Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances

This item was submitted to Loughborough University's Institutional Repository by the author.

Citation: WANG, N. ...et al., 2016. Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Transactions on Intelligent Vehicles, 1(3), pp. 230-243.

Additional Information:

- Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Metadata Record: https://dspace.lboro.ac.uk/2134/24991

Version: Accepted for publication

Publisher: © IEEE

Please cite the published version.
Fast and Accurate Trajectory Tracking Control of an Autonomous Surface Vehicle with Unmodelled Dynamics and Disturbances

Ning Wang, Senior Member, IEEE, Shuailin Lv, Meng Joo Er, Senior Member, IEEE, and Wen-Hua Chen, Senior Member, IEEE

Abstract—In this paper, fast and accurate trajectory tracking control of an autonomous surface vehicle (ASV) with complex unknowns including unmodeled dynamics, uncertainties and/or unknown disturbances is addressed within a proposed homogeneity-based finite-time control (HFC) framework. Major contributions are as follows: (1) In the absence of external disturbances, a nominal HFC framework is established to achieve exact trajectory tracking control of an ASV, whereby global finite-time stability is ensured by combining homogeneity analysis and Lyapunov approach; (2) Within the HFC scheme, a finite-time disturbance observer (FDO) is deployed as a patch for the nominal HFC framework, and eventually results in an FUO-based HFC (FUO-HFC) scheme which guarantees that accurate trajectory tracking can be achieved for an ASV under harsh environments. Simulation studies and comprehensive comparisons conducted on a benchmark ship demonstrate the effectiveness and superiority of the proposed HFC schemes.

Index Terms—Global finite-time stability, accurate trajectory tracking, finite-time disturbance observer (FDO), finite-time unknown observer (FUO), autonomous surface vehicle (ASV).

I. INTRODUCTION

In recent years, autonomous surface vehicles (ASVs) have been widely deployed for various missions related with observations, military tasks, coastal and inland waters monitoring, etc. [1]. Generally, tracking control of an ASV to a prescribed trajectory/path with an acceptable accuracy plays a key role within the entire autopilot system and has thus attracted great attention from both marine engineering and control communities [2]. It is much more demanding to achieve accurate tracking of a pre-determined trajectory in some applications; for example, marine surveying and mapping on the sea in the presence of complicated uncertainties and variations including system uncertainties and external disturbances due to ocean winds, waves and currents [3]–[7]. In this context, it becomes extremely challenging to achieve accurate trajectory tracking of an ASV in such harsh environments.

The sliding mode control (SMC) technique has been investigated as a promising approach to achieve high accurate trajectory tracking control of an ASV [8]. However, the SMC-based approaches have to incur high-frequency chattering with conservatively large magnitude around the sliding surface to dominate unknowns and achieve the robustness. Furthermore, the SMC technique can only handle matched unknowns. By virtue of the (vectorial) backstepping technique [9], a trajectory tracking controller has been designed for an ASV in the presence of (mismatched) unknowns including time-varying disturbances and system uncertainties. It should be noted that tracking errors can only be made globally uniformly ultimately bounded. Applying the integrator backstepping [10] technique to the design of trajectory tracking control law for an underactuated ASV contributes to semi-globally exponentially stable tracking errors. Unfortunately, uncertainties and disturbances have not been addressed. In combination with neural networks (NNs) and adaptive robust control techniques [11], a saturated tracking controller that renders tracking errors semi-globally uniformly ultimately bounded has been proposed to preserve the robustness against time-varying disturbances induced by waves and ocean currents. In addition to NNs [12]–[14], a lot of efforts on adaptive approximation based tracking control have also been made via fuzzy systems (FS) [15]–[19], and fuzzy neural networks (FNN) [20]–[25], etc. and can roughly compensate unknown dynamics. Recently, a significant progress has been made by an innovative approximator termed self-constructing fuzzy neural network (SCFNN) [26]–[29] towards the dynamic-structure-approximation based adaptive control approaches [20] with much higher accuracy of both reconstruction and trajectory tracking. It should be highlighted that accurate tracking control can still hardly be achieved by the foregoing SCFNN-based control approaches since there still exist unexpected approximation residuals. Nevertheless, the convergence rate of tracking errors is usually somewhat slow since only asymptotic or exponential closed-loop stability can be derived from previous tracking control approaches.

In order to further pursue better tracking performance,
finite-time control approaches have been implemented in the literature [30], [31]. In [30], the SMC technique has been employed to realize attitude tracking of a rigid spacecraft and a modified differentiator has been incorporated to compensate disturbances and inertia uncertainties, whereby finite-time convergence of tracking errors can be obtained. By virtue of the homogeneous method in [31], finite-time stability of the closed-loop control system with nonnegative degree of homogeneous can be ensured if tracking error dynamics can be proved to be asymptotically stable. It should be noted that, compared with traditional asymptotic convergent methods, the aforementioned finite-time control approaches can achieve not only faster convergence rate within the vicinity of the origin but also stronger disturbance rejection. Meaningfully, finite-time control approaches ensure that tracking errors can reach to zero within a finite time. Note that, unlike SMC-based approaches, the homogeneity-based method [31] contributes to a straightforward solution without any couplings of tracking errors. Besides, external disturbances can even excite unmodeled dynamics of the ASV, and thus require to be well estimated. Otherwise, complex disturbances pertaining to an ASV cannot be exactly observed within a short time, and make trajectory tracking inaccurate.

Recently, disturbance observer based control (DOBC) technique has also been proposed by Chen [32] to not only improve system robustness but also enhance the entire performance without sacrificing the nominal one [33]–[35]. In this context, the DOBC schemes have been extensively studied and widely applied to various industrial sectors, including mechatronics systems [36], aerospace systems [37], and process control systems [38]. Clearly, it is innovative within the DOBC framework that all disturbances and/or unknowns are addressed as a lumped nonlinearity estimated by a nonlinear disturbance observer (NDO) which is usually involved.

In this paper, an ambitious goal of achieving fast and accurate trajectory control of an ASV in the presence of unknowns including disturbances and unmodelled dynamics is pursued. To be specific, a homogeneity-based finite-time control (HFC) scheme is developed to achieve accurate trajectory tracking of an ASV in the absence of external disturbances. In conjunction with a finite-time disturbance observer (FDO) which can be further devised to exactly estimate external disturbances within a short time, a FDO-based HFC (FDO-HFC) scheme is thus implemented to exactly track an ASV suffering from complex disturbances. In order to further address unmodelled dynamics including uncertainties and/or excited dynamics due to disturbances, a high-order sliding mode estimator is designed to realize a finite-time unknown observer (FUO) which can exactly capture unknown dynamics. Incorporating the FUO into the HFC scheme contributes to the FDO-based HFC (FUO-HFC) scheme which can achieve fast and accurate trajectory tracking with complex unknowns including unmodelled dynamics and/or uncertainties in addition to disturbances.

The rest of this paper is organized as follows. In Section II, preliminaries together with the trajectory tracking problem associated with an ASV are addressed. The HFC, FDO-HFC and FUO-HFC schemes together with theoretical analysis on finite-time stability are presented in Section III. Simulation studies are drawn in Section IV. Conclusions are drawn in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

For the convenience of readers, we collect the key definitions and lemmas frequently used in this paper in the sequel. Consider an autonomous nonlinear system as follows:

\[\dot{x}(t) = f(x(t)), \quad x(0) = 0, \quad f(0) = 0, \quad x \in U_0 \subset \mathbb{R}^n \quad (1) \]

where \(x = [x_1, \ldots, x_n]^T \) and nonlinear function \(f(\cdot) \) is continuous on a open neighborhood \(U_0 \) of the origin.

Definition 1 (Globally Asymptotic Stability [39]): The equilibrium \(x_e = 0 \) of system \((1) \) is globally asymptotically stable if there exists a function \(V(x) \) satisfying

(a) \(V(0) = 0; \)

(b) \(V(x) > 0, \forall x \neq 0, \) and \(V(x) \) is radially unbounded;

(c) \(V(x) \leq 0; \)

(d) \(V(x) \) does not vanish identically along any trajectory in \(\mathbb{R}^n, \) other than the null solution \(x = 0. \)

Definition 2 (Homogeneity [31]): Denote \(V(x) : \mathbb{R}^n \to \mathbb{R} \) be a continuous scalar function. \(V(x) \) is said to be a homogeneous function of degree \(\sigma \) with respect to weights \((r_1, \ldots, r_n) \in \mathbb{R}^n \) with \(r_i > 0, i = 1, 2, \ldots, n, \) if, for any given \(\varepsilon > 0, \)

\[V(\varepsilon x_1, \ldots, \varepsilon x_n) = \varepsilon^\sigma V(x), \quad i = 1, \ldots, n, \forall x \in \mathbb{R}^n. \]

Denote \(f(x) = [f_1(x), \ldots, f_n(x)]^T \) be a continuous vector field. \(f(x) \) is homogeneous of degree \(k \in \mathbb{R} \) with respect to weights \((r_1, \ldots, r_n), \) if, for any given \(\varepsilon > 0, \)

\[f(\varepsilon x_1, \ldots, \varepsilon x_n) = \varepsilon^{k+r_i} f_i(x), \quad i = 1, \ldots, n, \forall x \in \mathbb{R}^n. \]

And, system \((1) \) is said to be homogeneous if \(f(x) \) is homogeneous.

In combination with Definitions 1 and 2, a fundamental result on global finite-time stability can be obtained as follows: Lemma 1 (Global Finite-Time Stability [31]): System \((1) \) is globally finite-time stable if system \((1) \) is globally asymptotically stable and is homogeneous of a negative degree.

By virtue of Lemma 1, we can derive a cornerstone result, whose proof is presented in details in Appendix A, for finite-time observer design and analysis in this paper.

Lemma 2: The following system:

\[\dot{\bar{z}}_1 = z_2 - l_1 \text{sgn}^{\alpha_2}(z_1) \]

\[\dot{z}_2 = z_3 - l_2 \text{sgn}^{\alpha_3}(z_1) \]

\[\vdots \]

\[\dot{z}_n = -l_n \text{sgn}^{\alpha_{n+1}}(z_1) \quad (2) \]

where \(l_i > 0, i = 1, 2, \ldots, n \) are appropriate constants, and

\[\text{sgn}^{\alpha_i}(z_1) := |z_1|^{\alpha_i} \text{sgn}(z_1) \quad (3) \]

with \(\alpha_{i+1} = \alpha_i + \tau, i = 1, 2, \ldots, n \) and \(\alpha_1 = 1 \) for any \(\tau < 0, \) is globally finite-time stable.
B. Problem Formulation

Let \(\eta = [x, y, \psi]^T \) denote the 3-DOF position \((x, y)\) and heading angle \((\psi)\) of the ASV in the earth-fixed inertial frame as shown in Fig. 1, and let \(\nu = [u, v, \tau]^T \) denote the corresponding linear velocities \((u, v)\), i.e., surge and sway velocities, and angular rate \((\tau)\), i.e., yaw, in the body-fixed frame. An ASV sailing in a planar space can be modeled as follows [3]:

\[
\dot{\eta} = R(\psi)\nu \\
M\dot{\nu} = f(\eta, \nu) + \tau + \tau_d
\]

(4)

with dynamics \(f(\eta, \nu) \) usually modeled by

\[
f(\eta, \nu) = -C(\nu)\nu - D(\nu)\nu - g(\eta, \nu)
\]

(5)

where \(\tau = [\tau_1, \tau_2, \tau_3]^T \) and \(\tau_d := MR^T(\psi)d(t) \) are control input and mixed disturbances, respectively, and \(g \) denote the restoring forces and moments due to gravitation/buoyancy. The term \(R(\psi) \) is a rotation matrix given by

\[
\begin{bmatrix}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

(6)

with the following properties:

\[
R^T(\psi)R(\psi) = I, \text{ and } \|R(\psi)\| = 1, \forall \psi \in [0, 2\pi] \\
\dot{R}(\psi) = R(\psi)S(r) \\
R^T(\psi)S(r)R(\psi) = R(\psi)S(r)R^T(\psi) = S(r)
\]

(7a) (7b) (7c)

where \(S(r) = \begin{bmatrix} 0 & -r & 0 \\ r & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \), the inertia matrix \(M = M^T > 0 \), the skew-symmetric matrix \(C(\nu) = -C(\nu)^T \) and the damping matrix \(D(\nu) \) are given by

\[
M = \begin{bmatrix}
m_{11} & 0 & 0 \\
0 & m_{22} & m_{23} \\
0 & m_{32} & m_{33}
\end{bmatrix} \\
C(\nu) = \begin{bmatrix}
0 & 0 & c_{13}(\nu) \\
0 & 0 & c_{23}(\nu) \\
-c_{13}(\nu) & -c_{23}(\nu) & 0
\end{bmatrix} \\
D(\nu) = \begin{bmatrix}
d_{11}(\nu) & 0 & 0 \\
0 & d_{22}(\nu) & d_{23}(\nu) \\
0 & d_{32}(\nu) & d_{33}(\nu)
\end{bmatrix}
\]

(8a) (8b) (8c)

where \(m_{11} = m - X_d, m_{22} = m - Y_d, m_{23} = m_x = Y_d, m_{33} = I_2 - N_f ; c_{13}(\nu) = -m_{13}v - m_{23} \tau, c_{23}(\nu) = m_{14}u; d_{11}(\nu) = -X_u - X_{wu}u - X_{uu}u^2, d_{22}(\nu) = -Y_v - Y_{vv}v - Y_{vu}v, d_{23}(\nu) = -Y_v - Y_{vv}v - Y_{vu}v \), \(d_{32}(\nu) = -N_v - N_{vv}v - N_{vu}v \), \(d_{33}(\nu) = -N_v - N_{vv}v - N_{vu}v \), and \(m \) is the mass of the vessel, \(I_2 \) is the moment of inertia about the yaw rotation, \(Y_v \) and \(X_u, Y_u, N_v \), and \(N_u, Y_{vu} \), and \(N_{vu} \) denote corresponding hydrodynamic derivatives which are actually difficult to be accurately obtained.

Consider the following desired trajectory:

\[
\dot{\eta}_d = R(\psi_d)\nu_d \\
M\dot{\nu}_d = f_d(\eta_d, \nu_d)
\]

(9)

where \(f_d(\cdot) \) is the nominal dynamics, \(\eta_d = [x_d, y_d, \psi_d]^T \) and \(\nu_d = [u_d, v_d, \tau_d]^T \) are the desired position and velocity vectors, respectively.

In this context, the control objective is to design a controller \(\tau \) such that the actual position and velocity vectors (i.e., \(\eta \) and \(\nu \)) of the ASV in (4) can track exactly the desired trajectory (i.e., \(\eta_d \) and \(\nu_d \)) generated by (9) in a finite time.

Remark 1: Clearly, in addition to unknown disturbances \(\tau_d \), if the dynamics \(f \) of the ASV in (4) cannot be sufficiently modeled due to parametric unknowns including \(C, D \) and \(g \), and/or structural unmodeled dynamics, accurate trajectory tracking control of an ASV under harsh environments would become extremely challenging.

III. HOMOGENEITY-BASED FINITE-TIME TRACKING CONTROL SCHEME

A. Nominal Homogeneity-Based Finite-Time Control

In order to facilitate the controller design and analysis, we introduce an auxiliary velocity vector as follows:

\[
w = R(\psi)\nu \\
w_d = R(\psi_d)\nu_d
\]

(10a) (10b)

where \(w = [w_1, w_2, w_3]^T \), \(w_d = [w_{d,1}, w_{d,2}, w_{d,3}]^T \), \(\dot{R}(\psi) \) and \(R_d = R(\psi_d) \).

Together with (4) and (10a), using properties in (7), we have

\[
\dot{\eta} = w \\
\dot{\nu} = R\dot{\psi} + h(\eta, w) + d(t)
\]

(11)

where

\[
h(\eta, w) = S(w_3)w + RM^{-1}f(\eta, R^T\psi)
\]

(12)
Similarly, using (9) and (10b), we have

\[
\begin{align*}
\dot{\eta}_d &= w_d \\
\dot{w}_d &= S(w_{d,3})w_d + R_d M^{-1}f_0(\eta_d, R_d^T w_d)
\end{align*}
\]

(13)

Combining with (11) and (13), we have

\[
\begin{align*}
\dot{\eta}_c &= w_c, \\
\dot{w}_c &= R M^{-1} \tau + h_c(\eta, w, \eta_d, w_d) + d(t)
\end{align*}
\]

(14)

where

\[
\begin{align*}
\eta_c &= \eta - \eta_d := [\eta_{e,1}, \eta_{e,2}, \eta_{e,3}]^T, \\
w_c &= w - w_d := [w_{e,1}, w_{e,2}, w_{e,3}]^T, \\
h_c(\eta, w, \eta_d, w_d) &= S \omega - S_d w_d + R M^{-1} f(\eta, R^T w) - R_d M^{-1} f_0(\eta_d, R_d^T w_d)
\end{align*}
\]

(15)

with \(S = S(w_d) \) and \(S_d = S(w_{d,3}) \).

Starting from the tracking error dynamics (14), we set out to design a nominal homogeneity-based finite-time control (HFC) scheme which is expected to ensure that the tracking errors \(\eta_c \) and \(w_c \) converge to zero in a finite time.

To this end, a nominal HFC scheme for the ASV in (4) without disturbances (i.e., \(\tau_d = 0 \) and \(d(t) = 0 \)) is developed by employing the homogeneity theory. Moreover, we show that finite-time stability of the entire closed-loop tracking system can be ensured by using the Lyapunov synthesis.

Design the nominal HFC law \(\tau_{HFC} \) as follows:

\[
\tau_{HFC} = -MR^{-1}(K_1 \text{sgn}(\beta_1(\eta - \eta_d)) + K_2 \text{sgn}(\beta_2(R \nu - R \nu_d)))
\]

(16)

where

\[
\begin{align*}
\text{sgn}(\beta_i(x)) &= [\text{sgn}(\beta_1(x_1)), \ldots, \text{sgn}(\beta_i(x_d))]^T, \\
&= 1, 2, K_1 > 0, K_2 > 0, 0 < \beta_1 < 1 \text{ and } \beta_2 = 2\beta_1/(1 + \beta_1).
\end{align*}
\]

It is essential that the proposed HFC scheme can make the ASV in (4) track exactly the desired trajectory generated by (9) in a finite time. The key result ensuring the closed-loop finite-time stability is now stated.

Theorem 1 (HFC): Using the HFC scheme governed by (16), the ASV in (4) can exactly track the trajectory generated by (9) within a finite time 0 < \(T < \infty \), i.e., \(\eta(t) \equiv \eta_d(t), \nu(t) \equiv \nu_d(t), \forall t \geq T \).

Proof: Substituting the HFC law (16) into the tracking error system (14) without considering disturbances yields the closed-loop tracking error dynamics as follows:

\[
\begin{align*}
\dot{\eta}_{e,j} &= w_{e,j} \\
\dot{w}_{e,j} &= -K_1 \text{sgn}(\beta_1(\eta_{e,j})) - K_2 \text{sgn}(\beta_2(w_{e,j}))
\end{align*}
\]

(17)

for \(j = 1, 2, 3 \).

In light of Lemma 1, global asymptotic stability and negative homogeneity of system (17) are expected to be guaranteed respectively in the sequel.

1) **Global Asymptotic Stability:** Consider the following Lyapunov function:

\[
V(\eta_c, w_c) = \sum_{j=1}^{3} \left(K_1 \int_{0}^{\eta_{e,j}} \text{sgn}(\beta_1(\mu))d\mu + \frac{1}{2}w_{e,j}^2 \right)
\]

(18)

Differentiating \(V(\eta_c, w_c) \) along the tracking error dynamics (17), we have

\[
\begin{align*}
\dot{V}(\eta_c, w_c) &= K_1 \sum_{j=1}^{3} \text{sgn}(\beta_1(\eta_{e,j}))w_{e,j} \\
&- \sum_{j=1}^{3} w_{e,j}(K_1 \text{sgn}(\beta_1(\eta_{e,j})) + K_2 \text{sgn}(\beta_2(w_{e,j})))
\end{align*}
\]

(19)

which yields \(V(t) \) is bounded as time \(t \) tends to infinity, i.e.,

\[
\frac{1}{2} \left\| w_c(t) \right\|^2 \leq V(t) < \infty
\]

(20)

Using \(\left\| w_c(t) \right\|^{1+\beta_2} \leq \left\| w_c(t) \right\|^2 + 1 \), we further have

\[
\left\| w_c^{(1+\beta_2)/2}(t) \right\| \leq \sqrt{2V(t) + 1} < \infty
\]

(21)

Note, from (19), that

\[
\int_{0}^{t} \left\| w_c^{(1+\beta_2)/2}(\tau) \right\|^2 d\tau = \frac{V(0) - V(t)}{K_2} < \infty
\]

(22)

Combining with (21) and (22) and using Barbalat’s lemma [40] yields

\[
\lim_{t \to \infty} w_c(t) = 0
\]

(23)

In what follows, we expect to prove that \(\eta_{e,j}(t) \) also converges to zero as time \(t \) tends to infinity. To this end, a proof by contradiction is employed by assuming that \(\eta_{e,j}(t) \) converges to a nonzero constant \(\eta_{0,j} \neq 0 \).

Together with (17) and (23), we have, as \(t \to \infty \),

\[
\begin{align*}
\dot{\eta}_{e,j} &= 0 \\
\dot{w}_{e,j} &= -K_1 \text{sgn}(\beta_1(\eta_{e,j}))
\end{align*}
\]

(24)

which, combining with the hypothesis, implies that \(\eta_{e,j} \) converges to a nonzero constant \(\eta_{0,j} \neq 0 \), and thereby \(w_{e,j} = -K_1 \text{sgn}(\beta_1(\eta_{e,j})) \neq 0 \). In this context, \(w_{e,j} \) deviates from the origin and makes \(\eta_{e,j} \neq 0 \), and thereby resulting in a new convergent constant \(\eta_{0,j} \) different from the assumed one, i.e., \(\eta_{0,j} \neq \eta_{0,j} \). This leads to a contradiction and thus yields

\[
\lim_{t \to \infty} \eta_{e,j}(t) = 0
\]

(25)

It follows from (23) and (25) that using the HFC law in (16), system (14) without disturbances (i.e., \(d(t) = 0 \)) is globally asymptotically stable.

2) **Negative Homogeneity:** For system (17), selecting a dilation as follows:

\[
(r_1, r_2) = (1, \frac{1 + \beta_1}{2})
\]

(26)

for any given \(\varepsilon > 0 \), yields

\[
\begin{align*}
f_1(\varepsilon^{r_1} \eta_{e,j}, \varepsilon^{r_2} w_{e,j}) &= \varepsilon^{\sigma^{r_1}} f_1(\eta_{e,j}, w_{e,j}) \\
f_2(\varepsilon^{r_1} \eta_{e,j}, \varepsilon^{r_2} w_{e,j}) &= \varepsilon^{\sigma^{r_2}} f_2(\eta_{e,j}, w_{e,j})
\end{align*}
\]

(27)
within the HFC framework, the disturbance observer is not addressed in the nominal HFC scheme. In this context,

\[\dot{\eta}_{e,j} = w_{e,j} \]

\[\ddot{w}_{e,j} = -K_1\dot{\eta}_{e,j} - K_2w_{e,j} \]

which can be derived easily from the conventional backstepping technique.

Remark 3: Note that the external disturbance \(d(t) \) in (14) is not addressed in the nominal HFC scheme. In this context, within the HFC framework, the disturbance observer is expected to be developed for enhancing the robustness and even achieving exact disturbance rejection.

B. Finite-Time Disturbance Observer Based HFC

In this subsection, the finite-time disturbance observer based HFC (FDO-HFC) scheme is proposed. To this end, a generic assumption on the disturbance \(d(t) \) is required as follows:

Assumption 1: The external time-varying disturbance \(d(t) \) in (11) satisfies

\[d^{(i)}(t) = \sum_{i=0}^{n-1} H_{n-i}d^{(i)}(t), \quad i = 0, 1, \ldots, n-1 \]

where \(n \) is a positive integer and \(H_i = \text{diag}(h_{i,1}, h_{i,2}, h_{i,3}) \) with any constants \(h_{i,j} \in \mathbb{R}, j = 1, 2, 3 \).

The key result pertaining to the FDO-HFC scheme is now summarized as follows:

Theorem 2 (FDO-HFC): Consider the ASV in (11) with unknown external disturbances \(d(t) \) satisfying Assumption 1, an FDO-HFC scheme designed as follows:

\[\tau_{\text{FDO}} = -MR^{-1}(K_1\dot{\eta} + K_2(d - \eta_d) + [K_1\dot{\eta} + K_2(d - \eta_d)]\dot{\nu} - M\dot{\nu}) + f(\eta, \nu) - MR^{-1}f_0(\eta_d, \nu_d) \]

with the FDO governed by

\[\dot{\hat{d}} = \hat{p}_1 + H_1\hat{p}_0 \]

where \(\hat{p}_1 \) and \(\hat{p}_0 \) are derived by

\[\hat{p}_0 = \hat{p}_1 + H_1p_0 + u + L_0\dot{\eta}^{(1)}(p_0 - \hat{p}_0) \]

\[\hat{p}_{n-1} = \hat{p}_n + H_1p_0 - H_n\dot{u}_0 + L_0\dot{\eta}^{(n-1)}(p_0 - \hat{p}_0) \]

\[\hat{p}_n = -H_n\dot{u} + L_0\dot{\eta}^{(n+1)}(p_0 - \hat{p}_0) \]

\[p_0 = w_{e,c}, \quad u = RM^{-1}r + h_c \]

and \(L_i = \text{diag}(l_{i,1}, l_{i,2}, l_{i,3}) \), \(i = 0, 1, \ldots, n \), \(\alpha_i = 1 + i\theta \) with \(-1/(n+1) < \theta < 0\), and \(\beta = -q_1/q_2 \) with \(q_1 \) and \(q_2 \) being positive even and odd integers, can render the ASV in (4) exactly track the desired trajectory generated by (9) within a short time \(0 < T < \infty \), i.e., \(\eta(t) \equiv \eta_d(t), \nu(t) \equiv \nu_d(t), \forall t \geq T \).

Proof: In order to examine finite-time stability of the closed-loop system (14) and (33) including an FDO (35), we need to obtain the disturbance observation error dynamics. To this end, we define auxiliary variables as follows:

\[\epsilon_0 = w_{e,c}, \quad \epsilon_1 = d(t), \quad \epsilon_2 = \dot{d}(t), \ldots, \epsilon_n = \dot{d}^{(n-1)}(t) \]

Together with (14) and (32), we thus have

\[\dot{\epsilon}_0 = \epsilon_1 + u \]

\[\dot{\epsilon}_i = \epsilon_{i+1}, \quad i = 1, 2, \ldots, n-1 \]

\[\dot{\epsilon}_n = H_n\epsilon_1 + H_{n-1}\epsilon_2 + \cdots + H_1\epsilon_n \]

Consider a coordinate transformation governed by

\[p_0 = \epsilon_0 \]

\[p_1 = \epsilon_1 - H_1\epsilon_0 \]

\[\vdots \]

\[p_n = \epsilon_n - H_1\epsilon_{n-1} - \cdots - H_n\epsilon_0 \]

we further have

\[\dot{p}_0 = p_1 + H_1p_0 + u \]

\[\dot{p}_i = p_{i+1}, \quad i = 1, 2, \ldots, n-1 \]

\[\dot{p}_n = -H_n\dot{u} \]

Together with (35) and (40), the disturbance observation error dynamics can be derived as follows:

\[\dot{\hat{p}}_{e,0} = \hat{p}_{e,1} - L_0\dot{\eta}^{(1)}(p_{e,0}) \]

\[\dot{\hat{p}}_{e,n-1} = \hat{p}_{e,n} - L_{n-1}\dot{\eta}^{(n-1)}(p_{e,0}) \]

\[\dot{p}_{e,n} = -L_n\dot{\eta}^{(n+1)}(p_{e,0}) \]

where \(p_{e,i} = p_i - \hat{p}_i = \|p_{e,i} - p_{e,i}^{\hat{p}}\|^2_{p_{e,i}^{\hat{p}}} \tau_{i,T}, \quad i = 0, 1, \ldots, n \), and

\[\dot{p}_{e,0} = p_{e,1} - L_0\dot{\eta}^{(1)}(p_{e,0}) \]

\[\dot{p}_{e,n-1} = p_{e,n} - L_{n-1}\dot{\eta}^{(n-1)}(p_{e,0}) \]

\[\dot{p}_{e,n} = -L_n\dot{\eta}^{(n+1)}(p_{e,0}) \]

\[j = 1, 2, 3 \]
Applying Lemma 2 to system (42), we can conclude that the disturbance observation errors $\epsilon_{i,\epsilon}$, $i = 0, 1, \ldots, n$ are globally finite-time stable, i.e., the FDO in (35) can exactly observe the dynamics in (40) within a finite time $0 < T < \infty$. Together with (34), (37) and (39), we can immediately obtain that \hat{p}_0 and \hat{p}_1 can exactly estimate w_c and $d - H_1w_c$, respectively, and \hat{d} governed by (34) can thus exactly observe the disturbance d in a finite time. Actually, the derivatives $d^{(i)}(t)$, $i = 1, 2, \ldots, n - 1$ can also be exactly observed within a finite time by $\hat{p}_{i+1} + H_i \hat{p}_i + \cdots + H_{i+1} \hat{p}_0$.

In this context, we eventually have

$$d^{(i)}(t) \equiv \hat{d}^{(i)}(t), \quad \forall \ t > T, \quad i = 0, 1, \ldots, n - 1$$

(43)

with $\hat{d}^{(i)} = \hat{p}_{i+1} + H_i \hat{p}_i + \cdots + H_{i+1} \hat{p}_0$.

Substituting (33) together with (34) and (43) into (14) yields

$$\dot{\eta}_{e,j} = w_{e,j}$$

$$\dot{w}_{e,j} = -K_1 \text{sgn}(\eta_{e,j}) - K_2 \text{sgn}(w_{e,j}) + \tilde{d}_j$$

(44)

where $\tilde{d}_j = d_j - \hat{d}_j$.

Together with (43) and (44), we further have

$$\dot{\eta}_{e,j} = w_{e,j}$$

$$\dot{w}_{e,j} = -K_1 \text{sgn}(\eta_{e,j}) - K_2 \text{sgn}(w_{e,j})$$

(45)

for any $t > T$ with a finite time $0 < T < \infty$.

In what follows, similar to the proof of Theorem 1, global finite-time stability of the closed-loop system (45) can be ensured. As a consequence, in the presence of complex disturbances, using the FDO-HFC in (33), the ASV in (4) can exactly track the desired trajectory generated by (9) in a finite time. This concludes the proof.

Remark 4: In addition to disturbances τ_d, the dynamics h_i given by (15) might be at least partially unknown due to nonlinearities $\psi_i(\cdot)$ and $f_0(\cdot)$, and will make the foregoing HFC in (16) and FDO-HFC in (33) unavailable. In this context, the observer for accurate estimate on mixed unknowns including not only unmodeled disturbances but also external disturbances is required to be a path within the HFC framework.

C. Finite-Time Unknown Observer Based HFC

Rewriting the tracking error dynamics in (14) as follows:

$$\dot{\eta}_e = w_c$$

$$\dot{w}_c = R \text{M}^{-1} \tau + S w - S_d w_d + f_u(\eta, w, \eta_d, w_d, t)$$

(46)

with the lumped unknowns f_u, including unmodeled dynamics f, desired dynamics f_0 and disturbances d, i.e.,

$$f_u(\eta, w, \eta_d, w_d, t) = R \text{M}^{-1} f(\eta, R^T w) - R_2 \text{M}^{-1} f_0(\eta_d, R_2^T w_d) + d(t)$$

(47)

From (47), it reasonably requires to assume that dynamics f, f_0 and d are twice differentiable, and thereby contributing to the following hypothesis:

$$\|\dot{f}_u\| \leq L_u$$

(48)

for a bounded constant $L_u < \infty$.

In this context, a finite-time unknown observer based HFC (FUO-HFC) scheme will be proposed to accurately track the ASV in (4) with complex unknowns including both unmodeled dynamics and disturbances to a desired trajectory with completely unknown dynamics. This challenging problem will be solved by the proposed FUO-HFC scheme with global finite-time stability presented as follows.

Theorem 3 (FUO-HFC): Consider the ASV in (4) with unmodeled dynamics f and unknown external disturbances $d(t)$, an FUO-HFC scheme designed as follows:

$$\tau_{FUO} = -MR^{-1} \left(K_1 \text{sgn}(\eta - \eta_d) + K_2 \text{sgn}(R \nu - R_d \nu_d) + z_1 \right)$$

(49)

with z_1 estimated by the following FUO:

$$\dot{z}_0 = \zeta_0 + R \text{M}^{-1} \tau + S w - S_d w_d$$

$$\dot{z}_0 = -\lambda_1 \mathcal{L}^{1/3} \text{sgn}^2(\zeta_0(w_c) + z_1) + \zeta_1$$

$$\dot{z}_1 = -\lambda_2 \zeta_1 \text{sgn}(\zeta_2 - \zeta_1)$$

(50)

where $z_j := [z_{j,1}, z_{j,2}, z_{j,3}]^T$, $j = 0, 1, 2$, $\zeta_k := [\zeta_{k,1}, \zeta_{k,2}, \zeta_{k,3}]^T$, $k = 0, 1$, $\lambda_i = 0$, $i = 1, 2, 3$ and $\mathcal{L} = \text{diag}(\ell_1, \ell_2, \ell_3)$, can render the ASV exactly track the desired trajectory generated by (9) with completely unknown dynamics f_0 in a short time $0 < T < \infty$, i.e., $\eta(t) \equiv \eta_d(t), \nu(t) \equiv \nu_d(t), \forall \ t \geq T$.

Proof: Define the FUO observation errors as follows:

$$\epsilon_1 = z_0 - w_c, \quad \epsilon_2 = z_1 - f_u, \quad \epsilon_3 = z_2 - \dot{f}_u$$

(51)

Combining with (46) and (50), we have the FUO observation error dynamics as follows:

$$\dot{\epsilon}_1 = -\lambda_1 \mathcal{L}^{1/3} \text{sgn}^2(\epsilon_1) + \epsilon_2$$

$$\dot{\epsilon}_2 = -\lambda_2 \mathcal{L}^{1/2} \text{sgn}^2(\epsilon_2 - \dot{\epsilon}_1) + \epsilon_3$$

$$\dot{\epsilon}_3 = -\lambda_3 \text{sgn}(\epsilon_3 - \epsilon_2)$$

(52)

i.e.,

$$\dot{\epsilon}_{1,j} = -\lambda_1 \ell_j^{-1/2} \text{sgn}^2(\epsilon_{1,j}) + \epsilon_{2,j}$$

$$\dot{\epsilon}_{2,j} = -\lambda_2 \ell_j^{-1/2} \text{sgn}^2(\epsilon_{2,j} - \dot{\epsilon}_{1,j}) + \epsilon_{3,j}$$

$$\dot{\epsilon}_{3,j} \in -\lambda_3 \text{sgn}(\epsilon_{3,j} - \dot{\epsilon}_{2,j}) + [-L_u, L_u]$$

(53)

where “\in” denotes the differential inclusion understood in the Filippov sense [41].

According to [42, Lemma 2] together with its detailed proof, we can immediately conclude that the tracking error dynamics in (53) is globally finite-time stable, i.e., there exists a finite time $0 < T < \infty$ such that

$$z_0(t) \equiv w_c(t), \quad z_1(t) \equiv f_u(t), \quad z_2(t) \equiv \dot{f}_u(t), \quad \forall \ t > T$$

(54)

Substituting (49) into (46) and using (54) yields

$$\dot{\eta}_e = w_c$$

$$\dot{w}_c = -K_1 \text{sgn}(\eta_e(t)) - K_2 \text{sgn}(w_c(t))$$

(55)

2379-8858 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2017.2657379, IEEE Transactions on Intelligent Vehicles

TABLE I: Main parameters of CyberShip II

<table>
<thead>
<tr>
<th>m</th>
<th>23.8000</th>
<th>(Y_x)</th>
<th>−0.8612</th>
<th>(X_x)</th>
<th>−2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_x)</td>
<td>1.7600</td>
<td>(Y_{|u|})</td>
<td>−36.2823</td>
<td>(Y_c)</td>
<td>−10.0</td>
</tr>
<tr>
<td>(X_p)</td>
<td>0.0460</td>
<td>(Y_p)</td>
<td>0.1079</td>
<td>(Y_c)</td>
<td>−0.0</td>
</tr>
<tr>
<td>(N_u)</td>
<td>−0.7225</td>
<td>(N_{|u|})</td>
<td>0.1052</td>
<td>(N_c)</td>
<td>−0.0</td>
</tr>
<tr>
<td>(X_{|u|})</td>
<td>−1.3274</td>
<td>(N_{|u|})</td>
<td>5.0437</td>
<td>(N_c)</td>
<td>−1.0</td>
</tr>
<tr>
<td>(X_{|u|})</td>
<td>−5.8664</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

which has been proven to be globally finite-time stable in Theorem 1. In this context, the proposed FUO-HFC in (49) renders the ASV in (4) with lumped unmodeled dynamics and disturbances can exactly track the desired trajectory \((\eta_d, \nu_d)\) generated by (9) with completely unknown dynamics in a finite time. This concludes the proof.

Remark 5: It should be noted that in addition to unmodeled dynamics and external disturbances pertaining to the ASV, the desired dynamics of the trajectory to be tracked are also not necessarily known for the FUO-HFC scheme. It implies that the proposed FUO-HFC approach is completely independent on dynamics of the ASV and the desired trajectory, and thereby contributing to a both task-free and model-free methodology.

IV. SIMULATION STUDIES AND DISCUSSIONS

In order to demonstrate the effectiveness and superiority of the proposed control schemes for trajectory tracking control of an ASV, simulation studies and comprehensive comparisons are conducted on a well-known surface vehicle CyberShip II [43] of which the main parameters are listed in Table I.

Our objective is to track exactly the desired trajectory \((\eta_d, \nu_d)\) governed by (9) with assumed dynamics \(\dot{x}_0(\eta_d, \nu_d) = -C(\nu_d)\nu_d - D(\nu_d)\nu_d - g(\eta_d, \nu_d) + \tau_0\), where \(\tau_0 = [6, 3 \cos^2(0.2\pi t), \sin^2(0.2\pi t)]^T\), and the initial conditions are set as \(\eta_d(0) = [15.6, 6.8, \pi/4]^T\), \(\nu_d(0) = [1, 0, 0]^T\), \(\eta(0) = [15.5, 5.5, \pi/2]^T\) and \(\nu(0) = [0, 0, 0]^T\).

In what follows, 3 cases will be deployed to evaluate the performance of the proposed HFC, FDO-HFC and FUO-HFC approaches, respectively.

A. Performance Evaluation on the HFC

In this subsection, a nominal case where the ASV is sufficiently modeled (i.e., \(f\) is known) and external disturbances are not considered (i.e., \(d = 0\)) is employed to demonstrate the effectiveness and superiority of the proposed HFC scheme.
User-defined parameters are chosen as follows: $K_1 = 0.3$, $K_2 = 0.3$, $\beta_1 = 1/3$ and $\beta_2 = 1/2$.

Simulation results are shown in Figs. 2–7. Comparing with the traditional asymptotic approach, i.e., $\beta_1 = \beta_2 = 1$ within the HFC scheme, we can see from Fig. 2 that the HFC with $\beta_1 = 1/3$ can achieve much faster convergence. In addition, as shown in Figs. 3–6, the ASV can exactly track the desired trajectory within a finite time by virtue of the HFC laws shown in Fig. 7. In comparison with the asymptotic approach (i.e., $\beta_1 = 1$), the HFC scheme with $\beta_1 = 1/3$ is able to render tracking errors converge to the origin in a very short time.

B. Performance Evaluation on the FDO-HFC

In this subsection, a much more practical case with unknown disturbances is deployed to demonstrate the performance evaluation and comparisons. In order to facilitate simulation studies, the external disturbances are assumed to be governed by

$$ d(t) = \begin{bmatrix} 10 \cos(0.1\pi t - \pi/5) \\ 8 \cos(0.3\pi t + \pi/6) \\ 6 \cos(0.2\pi t + \pi/3) \end{bmatrix} $$

with $H_1 = \text{diag}(0, 0, 0)$ and $H_2 = \text{diag}(-0.01\pi^2, -0.09\pi^2, -0.04\pi^2)$.

Accordingly, user-defined parameters of the HFC and FDO-HFC schemes are commonly chosen as $K_1 = 2.6$, $K_2 = 2.6$, $\beta_1 = 1/3$ and $\beta_2 = 1/2$. The other parameters of the FDO are selected as follows: $L_0 = \text{diag}(10, 10, 10)$, $L_1 = ...$
The actual and desired trajectories in the planar space are shown in Fig. 8–12, from which we can see that, in comparison with the conventional asymptotic control scheme (i.e., $\beta_1 = 1$), the proposed HFC scheme (i.e., $\beta_1 = 1/3$) achieves faster convergence and stronger disturbance rejection simultaneously, and thereby resulting in higher tracking accuracy, and the FDO-HFC approach is able to realize exact trajectory tracking within a short time since unknown disturbances can be finite-time observed exactly as shown in Fig. 13.

The actual and desired trajectories in the planar space are shown in Fig. 8–12, from which we can see that, in comparison with the conventional asymptotic control scheme (i.e., $\beta_1 = 1$), the proposed HFC scheme (i.e., $\beta_1 = 1/3$) achieves faster convergence and stronger disturbance rejection simultaneously, and thereby resulting in higher tracking accuracy, and the FDO-HFC approach is able to realize exact trajectory tracking within a short time since unknown disturbances can be finite-time observed exactly as shown in Fig. 13.
parameters are selected as follows: $K_1 = 2.6$, $K_2 = 2.6$, $\beta_1 = 1/3$, $\beta_2 = 1/2$, $\lambda_1 = 2$, $\lambda_2 = 1.5$, $\lambda_3 = 1.1$ and $\mathcal{L} = \text{diag}(30,30,30)$. Corresponding simulation results and comparisons are shown in Figs. 14–19. The actual and reference trajectories in the planar space are shown in Fig. 14, which indicates that the actual trajectory can exactly track the desired one in a very short time although the ASV suffers from unmodeled dynamics and unknown disturbances. Actually, the previous HFC and FDO-HFC approaches become unavailable due to the unexpected unmodeled dynamics of the ASV and the desired trajectory. From the tracking performance on position and velocity shown in Figs. 15–18, we can see that trajectory tracking errors converge to zero in a very short time in spite of complex unknowns including unmodeled dynamics and unknown disturbances. In essence, the remarkable performance of the proposed FUO-HFC scheme on exact trajectory tracking relies on the accurate observation on the lumped unknowns via a FUO, whereby the finite-time observation results are shown in Fig. 19. In this context, the FUO-HFC methodology can achieve fast and exact trajectory tracking together with accurate reconstruction on complex unknowns including unmodeled dynamics, uncertainties and unknown disturbances.

V. CONCLUSIONS

In this paper, in order to achieve trajectory fast and accurate tracking control of an autonomous surface vehicle (ASV) subject to unmodeled dynamics and unknown disturbances, a homogeneity-based finite-time control (HFC) framework has been innovatively proposed. For exactly dealing with external disturbances, a finite-time disturbance observer (FDO) has been developed and has been incorporated into the HFC framework, thereby contributing the FDO-based HFC (termed FDO-HFC) scheme which can realize exact trajectory tracking control of an ASV in the presence of complex disturbances. To further accurately handle complicated unknowns including both unmodeled dynamics and unknown disturbances, a finite-time unknown observer based HFC (FUO-HFC) scheme has been proposed to enhance the entire performance including both trajectory tracking and unknowns identification, whereby high accuracy and fast convergence can be ensured simultaneously. Simulation studies and comprehensive comparisons have been conducted on a benchmark ship, i.e., CyberShip II, and have demonstrated the effectiveness and superiority of the proposed HFC schemes in term of exact trajectory tracking and unknowns rejection.

ACKNOWLEDGMENTS

The authors would like to thank the Editor-in-Chief, Associate Editor and anonymous referees for their invaluable comments and suggestions.

APPENDIX A

PROOF OF LEMMA 2

Proof: In the light of Lemma 1, the entire proof can be divided into 2 phases, i.e., proves of global asymptotic stability and negative homogeneity.
Phase I: Global Asymptotic Stability

In order to facilitate an inductive proof, applying a set of coordinate transformations as follows:

\[z_i = l_{i-1} x_i, \quad i = 1, 2, \cdots, n \]

with \(l_0 = 1 \), to system (2), we have

\[
\begin{align*}
\dot{x}_1 &= c_1 (x_2 - x_1^{\alpha_2}) \\
\dot{x}_2 &= c_2 (x_3 - x_1^{\alpha_3}) \\
& \vdots \\
\dot{x}_{n-1} &= -c_{n-1} x_{n-1}^{\alpha_n} \\
\dot{x}_n &= -c_n x_n^{\alpha_n+1/n}
\end{align*}
\]

(\text{A.2})

where \(x_1^{\alpha_i} := \text{sgn}^{\alpha_i}(x_1) \) and \(c_i = l_i / l_{i-1}, i = 1, 2, \cdots, n \).

Using (A.2), a backward recursive procedure will be established in the sequel.

Initial step: We first consider the following system:

\[
\dot{x}_n = -c_n x_n^{\alpha_n+1/n}
\]

(\text{A.3})

Choosing a Lyapunov function as follows:

\[
V_n(x_n) = \frac{\alpha_n}{2} |x_n|^{2/\alpha_n}
\]

(\text{A.4})

we have

\[
\dot{V}_n(x_n)|_{(\text{A.3})} \leq -k_n |x_n|^{(2+\tau)/\alpha_n}
\]

(\text{A.5})

with \(k_n = c_n \).

Inductive step: Assume there exists a Lyapunov function as follows:

\[
\dot{V}_{i+1}(x_{i+1}, x_{i+2}, \cdots, x_{n}) = \sum_{j=i+1}^{n} \int_{x_{i+1}^{\alpha_j+1}}^{x_{j+1}^{\alpha_j+1}} \left(s^{(2-\alpha_j)/\alpha_j} - x_j^{(2-\alpha_j)/\alpha_j+1}\right) ds
\]

(\text{A.6})

such that \(\dot{V}_{i+1}(x_{i+1}, x_{i+2}, \cdots, x_{n}) \) along the following system:

\[
\begin{align*}
\dot{x}_{i+1} &= c_{i+1} (x_{i+2} - x_{i+1}^{\alpha_{i+2}/\alpha_{i+1}}) \\
\dot{x}_{i+2} &= c_{i+2} (x_{i+3} - x_{i+1}^{\alpha_{i+3}/\alpha_{i+1}}) \\
& \vdots \\
\dot{x}_n &= -c_n x_n^{\alpha_n+1/n}
\end{align*}
\]

(\text{A.7})

satisfies

\[
\dot{V}_{i+1}|_{(\text{A.7})} \leq -k_{i+1} \sum_{j=i+1}^{n} |x_j^{\alpha_j+1/\alpha_j} - x_{j+1}^{(2+\tau)/\alpha_j+1}|
\]

(\text{A.8})

with \(k_{i+1} > 0 \). It is easily verified that (A.8) holds for system (A.3) at the initial step, i.e., \(i = n - 1 \).

In this context, we are expected to prove that for the system as follows:

\[
\begin{align*}
\dot{x}_1 &= c_1 (x_{i+1} - x_i^{\alpha_{i+1}/\alpha_i}) \\
\dot{x}_{i+1} &= c_{i+1} (x_{i+2} - x_i^{\alpha_{i+2}/\alpha_i}) \\
& \vdots \\
\dot{x}_n &= -c_n x_i^{\alpha_{i+1}/\alpha_i}
\end{align*}
\]

(\text{A.9})

there exists the following Lyapunov function:

\[
V_i(x_i, x_{i+1}, \cdots, x_n) = V_{i+1}(x_{i+1}, x_{i+2}, \cdots, x_n) + \int_{x_i^{\alpha_{i+1}/\alpha_i}}^{x_{i+1}^{\alpha_{i+1}/\alpha_i}} \left(s^{(2-\alpha_i)/\alpha_i} - x_{i+1}^{(2-\alpha_i)/\alpha_{i+1}}\right) ds
\]

(\text{A.10})

such that \(\dot{V}_i \) along (A.9) satisfies the form like (A.8).

To this end, together with (A.8), we have

\[
\dot{V}_i|_{(\text{A.9})} = \dot{V}_{i+1}|_{(\text{A.7})} - \sum_{j=i+1}^{n} c_j \frac{\partial V_{i+1}}{\partial x_j}(x_i^{\alpha_{i+1}/\alpha_i} - x_{i+1}^{(2+\tau)/\alpha_{i+1}})
\]

\[
\leq -k_{i+1} \sum_{j=i+1}^{n} |x_j^{\alpha_{i+1}/\alpha_j} - x_{j+1}^{(2+\tau)/\alpha_{j+1}}|
\]

(\text{A.12})

\[
\leq -c_i k_i \sum_{j=i+1}^{n} |x_j^{\alpha_{i+1}/\alpha_j} - x_{j+1}^{(2+\tau)/\alpha_{j+1}}| - c_{i+1} (2-\alpha_{i+1}) (x_{i+1}^{\alpha_{i+1}/\alpha_{i+1}} - x_{i+1}^{2-\alpha_{i+1}})
\]

(\text{A.13})

\[
\leq \mu_1 \sum_{j=i+1}^{n} |x_j^{\alpha_{j+1}/\alpha_j} - x_{j+1}^{(2+\tau)/\alpha_{j+1}}| + \rho_1 (\mu_1) |x_j^{\alpha_{j+1}/\alpha_j} - x_{j+1}^{(2+\tau)/\alpha_{j+1}}|
\]

(\text{A.14})

with positive continuous functions \(\rho_1(\cdot) \) and \(\rho_2(\cdot) \) with respect to any positive constants \(\mu_1 \) and \(\mu_2 \), respectively.

Substituting (A.12)–(A.14) into (A.11) yields

\[
\dot{V}_i|_{(\text{A.9})} \leq -(k_{i+1} - \mu_1 - \mu_2) \sum_{j=i+1}^{n} |x_j^{\alpha_{j+1}/\alpha_j} - x_{j+1}^{(2+\tau)/\alpha_{j+1}}|
\]

(\text{A.15})

Selecting parameters \(\mu_1, \mu_2, k_{i+1} \) and \(c_i \) such that

\[
c_i \geq k_i + \rho_1(\mu_1) + \rho_2(\mu_2), \quad k_i \leq k_{i+1} - \mu_1 - \mu_2
\]

(\text{A.16})
yields
\[\dot{V}_1(A.4) \leq -k_i \sum_{j=1}^{n} |x_j^{\alpha_{j+1}/\alpha_j} - x_j^{(2+\tau)/\alpha_{j+1}}|^{(2+\tau)/\alpha_{j+1}} \] (A.17)
which implies that (A.8) also holds for the ith inductive step. Recursively, we can eventually construct a Lyapunov function as follows:
\[V_1(x_1, x_2, \ldots, x_n) = \sum_{j=1}^{n} x_j^{\alpha_{j}/\alpha_j} \int_0^1 (\frac{2-\alpha_1}{\alpha_j} x_j^{\frac{2}{\alpha_j}} - \frac{2-\alpha_1}{\alpha_{j+1}} x_j^{\frac{2}{\alpha_{j+1}}}) \, ds \] (A.18)
with \(x_{n+1} = 0 \) and \(\alpha_1 = 1 \), such that
\[\dot{V}_1(A.2) \leq -k_i \sum_{j=1}^{n} |x_j^{\alpha_{j+1}/\alpha_j} - x_j^{(2+\tau)/\alpha_{j+1}}| \] (A.19)
with \(k_i > 0 \) recursively determined by (A.16).
It follows from (A.19) that system (A.2) is globally asymptotically stable. Together with the global diffeomorphism (A.1), we have system (2) is globally asymptotically stable.

Phase II: Negative Homogeneity
Applying a dilation as follows:
\[(r_1, r_2, \ldots, r_n) = (\alpha_1, \alpha_2, \ldots, \alpha_n) \] (A.20)
with \(\alpha_1 = 1 \), to system (2) yields a negative homogeneous of degree, i.e., \(\tau = \alpha_{i+1} - \alpha_i < 0, i = 1, 2, \ldots, n \).
In this context, combining with Phases I and II, and using Lemma 1, we immediately have system (2) is globally asymptotically stable. This concludes the proof.

REFERENCES

Ning Wang (S’08-M’12-SM’15) received his B.Eng. degree in Marine Engineering and the Ph.D. degree in control theory and engineering from the Dalian Maritime University (DMU), Dalian, China in 2004 and 2009, respectively. From September 2008 to September 2009, he was financially supported by China Scholarship Council (CSC) to work as a joint-training PhD student at the Nanyang Technological University (NTU), Singapore. In the light of his significant research at NTU, he received the Excellent Government-funded Scholars and Students Award in 2009. From August 2014 to August 2015, he worked as a Visiting Scholar at the University of Texas at San Antonio. He is currently a Full Professor with the Marine Engineering College, DMU, Dalian 116026, China.

Dr. Wang received the Nomination Award of Liaoning Province Excellent Doctoral Dissertation, the DMU Excellent Doctoral Dissertation Award and the DMU Outstanding PhD Student Award in 2010, respectively. He also won the Liaoning Province Award for Technological Invention and the honour of Liaoning BaiQianWan Talents, Liaoning Excellent Talents, Science and Technology Talents the Ministry of Transport of the P. R. China, in 1991 and 1996, respectively.

Wen-Hua Chen (SM’06) received the M.Sc. and Ph.D. degrees from Northeast University, Shenyang, China, in 1989 and 1991, respectively.

From 1991 to 1996, he was a Lecturer and then Associate Professor with the Department of Automatic Control, Nanjing University of Aeronautics and Astronautics, Nanjing, China. From 1997 to 2000, he held a research position and then was a Lecturer of control engineering with the Centre for Systems and Control, University of Glasgow, Glasgow, U.K. In 2000, he moved to the Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, U.K., as a Lecturer, where he was appointed as a Professor in 2012. His research interests include the development of advanced control strategies (nonlinear model predictive control, disturbance-observer-based control, etc.) and their applications in aerospace and automotive engineering. Currently, much of his work has also been involved with the development of unmanned autonomous intelligent systems.

Dr. Chen is a Fellow of The Institution of Engineering and Technology, U.K., and a Fellow of The Institution of Mechanical Engineers, U.K.