contents: http://aip.scitation.org/toc/jap/121/10
Published by the American Institute of Physics

Articles you may be interested in

Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam
Journal of Applied Physics 121, 105902105902 (2017); 10.1063/1.4978036

Ion distribution and ablation depth measurements of a fs-ps laser-irradiated solid tin target
Journal of Applied Physics 121, 103301103301 (2017); 10.1063/1.4977854

Breakdown electric fields in dissociated hot gas mixtures of sulfur hexafluoride including teflon: Calculations with experimental validations and utilization in fluid dynamics arc simulations
Journal of Applied Physics 121, 103302103302 (2017); 10.1063/1.4977864

Electrode material dependence of two-dimensional electron and vapour density distribution over vacuum arc discharge
Journal of Applied Physics 121, 103304103304 (2017); 10.1063/1.4977066

The effect of residual stress on photoluminescence in multi-crystalline silicon wafers
Journal of Applied Physics 121, 085701085701 (2017); 10.1063/1.4976328

Resonant optical properties of AlGaAs/GaAs multiple-quantum-well based Bragg structure at the second quantum state
Journal of Applied Physics 121, 103101103101 (2017); 10.1063/1.4978252
Coherence Scanning Interferometry (CSI), which is also referred to as scanning white light interferometry, is a well-established optical method used to measure the surface roughness and topography with sub-nanometer precision. One of the challenges CSI has faced is extracting the interfacial topographies of a thin film assembly, where the thin film layers are deposited on a substrate, and each interface has its own defined roughness. What makes this analysis difficult is that the peaks of the interference signal are too close to each other to be separately identified. The Helical Complex Field (HCF) function is a topographically defined helix modulated by the electrical field reflectance, originally conceived for the measurement of thin film thickness. In this paper, we verify a new technique, which uses a first order Taylor expansion of the HCF function to determine the interfacial topographies at each pixel, so avoiding a heavy computation. The method is demonstrated on the surfaces of Silicon wafers using deposited Silica and Zirconia oxide thin films as test examples. These measurements show a reasonable agreement with those obtained by conventional CSI measurement of the bare Silicon wafer substrates. © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978066]
computation by introducing a first order approximation of the function\cite{17} and then demonstrated this capability in terms of comparing the resultant top surface of a dielectric-coated glass substrate with AFM measurements\cite{18}. This paper aims to verify the ISR methodology using actual measurement results by testing samples with dielectric films of Zirconium dioxide and Silicon dioxide on Silicon wafers with etched pits and measuring the roughness and the pits depth of the buried interfaces and comparing these measurements with those of the original substrate prior to thin film deposition. Theoretic consideration shows the ISR method works for perturbations of up to ± 10 nm depending on the materials used. We have analyzed the pits ranging from -2.5 to -16.4 nm and have proven a good agreement with those original surfaces measured by CSI before deposition of the dielectric films.

II. METHODOLOGY

A. Coherence scanning interferometry

In a typical CSI hardware configuration, a LED is often preferred as a light source over a halogen light for its intensity, lower heat production, and an appropriate bandwidth for surface inspection. The bandwidth of the light source and the numerical aperture (NA) of the objective lens mainly determines the coherence length.\cite{19–21}

Although a white light source such as a halogen light creates a shorter coherence length than those from LEDs making detection of the interference fringes on test surfaces less easy, a halogen light is used in this method. This is because this methodology involves a numerical optimization in the frequency domain, and thus a wider bandwidth in the region between 400 and 750 nm leads to a more accurate solution.

The interference signal, interferogram denoted by I, observed by a photo-detector can be approximated as a combination of a DC part and an oscillatory part with respect to axial (vertical Z) scanning. For example, Fig. 1 shows the interference signals observed from a bare smooth Si substrate and a thin film of 560 nm SiO$_2$ on Si. It is clearly seen that the signal passing through the transparent film, SiO$_2$, is attenuated and distorted due to reflection and absorption within the film structure. Evidently, the peak position in Fig. 1(a) corresponds to the substrate surface height while that of Fig. 1(b) collapses due to the thin film. Thus the need for different treatments of this type signals, such as in the frequency domain, occurs.

B. Helical complex field (HCF) function

A general interferogram consists of a DC component and a symmetric oscillation as shown in Fig. 1(a). The presence of transparent films on a substrate will distort the shape of the interference signal as shown in Fig. 1(b). This distortion is determined by the amplitude reflection coefficients of the thin film assembly.

The HCF theory\cite{5,12,15,16} can be used to estimate the film thickness based on the distortion, where the positive side-band of the Fourier transform with respect to the frequency ν, denoted by $F[I]_{SB+}$, of the interference signals from the film assembly I and reference sample I_{ref} are computed. The HCF function is theoretically and experimentally derived. Let $HCF(d)$ be the HCF function derived from an actual measurement and HCF^d be the one that is theoretically synthesized, respectively, with its film thickness vector $d = \{d_1, \ldots, d_l\}^T$, then they are expressed by\cite{22,23}

$$HCF^d(\nu; d) = \tilde{r}_{ref}(\nu) \cdot \frac{F[I(Z)]_{SB+}}{F[I_{ref}(Z)]_{SB+}},$$

$$HCF^*(\nu; d) = \tilde{r}(\nu, d) \cdot \exp(\imath 4\pi \nu \Delta Z_{HCF} \cos \theta),$$

where the unknown parameter ΔZ_{HCF} satisfies $-2\Delta Z_{step} < \Delta Z_{HCF} < 2\Delta Z_{step}$. Here, ΔZ_{step} is the data-sampling interval of the interference signal, which is normally about $60–70$ nm, corresponding to one eighth of the mean effective wavelength (see Fig. 2(a)). The distortion due to the thin film assembly is finally interpreted as the change in phase and amplitude in the frequency domain. Note that normally a known flat surface such as Si or SiC is used as a reference sample with its field reflectance averaged over the numerical aperture of the objective lens \tilde{r}_{ref}. The symbol θ also denotes the incident light angle averaged over the numerical aperture (see Appendix A).

FIG. 1. Interference signal of (a) the bare Si substrate, (b) the 560 nm SiO$_2$ on Si with respect to the scanning direction Z [\mu m].

FIG. 2. (a) Cross-sectional view of the film thickness d determined by the HCF curve fitting and real topography in each film and (b) top view of the global HCF function and the local HCF function at a pixel.
The set of the film thickness \(d\) is numerically determined by minimizing the least squares error between \(HCF^s\) and \(HCF^{sd}\) with respect to \(d\) and \(\Delta z_{HCF}\). This procedure is broken down to a curve fitting between the HCF functions with respect to the real and imaginary parts.

As is apparent from Figs. 3(b) and 3(c), a single pixel HCF function suffers significantly from noise (dominated by photo-electron noise) \(\epsilon\) in the frequency domain. The global determined HCF function denoted by \(HCF^{sd}\), consists of an HCF function generated from an ensemble of pixel intensity sequences. This global function typically corresponds to an area with \(M\) pixels say, \(200 \times 200\) as shown in Fig. 2(b), and exhibits dramatically a better signal/noise as shown in Fig. 3(a). Following the preceding film thickness measurement method using the HCF function,\(^{12,15,16}\) the optimal set of the film thickness \(d\) is determined by minimizing the error function \(J_{HCF} = \int |HCF^{sd} - HCF^s(\nu; d)|^2 d\nu\) with respect to \(d\) and \(\Delta z_{HCF}\) under the constraint given after Eq. (1). Note that the physical meaning of \(\Delta z_{HCF}\) is the height difference between the test film structure and the reference material, denoted by \(z_{ref}\), randomly created by signal data sampling as illustrated in Fig. 2(a).

With this method, computation to determine \(d + \Delta d\) at all the pixels would require \(M\) non-linear optimizations. This would require an excessive and time-consuming computing particularly when the number of pixels in a measurement area is large. Also, the optimization itself may well be compromised because of the significant noise apparent in the frequency domain.

C. Extension of HCF function to interfacial surface roughness measurement

A large number of optimizations might be required even if the application of \(J_{HCF}\) to each pixel by substituting \(HCF^{sd}\) with the corresponding local determined HCF function \(HCF^{sd}_{px}\) was effectively feasible. It is also very difficult to achieve a good fit between the synthesized and the determined HCF functions due to the noise as illustrated in Fig. 3(b) and thus this may lead to spurious results.

The ISR method provides a solution to this difficulty by effectively avoiding the noise effect in the optimization process. The ISR method uses such a relatively smooth \(HCF^{sd}\) as in Fig. 3(a) to approximate such a rough \(HCF^{sd}_{px}\) as in Figs. 3(b) and 3(c) by means of the first order partial derivative of the synthesized HCF function. This approach brings two advantages: first a smooth local HCF function can be established; second a linear least squares error optimization will be conducted rather than a non-linear one.

1. First order approximation of the synthesized HCF function

Considering small deviations \(\Delta d\) from the global film thickness \(d\) determined by the method discussed in Section II B, a primarily approximated expression for the local synthesized HCF function \(HCF^{sd}_{px}\) can be presented by using \(HCF^{sd}\).\(^{17,24}\)

\[
HCF^s_p(\nu; \mathbf{d} + \Delta \mathbf{d}) \simeq HCF^s(\nu; \mathbf{d}) + \{\nabla_d HCF^s(\nu; \mathbf{d})\}^T \Delta \mathbf{d}
\]

\[
\simeq HCF^{sd} + \sum_{l=1}^L G_l(\nu; \mathbf{d}) \Delta d_l
\]

where the set of the film thickness \(d\) is understood hereafter to be \(\mathbf{d} = \{d_{sub}, d_1, \ldots, d_L\}^T\) including a perturbation of the substrate \(\Delta d_{sub}\) as shown in Fig. 2(a). \(G_l\) is defined as a gain of the perturbation in the \(l\)-th layer and is analytically provided in advance (see Appendix B).\(^{17}\) Note that \(d_{sub}\) cannot be obtained explicitly from \(J_{HCF}\) although, this will not cause problems because what is essential in the following calculations is \(\Delta d_{sub}\). The value of each \(\Delta d_l\) should be small enough (\(\leq 10\) nm) to approximate the partial derivatives.

The perturbations in the film thickness \(\Delta d\) are determined by minimizing the least-square based error function \(J_{px} = \int |HCF^s_{px} - HCF^s_p(\nu; \mathbf{d} + \Delta \mathbf{d})|^2 d\nu\) with respect to the perturbations \(\Delta \mathbf{d}\), where \(HCF^s_{px}\) represents a locally determined HCF function provided by the corresponding actual measurement. This locally determined HCF function apparently contains too much noise to be used for the non-linear optimization of \(J_{HCF}\). Perturbations to be determined by means of \(J_{px}\) should be less than \(\sim 10\) nm to maintain the quality of approximation depending on the structure of the film assembly.

2. Linear least-squares optimization

In the actual computation, the variables and functions are treated in a discrete manner such that \(\nu = [\nu_1, \nu_2, \ldots, \nu_m]^T\), and thus the merit function \(J_{px}\) is effectively re-written

![Fig. 3. The determined HCF function of a 520 nm SiO2 thin film on a Si substrate: (a) The globally determined HCF function \(HCF^{sd}\), (b) a locally determined HCF function \(HCF^{sd}_{px}\) at the center of the measurement area, and (c) a locally determined HCF function \(HCF^{sd}_{px}\) at the edge of the measurement area.](image-url)
\[J_{px} = \sum_{i=1}^{m} \left[HCF_{px}^d(\nu_i) - HCF_{px}^d(\nu_i; \mathbf{d} + \Delta \mathbf{d}) \right]^2, \]

\[= \left\| HCF_{px}^d - \left(\text{Diag}[HCF^d] \mathbf{G} \Delta \mathbf{d} \right) \right\|^2, \tag{3} \]

where

\[\mathbf{G} = j4\pi \cos \tilde{\theta} \]

\[
\begin{bmatrix}
\nu_1 & \nu_1 \cdot G_1(\nu_1) & \cdots & \nu_1 \cdot G_L(\nu_1) \\
\nu_2 & \cdots & \cdots & \cdots \\
\vdots & \cdots & \cdots & \cdots \\
\nu_m & \nu_m \cdot G_1(\nu_m) & \cdots & \nu_m \cdot G_L(\nu_m)
\end{bmatrix},
\]

\[\text{Diag}[HCF^d] = \begin{bmatrix} HCF^d(\nu_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & HCF^d(\nu_m) \end{bmatrix}, \]

\[HCF_{px}^d = \left[HCF_{px}^d(\nu_1), \ldots, HCF_{px}^d(\nu_m) \right]^T, \]

\[\overline{HCF}^d = \left[\overline{HCF}^d(\nu_1), \ldots, \overline{HCF}^d(\nu_m) \right]^T. \]

As in Eq. (3), the function \(HCF_{px}^d \) depends linearly on \(\Delta \mathbf{d} \). Thus, the optimal solution \(\Delta \mathbf{d} \) of the linear least squares error problem in Eq. (3) is explicitly determined in the well-known form as follows:

\[\Delta \mathbf{d} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{u}, \tag{4} \]

where

\[\mathbf{u} = \text{Diag}[\overline{HCF}^d]^{-1} \left[HCF_{px}^d - \overline{HCF}^d \right]. \]

This gives the Best Linear Unbiased Estimators (BLUE) for solving over-determined linear problems. It follows that the thin film thickness, or the interfacial surface roughness at a pixel is finally obtained as \(\mathbf{d} + \Delta \mathbf{d} \).

III. EXPERIMENT

A. Experimental setup

The CSI instrument, CCI HD (Taylor Hobson Ltd), was used to observe the interference signals. As in the specification sheet, the 4 M pixel camera of the instrument allows noise-robust signal acquisition by averaging the signals over four pixels to obtain one signal with high lateral resolution maintained. This four-pixel unit is henceforth regarded as a single pixel for purposes of the model.

As discussed in Section II A, a light source with a broad bandwidth in the visible region is necessary for this technique. In this experiment, a halogen lamp is used and its nominal characteristic light intensity is shown in Fig. 11(a). For the assumption discussed in Section II A to be satisfied, a \(\times 10 \) objective lens shown in Table I is used for the data acquisition. A Si optical flat surface is used as a reference sample. Note that any reference material can be used here but its refractive index \(N_{\text{ref}} \) must be known in advance.

B. Test sample fabrication

The test samples were fabricated by etching a square pit on a Silicon wafer substrate using a 30 kV gallium Focused Ion Beam (FIB/SEM dual beam system). An example is shown in Fig. 4(a). The thin film oxide layers were then deposited using reactive magnetron sputtering with metal targets, an oxygen plasma source, and a pulsed DC power supply. A 20 \(\mu \text{m} \times 20 \mu \text{m} \) pit was created by FIB etching.
and its depth was controlled by timing the FIB etching and prior knowledge of the etching rate.

Three types of oxide thin films were deposited on the Silicon wafers using the reactive magnetron sputtering as shown in Table II: producing 514.4 nm for SiO$_2$, 308.6 nm for a second SiO$_2$ thin film, and 338.9 nm for a ZrO$_2$ thin film, which correspond to the Quarter Wavelength Optical Thickness (QWOT), respectively. The refractive index of the etched areas will be slightly modified due to surface amorphisation and Gallium ion implantation. In this study, we have ignored any such changes in the substrate refractive index.

C. Measurement result and analysis

Measurements were obtained from the samples listed in Table II using the CSI system. The measurement data was post-processed: using the ISR method and a conventional CSI surface measurement. The latter method detects the peak positions of the interference signals (CCI method27). Comparisons between the results of the two methods were then made to verify the performance of the ISR method.

1. Result: Depth of the FIB etched square pit

The depth of the etched pits measured by the ISR method will be compared with those obtained using the conventional CSI method. The depths are computed by comparing the average height of the pits and that of the rest of the measured area. Note that roughness on the surfaces involved is not considered for this evaluation.

While the conventional CSI method only considers the light reflection from the whole thin film/substrate assembly to measure a three dimensional surface, the ISR method successfully separates the contribution of the substrate from the complete thin film/substrate signal. As a result, the ISR method reproduces the buried surface roughness more faithfully comparing (a) with (b) and (c) in Figs. 4–6.

Figures 4(a)–6(c) illustrate the topographies of some of the substrate surfaces. These images imply that the ISR method extracts the patterns more accurately than the conventional CSI method. Also the surfaces measured by the ISR method appear to be rougher than the original surfaces measured before thin film deposition.

We define $S_o(x, y)$ to be the substrate surface topography measured prior to thin film deposition by the CSI instrument, $S_\text{ISR}(x, y)$ the substrate surface topography measured by the ISR method and $S_\text{CSI}(x, y)$ that measured using the conventional CSI method, respectively. Note that in this experiment, although both the (buried) substrate and top surface are simultaneously generated, only the substrate surface measurements are considered. This is because, apart from vacuum metallization of a reflector (such as Cr), no available methods were deemed sufficiently accurate to measure the top surface.

2. Analysis: Correlation of the determined surfaces

The correlation coefficients between S_o and S_ISR and S_CSI are provided in Fig. 8. The Correlation coefficient
Cor is defined here to be the maximum value of the correlation function of two different surfaces as follows:

\[
\text{Cor}[S_o, S_{\text{mtd}}] = \max_{x, y} \left[\frac{S_o(x, y) \otimes S_{\text{mtd}}(x, y)}{\|S_o(x, y)\| \cdot \|S_{\text{mtd}}(x, y)\|} \right],
\]

(5)

where \(S_1 \otimes S_2 \) denotes the cross-correlation function between surfaces \(S_1 \) and \(S_2 \), and \(\| \cdot \| \) implies the \(L^2 \) norm; \(mtd \) represents the method to be used, chosen as either ISR or CSI.

It is clearly seen that the correlation coefficients decline in an inverse proportion to the depth of the corresponding square pit. This is because the measurements and images obtained using the ISR method contain spurious features which are associated with the signal to noise in the local pixel.

Root Mean Square (RMS) errors between \(S_o \) and \(S_{\text{ISR}} \) and between \(S_o \) and \(S_{\text{CSI}} \) are shown in Figs. 9(a) and 9(b), respectively. As shown, the RMS errors between \(S_o \) and \(S_{\text{ISR}} \) are almost all smaller than 1 nm regardless of the thin film type and the depth of the etched pit, whereas the conventional CSI method results in larger errors as shown in Fig. 9(b). The root cause of the RMS errors in Fig. 9(a) is related to the various sources of noise in the signal. The noise stems from several sources not only including uncertainty in the measurement of optical constants using spectroscopic ellipsometry, but also from noise generated in the CSI system and its surrounding environment. Although the ISR method results in a larger level of RMS error with the #2 SiO\(_2\) sample compared to the #3 ZrO\(_2\) sample as shown in Fig. 9(a), it provides the #2 sample with a higher correlation coefficient for the depth than #3 sample as shown in Fig. 8. This implies that the #2 SiO\(_2\) sample is more susceptible to random noise.

3. Analysis: Surface roughness comparison between pre- and post-deposition

The surface roughness determined by the ISR method is expected to increase from the original due to the noise induced by the system, surrounding environment, and uncertainty in the physical constants. A Silicon wafer is used as the substrate in this experiment such that its surface should be regarded to be “flat.” The original surface roughness \(S_Q \) of the areas surrounding the pit is 0.63 ± 0.11 nm. As
expected, those determined by the ISR method resulted in an increased S_q as shown in Fig. 10. This roughness is also visually apparent in a comparison between the surfaces in Figs. 4(a) and 4(b). As in Fig. 10, the roughness values are evenly increased slightly depending on the type of the film and its thickness.

IV. DISCUSSION

As far as determination of the pit depth is concerned, the ISR method works best for #1 SiO$_2$ samples with $QWOT=5$, followed by #2 SiO$_2$ with 3 and #3 ZrO$_2$ with 3 as in Fig. 7(a). $QWOT$ is known to be proportional to the number of peaks and valleys found in a spectral reflectance as shown in Fig. 11(b).\(^{28}\) The HCF function has such spectral features corresponding to its field reflectance. Therefore, an HCF function with a small $QWOT$ might have difficulty in numerical optimization because the smaller number of the features of the function results in less accurate curve-fitting. This implies that the value of $QWOT$ has a significant impact on the performance of the HCF based techniques. The ISR method is not an exception because the HCF function introduced in this method is a first order approximation of the original HCF function. The difference in the performance of the ISR method shown in Fig. 7(a) is considered to be the values of the $QWOT$s, which are effectively 5.27 for #1 samples, 3.09 for #2, and 4.59 for #3 as shown in Table III.

Reflection from the thin film assembly influences the signal to noise ratio under the assumption that the noise level is unchanged throughout the measurements. It follows that the increases in the roughness values, which is discussed in Section III C 3, are thought to be negatively proportional to the product between the intensities of light LI and an averaged reflection $\bar{R}(\nu) = \frac{\int_{\nu} R(\nu) \cdot LI(\nu)}{\nu}$ such that $g(\nu) = \bar{R}(\nu) \cdot LI(\nu)$ and $G = \int_{\nu} g(\nu) d\nu$. Let G be the integration of the product $g(\nu)$, then this is proportional to the number of signal photoelectrons, this can be considered as an indication of the robustness of the measurement to the noise effect.

Figures 11(b) and 11(c) show the spectral reflectance of the samples with a mean film thickness and the computations of their $g(\nu)$, respectively. In Table III, the G values, mean g over the effective bandwidth (from 430 to 750 nm), and effective $QWOT$ values of the samples with the mean
thickness are presented. As expected, the G value for the #2 SiO$_2$ sample is the smallest among the three groups, and so is the mean values of g by 10%–20% compared with the rest of the groups. From these, one reasonable explanation for the level of roughness induced on the substrate is the signal to noise ratio associated with the spectral product between a reflection of a film structure and the intensity of a light source. Evidently, an error arises from the approximation in Eq. (B3) and uncertainties in refractive indices also influence the signal to noise ratio.

V. CONCLUSIONS

Application of the conventional CSI techniques to thin film metrologies such as film thickness and interfacial surface roughness, is limited by the film thickness because the interferogram is generally analysed in the time domain where the peaks of the signal should be separated. The general requirement for the film thickness is over 1.5 μm. The introduction of the HCF function to the thin film regime (from 0.05 to 1.5 μm) enabled the measurement of global film thickness over hundreds of pixels. For thin films of significant optical thickness (such as a SiO$_2$ layer of a few hundred nanometers), the HCF signature is easily sufficient to allow interfacial topographies to be determined on a pixel-by-pixel basis using this approach; as the optical thickness of the film(s) is further reduced, this capability becomes progressively less viable. Nevertheless, the HCF function used in the ISR method, derived from a first order approximation of the HCF function, extends the HCF method’s capability to determine the local interfacial or buried surfaces and provide a three dimensional representation. In addition, heavy computation for numerical optimization can be avoided as this method uses a linear approximation of the HCF function.

The Silicon wafer samples having an etched pit depth ranging from 2.5 to 16.4 nm were deposited with Silica and Zirconia oxide. These pits were measured through a thin film layer by using the ISR method and the existing CSI method (CCI). Prior theoretic consideration showed the ISR method held for perturbations of up to \sim10 nm and the substrate surfaces determined by the ISR method were almost identical to the original surfaces. Together with the experimental results presented in the earlier top surface ISR publication, these results provide a substantive experimental evidence for the ISR theory.

The roughness of the substrate surfaces measured by the ISR method tends to be larger than those of the original surfaces. This approach numerically determines the local film thickness including the substrate surface profile by establishing a synthesized HCF function by means of the global HCF counterpart and compares it with a relatively noisy local HCF function. It follows that the smaller the noise, the less is the roughness induced on the surface measurement. Standard noise reduction techniques such as signal accumulation or post-analysis filtering could be applied to minimize this roughness.

The CSI technique is a powerful well-established tool for the precise measurement of surface topography. The development of the HCF function has already extended its capability for the determination of refractive index. This paper extends its capability further to include the three-dimensional measurement of buried interfaces.

ACKNOWLEDGMENTS

The authors are grateful to RCUK for financial support through the SuperSolar Hub (EPSRC Grant No. EP/J017361/1).

TABLE III. Evaluation of noise robustness: mean g and G values.

<table>
<thead>
<tr>
<th>Sample type</th>
<th>#1 SiO$_2$</th>
<th>#2 SiO$_2$</th>
<th>#3 ZrO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean thickness (nm)</td>
<td>542.5</td>
<td>318.4</td>
<td>311.7</td>
</tr>
<tr>
<td>G value (nm)</td>
<td>35.5</td>
<td>32.0</td>
<td>37.2</td>
</tr>
<tr>
<td>Mean $g(r)$ (430–750 nm)</td>
<td>0.11</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>Effective QWOT</td>
<td>5.27</td>
<td>3.09</td>
<td>4.59</td>
</tr>
</tbody>
</table>

FIG. 11. Evaluation of noise-robustness based on a product between the reflectance and spectral light intensity of the light source. Note that the normalised light intensity in (a) and the reflectance of the mean film thickness by group in (b) are used for the computation in (c). (a) Spectral normalised light intensity of a halogen light source implemented in the CSI instrument, (b) spectral reflectance of the film assemblies with the averaged film thickness, and (c) spectral product between reflectance in and normalized light intensity.
APPENDIX A: REFLECTION FROM A MULTI-LAYER FILM ASSEMBLY

Let \(N(\nu) = n(\nu) - j\kappa(\nu)\) be a spectral complex refractive index of the frequency \(\nu\), then this index consists of the index of refraction \(n\) and the extinction coefficient \(\kappa\).

The optical admittance \(\eta\) is a function of the polarisation-state \((p, s)\), the complex refractive index \(N\) and the incident angle \(\theta\) for each layer. The optical admittances for the \(p\) and \(s\) planes are given by \(\eta_p = N \gamma / \cos \theta\) and \(\eta_s = N \gamma \cos \theta\), where \(\gamma = (\epsilon_o / \mu_o)^{1/2}\), \(\epsilon_o\) and \(\mu_o\) are the permittivity and magnetic permeability of vacuum, respectively. The mean complex amplitude reflection coefficient, \(r\), of the multi-layer film structure shown in Fig. 2(a) (where the \(i\)th layer has thickness \(d_i\), refractive index \(N_i\), and incident angle \(\theta_i\)) is then represented by

\[
r(\nu, \mathbf{d}, \theta) = \frac{1}{2} \left(r_p(\nu, \mathbf{d}, \theta) + r_s(\nu, \mathbf{d}, \theta) \right),
\]

where

\[
r_{p,s}(\nu, \mathbf{d}, \theta) = \frac{\eta_{p,s}^{\text{air}} - N_{p,s}^{\text{air}}}{\eta_{p,s}^{\text{air}} + N_{p,s}^{\text{air}}}, \quad \mathbf{d} = \{d_1, \ldots, d_L\}^T.
\]

Here \(\eta_{p,s}^{\text{air}}\) and \(N_{p,s}^{\text{air}}\) are the optical admittances of the air and the substrate, respectively. \(L\) is the number of layers in the multi-layer model, and \(N_{p,s}\) is the input optical admittance of assembly for each polarisation plane, which is derived from the characteristic matrix of the assembly \([B_{p,s}, C_{p,s}]^T\) as follows:

\[
Y_{p,s}(\mathbf{d}) = \frac{C_{p,s}}{B_{p,s}},
\]

where

\[
\begin{bmatrix}
B_{p,s} \\
C_{p,s}
\end{bmatrix} = \frac{1}{\eta_{p,s}^{\text{air}}} \begin{bmatrix}
\cos \delta_i & j \sin \delta_i \\

j N_i \sin \delta_i & \cos \delta_i
\end{bmatrix},
\]

and where

\[
di = 2 \pi N_i d_i \cos \theta_i, \quad \cos \theta_i = \frac{1}{N_i} \sqrt{N_i^2 - \sin^2 \theta}.
\]

Considering the passage of the incident light through an objective lens, the overall complex reflection coefficient of the layer structure \(\tilde{r}\) is defined by averaging \(r\) over the numerical aperture ranging from \(\theta_{\text{min}}\) to \(\theta_{\text{max}}\) multiplied by the weighting function \(w(\theta)\) such that

\[
\tilde{r}(\nu, \mathbf{d}) = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} r(\nu, \mathbf{d}, \theta) \cdot w(\theta) d\theta
\]

where \(w(\theta) = 1\). Likewise the averaged incident angle \(\tilde{\theta}\) is determined as

\[
\tilde{\theta} = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \theta \cdot w(\theta) d\theta.
\]

The underlying assumption to justify this approach of determining the mean field-reflectance \(\tilde{r}\) is that for a randomly polarised CSI instrument with a low to medium numerical aperture (NA), we regard the \(s\) and \(p\)-plane reference mirror (RM) field-reflectance to be approximately equal such that \(\tilde{r}_s^{\text{RM}}(\nu, \theta) \approx \tilde{r}_p^{\text{RM}}(\nu, \theta)\).

APPENDIX B: GAIN COMPUTATION

Terms in 2 can be expressed by partial derivatives

\[
\{ \nabla_d HCF^s(\nu, \mathbf{d}) \}^T \Delta \mathbf{d} = \frac{\partial (HCF^s)}{\partial d_{\text{sub}}} \Delta d_{\text{sub}} + \sum_{l=1}^L \frac{\partial (HCF^s)}{\partial d_l} \Delta d_l,
\]

Following this, the second and third terms in Eq. (B1) are analytically determined, respectively, as follows:

\[
\frac{\partial (HCF^s)}{\partial d_{\text{sub}}} = j4\pi \nu \cos \tilde{\theta} \cdot \tilde{r} \exp\left(j4\pi \nu \Delta z_{HCF} \cos \tilde{\theta}\right),
\]

\[
\frac{\partial (HCF^s)}{\partial d_l} = \left(j4\pi \nu \cos \tilde{\theta} \cdot \tilde{r} \cdot \frac{\partial \tilde{r}}{\partial d_l} \right) \exp\left(j4\pi \nu \Delta z_{HCF} \cos \tilde{\theta}\right),
\]

\[
\frac{\partial \tilde{r}}{\partial d_l} = \frac{\partial \tilde{r}}{\partial d_l} \cdot e^{j\tilde{\theta}} = j \frac{\partial \tilde{r}}{\partial d_l} = \frac{\partial \tilde{r}}{\partial d_l} \cdot e^{j\tilde{\theta}} + j \frac{\partial \tilde{r}}{\partial d_l} \cdot e^{j\tilde{\theta}}, \quad \text{where arg}(\tilde{r}) = \tilde{\theta},
\]

\[
\Delta z_{HCF} = d_{\text{sub}} + \sum_{l=1}^L d_l - z_{\text{ref}}.
\]

By substituting the terms in Eq. (B2) into Eq. (B1), Eq. (B1) is finally expressed as follows:

\[
\{ \nabla_d HCF^s(\nu, \mathbf{d}) \}^T \Delta \mathbf{d} = -j4\pi \nu \cos \tilde{\theta} \cdot \tilde{r} HCF^s \left(\Delta d_{\text{sub}} + \sum_{l=1}^L G_l(\nu, \mathbf{d}) \Delta d_l \right),
\]

where

\[
G_l(\nu, \mathbf{d}) = 1 + \frac{1}{4\pi \nu \cos \tilde{\theta}} \frac{\partial \tilde{r}}{\partial d_l}.
\]

Then, the partial derivative of \(\tilde{r}\) is expressed by

\[
\frac{\partial \tilde{r}}{\partial d_l} = \frac{1}{\tilde{r}^2} \left[\text{Re}[\tilde{r}] \frac{\partial \text{Im}[\tilde{r}]}{\partial d_l} - \text{Im}[\tilde{r}] \frac{\partial \text{Re}[\tilde{r}]}{\partial d_l} \right],
\]

where Eq. (B4) is effectively computed in advance by approximating the real and imaginary parts of the partial derivative of the amplitude reflection coefficient as follows:

\[
\frac{\partial \text{Im}[\tilde{r}]}{\partial d_l} \approx \frac{\text{Im}[\tilde{r}(\nu, \mathbf{d}_l)] - \text{Im}[\tilde{r}(\nu, \mathbf{d}_l^-)]}{2 \delta d_l},
\]

\[
\frac{\partial \text{Re}[\tilde{r}]}{\partial d_l} \approx \frac{\text{Re}[\tilde{r}(\nu, \mathbf{d}_l^+)] - \text{Re}[\tilde{r}(\nu, \mathbf{d}_l^-)]}{2 \delta d_l},
\]

where \(\mathbf{d}_l = \{d_{\text{sub}}, d_1, \ldots, d_l + \delta d, \ldots, d_L\}^T\), \(\mathbf{d}_l^- = \{d_{\text{sub}}, d_1, \ldots, d_l - \delta d, \ldots, d_L\}^T\).

8. A. Bosseboeuf and S. Petitgrand, in *Optical Metrology* (International Society for Optics and Photonics, 2003), pp. 1–16.