A novel method for the partition of mixed-mode fractures in 2D elastic laminated composite beams

[Presentation]

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: HARVEY, C.M., WOOD, J.D. and WANG, S., 2014. A novel method for the partition of mixed-mode fractures in 2D elastic laminated composite beams. Presented at the 1st International Conference on Mechanics of Composites, Stony Brook University, Long Island, USA, June 8-12th.

Additional Information:

- This is a PowerPoint presentation of a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/25045

Version: Published

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
A Novel Method for the Partition of Mixed-Mode Fractures in 2D Elastic Laminated Composite Beams

C. M. Harvey1 J. D. Wood S. Wang2

1c.m.harvey@lboro.ac.uk 2s.wang@lboro.ac.uk

Department of Aeronautical & Automotive Engineering
Loughborough University, Leicestershire LE11 3TU, UK

1st International Conference on Mechanics of Composites
Stony Brook University, Long Island, NY, 8–12 June 2014
Cracks tend to propagate along the interfaces in laminated materials because they represent a plane of weakness.

They do not kink in order to propagate in pure mode I opening, as they would tend to in an isotropic material.

Interfacial cracks therefore propagate as mixed-mode cracks, with a combination of mode I opening, mode II shearing, and mode III tearing.

Fracture toughness is not an intrinsic material property but depends on the fracture mode partition, i.e. it is load-dependent.

Therefore, to predict fracture toughness, it is essential to know the partition of a mixed fracture mode.

...a particularly complex problem with many confusing aspects.
Introduction

- **Aim 1**: To develop and numerically validate a *novel* mixed-mode partition methodology for interfacial brittle fracture in UD laminated composite beams.
 - It should have a stronger capability for solving more complex mixed-mode partition problems.

- **Aim 2**: To extend this methodology to interfacial brittle fracture in bimaterial beams, and to validate it numerically.

- **Motivation**: Limitations in the conventional approach when dealing with more complex problems, e.g.
 - Bimaterial case: partition relies on extensively tabulated numerical results over a finite range of geometries and material configurations\(^1\)

Contents

- **Part 1: Background to mixed-mode fracture partitions**

- **Part 2: Laminated unidirectional (UD) composite beams**
 - Development of 2D-elasticity-based partition theory
 - Comparisons with exact 2D-elasticity-based partition theory

- **Part 3: Bimaterial beams**
 - Extension of methodology to bimaterial beams
 - Finite element method (FEM) calculation of fracture mode partitions
 - Comparisons of analytical and FEM results

Mixed-mode partition theories

- Double cantilever beam (DCB)
- Fundamental case for in-depth study
- Two objectives:
 - Pure mode relationships
 - Mixed-mode partition
The total energy release rate is (UD beams only)

\[
G = \frac{1}{2bE_L} \left[\frac{M_{1B}^2}{l_1} + \frac{M_{2B}^2}{l_2} - \frac{1}{l} \left(M_{1B} + M_{2B} - \frac{h_2 N_{1Be}}{2} \right)^2 \right. \\
\left. + \left(\frac{1}{A_1} - \frac{1}{A} \right) N_{1Be}^2 \right]
\]

\[
= \{ M_{1B} \quad M_{2B} \quad N_{1Be} \} [C] \{ M_{1B} \quad M_{2B} \quad N_{1Be} \}^T
\]

where

\[
N_{1Be} = N_{1B} - \frac{N_{2B}}{\gamma} \quad \text{and} \quad \gamma = \frac{h_2}{h_1}
\]

ERR is in **quadratic form** in terms of \(M_{1B}, M_{2B} \) and \(N_{1Be} \) and positive definite.
Orthogonal pure fracture modes

First set of orthogonal pure fracture modes

- Pure mode I θ_i: zero relative shearing displacement just behind crack tip.
- Pure mode II β_i: zero crack tip opening force
Orthogonal pure fracture modes

- **First set of orthogonal pure fracture modes**
 - Pure mode I θ_i: zero relative shearing displacement just behind crack tip.
 - Pure mode II β_i: zero crack tip opening force

- **Second set of pure fracture modes**
 - Pure mode I θ'_i: zero crack tip shearing force
 - Pure mode II β'_i: zero relative opening displacement just behind crack tip
First set of orthogonal pure fracture modes

- Pure mode I θ_i: zero relative shearing displacement just behind crack tip.
- Pure mode II β_i: zero crack tip opening force

Second set of pure fracture modes

- Pure mode I θ'_i: zero crack tip shearing force
- Pure mode II β'_i: zero relative opening displacement just behind crack tip

The general expressions for the ERR partitions are

\[
G_I = c_I \left(M_{1B} - \frac{M_{2B}}{\beta_1} - \frac{N_{1Be}}{\beta_2} \right) \left(M_{1B} - \frac{M_{2B}}{\beta'_1} - \frac{N_{1Be}}{\beta'_2} \right)
\]

\[
G_{II} = c_{II} \left(M_{1B} - \frac{M_{2B}}{\theta_1} - \frac{N_{1Be}}{\theta_2} \right) \left(M_{1B} - \frac{M_{2B}}{\theta'_1} - \frac{N_{1Be}}{\theta'_2} \right)
\]
Orthogonal pure fracture modes

\[G_I = c_I \left(\frac{M_{1B}}{\beta_1} - \frac{N_{1Be}}{\beta_2} \right) \left(\frac{M_{1B}}{\beta'_1} - \frac{N_{1Be}}{\beta'_2} \right) \]

\[G_{II} = c_{II} \left(\frac{M_{1B}}{\theta_1} - \frac{N_{1Be}}{\theta_2} \right) \left(\frac{M_{1B}}{\theta'_1} - \frac{N_{1Be}}{\theta'_2} \right) \]

Examples:
- \(M_{2B} = \theta_1 M_{1B} \) and \(N_{1Be} = 0 \) \(\implies \) pure mode I (zero relative shearing displacement just behind the crack tip)
- Same for \(N_{1Be} = \theta_2 M_{1B} \) and \(M_{2B} = 0 \).
Orthogonal pure fracture modes

\[G_I = c_I \left(M_{1B} - \frac{M_{2B}}{\beta_1} - \frac{N_{1Be}}{\beta_2} \right) \left(M_{1B} - \frac{M_{2B}}{\beta'_1} - \frac{N_{1Be}}{\beta'_2} \right) \]

\[G_{II} = c_{II} \left(M_{1B} - \frac{M_{2B}}{\theta_1} - \frac{N_{1Be}}{\theta_2} \right) \left(M_{1B} - \frac{M_{2B}}{\theta'_1} - \frac{N_{1Be}}{\theta'_2} \right) \]

- Examples:
 - \(M_{2B} = \theta_1 M_{1B} \) and \(N_{1Be} = 0 \) \(\implies \) pure mode I (zero relative shearing displacement just behind the crack tip)
 - Same for \(N_{1Be} = \theta_2 M_{1B} \) and \(M_{2B} = 0 \).
 - \(M_{2B} = \beta'_1 M_{1B} \) and \(N_{1Be} = 0 \) \(\implies \) pure mode II (zero relative opening displacement just behind the crack tip)
 - Same for \(N_{1Be} = \beta'_2 M_{1B} \) and \(M_{2B} = 0 \).
Orthogonal pure fracture modes

Partitions G_{I}/G and G_{II}/G with $M_{1B} = 1$
A set’s mode I and II conditions are orthogonal.

Consider bending moments only and the first set:

- \(M_2B/M_1B = \theta_1 \) gives pure mode I.
- \(M_2B/M_1B = \beta_1 \) gives the orthogonal pure mode II.

ERR \(G \) is given by

\[
G = \{ M_{1B} \ M_{2B} \ N_{1Be} \} \ [C] \ \{ M_{1B} \ M_{2B} \ N_{1Be} \}^T
\]

Therefore orthogonality here means that

\[
\{ 1 \ \theta_1 \ 0 \} \ [C] \ \{ 1 \ \beta_1 \ 0 \}^T = 0
\]
Orthogonal pure fracture modes

- **Euler beam theory** with rigid interface
 - Two sets of pure modes are unique and do not coincide, i.e.
 \[\theta_{iE} \neq \theta'_{iE}, \quad \beta_{iE} \neq \beta'_{iE}. \]

 \[
 \theta_{1E} = -\gamma^2, \quad \theta'_{1E} = -1, \quad \beta_{1E} = \gamma^2 \frac{(3 + \gamma)}{(1 + 3\gamma)}, \quad \beta'_{1E} = \gamma^3
 \]

Orthogonal pure fracture modes

- **Euler beam theory** with rigid interface
 - Two sets of pure modes are unique and do not coincide, i.e.
 \[\theta_i^E \neq \theta_i'^E, \ \beta_i^E \neq \beta_i'^E. \]
 \[\theta_1^E = -\gamma^2, \ \theta_1'^E = -1, \ \beta_1^E = \gamma^2 (3 + \gamma) / (1 + 3\gamma), \ \beta_1'^E = \gamma^3 \]

- **Timoshenko beam theory** with rigid interface
 - Two sets of pure modes coincide on the Euler theory’s first set, i.e. \(\theta'_i \rightarrow \theta_i, \ \beta'_i \rightarrow \beta_i. \)
 \[\theta_1^T = \theta_1'^T = \theta_1^E = -\gamma^2, \ \beta_1^T = \beta_1'^T = \beta_1^E = \gamma^2 (3 + \gamma) / (1 + 3\gamma) \]

\(^1\text{Suo, Hutchinson. Int J Fract Mech 1990;43:1–18.}\)
Orthogonal pure fracture modes

- **Euler beam theory** with rigid interface
 - Two sets of pure modes are unique and **do not coincide**, i.e. \(\theta_{iE} \neq \theta'_{iE}, \beta_{iE} \neq \beta'_{iE}. \)

\[
\begin{align*}
\theta_{1E} &= -\gamma^2, & \theta'_{1E} &= -1, & \beta_{1E} &= \gamma^2 (3 + \gamma) / (1 + 3\gamma), & \beta'_{1E} &= \gamma^3
\end{align*}
\]

- **Timoshenko beam theory** with rigid interface
 - Two sets of pure modes **coincide on the Euler theory’s first set**, i.e. \(\theta'_i \rightarrow \theta_i, \beta'_i \rightarrow \beta_i. \)

\[
\begin{align*}
\theta_{1T} &= \theta'_{1T} = \theta_{1E} = -\gamma^2, & \beta_{1T} &= \beta'_{1T} = \beta_{1E} = \gamma^2 (3 + \gamma) / (1 + 3\gamma)
\end{align*}
\]

- **2D elasticity theory** with rigid interface\(^1\)
 - Two sets of pure modes **coincide**, i.e. \(\theta_{i-2D} = \theta'_{i-2D}, \beta_{i-2D} = \beta'_{i-2D}. \) **Where do they coincide?**

Comparison of partition theories

\[M_{2B} / M_{1B} \] (with \(\gamma = 2, M_{1B} = 1 \) and \(N_{1Be} = 0 \))

- Euler beam partition theory\(^2\) \(G_i / G \)
- Euler beam partition theory\(^2\) \(G_{II} / G \)
- Timo. beam partition theory\(^2\) \(G_i / G \)
- Timo. beam partition theory\(^2\) \(G_{II} / G \)
- Suo-Hutchinson theory\(^1\) \(G_i / G \)
- Suo-Hutchinson theory\(^1\) \(G_{II} / G \)

\(\theta_{1-2D} = ? \)
\(\beta_{1-2D} = ? \)

Objective: Determine θ_{1-2D} as a function of γ.

Then use orthogonality condition to determine the other pure modes.

For β_{1-2D}, solve...
\[
\begin{bmatrix} 1 & \theta_{1-2D} & 0 \end{bmatrix} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} 1 & \beta_{1-2D} & 0 \end{bmatrix}^T = 0
\]

For β_{2-2D}, solve...
\[
\begin{bmatrix} 1 & \theta_{1-2D} & 0 \end{bmatrix} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} 1 & 0 & \beta_{2-2D} \end{bmatrix}^T = 0
\]

For θ_{2-2D}, solve...
\[
\begin{bmatrix} 1 & \beta_{1-2D} & 0 \end{bmatrix} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} 1 & 0 & \theta_{2-2D} \end{bmatrix}^T = 0
\]

Then partition the ERR as

\[
G_{I-2D} = c_I \left(M_{1B} - \frac{M_{2B}}{\beta_{1-2D}} - \frac{N_{1Be}}{\beta_{2-2D}} \right)^2
\]

\[
G_{II-2D} = c_{II} \left(M_{1B} - \frac{M_{2B}}{\theta_{1-2D}} - \frac{N_{1Be}}{\theta_{2-2D}} \right)^2
\]
Contents

- Part 1: Background to mixed-mode fracture partitions
- Part 2: Laminated UD composite beams
 - Development of 2D-elasticity-based partition theory
 - Comparisons with exact 2D-elasticity-based partition theory
- Part 3: Bimaterial beams
 - Extension of methodology to bimaterial beams
 - Finite element method (FEM) calculation of fracture mode partitions
 - Comparisons of analytical and FEM results
Calculating θ_{1-2D}

- The beam-theory-based (Euler and Timoshenko) **pure mode II condition** is

 \[\frac{M_{1B}}{l_1} - \frac{M_{1B} + M_{2B}}{l} = \gamma^2 \left(\frac{M_{2B}}{l_2} - \frac{M_{1B} + M_{2B}}{l} \right) \]

- LHS gives difference between the curvature at the crack tip and the curvature at point A on beam 1.
- RHS gives difference between the curvature at the crack tip and the curvature at point A on beam 2.
Obviously, this condition does not represent the pure mode II condition under 2D elasticity. **A correction is needed.**

It is expected that these curvature differences will be different in 2D elasticity theory.

Hence, a correction factor $c_\beta (\gamma)$ is introduced, as follows:

$$\frac{M_{1B}}{l_1} - c_\beta \left(\frac{M_{1B} + M_{2B}}{l} \right) = \gamma^2 \left[\frac{M_{2B}}{l_2} - c_\beta \left(\frac{M_{1B} + M_{2B}}{l} \right) \right]$$

This gives the M_{2B}/M_{1B} ratio, denoted by β_1, as

$$\beta_{1-2D} = \gamma \left[\frac{(1 + \gamma)^2 + c_\beta (\gamma - 1)}{(1 + \gamma)^2 - c_\beta \gamma (\gamma - 1)} \right]$$
Calculating θ_{1-2D}

- The beam-theory-based (Euler and Timoshenko) **pure mode I condition** is
 \[M_{1B}/l_1 = -\gamma (M_{2B}/l_2) \]
 (zero relative shearing displacement at the crack tip).

- Similarly, a correction factor $c_\theta (\gamma)$ is introduced:
 \[
 \frac{M_{1B}}{l_1} + c_\theta \left(\frac{M_{1B} + M_{2B}}{l} \right) = -\gamma \left[\frac{M_{2B}}{l_2} + c_\theta \left(\frac{M_{1B} + M_{2B}}{l} \right) \right]
 \]

- This gives the M_{2B}/M_{1B} ratio, denoted by θ_1, as
 \[
 \theta_{1-2D} = -\gamma^2 \left[\frac{(1 + \gamma)^2 + c_\theta}{(1 + \gamma)^2 + c_\theta \gamma^2} \right]
 \]
Calculating θ_{1-2D}

Since θ_{1-2D} and β_{1-2D} are orthogonal, the relationship between the correction factors, $c_\theta(\gamma)$ and $c_\beta(\gamma)$, is determined.

$$c_\theta(\gamma) = \frac{(1 - c_\beta)(1 + \gamma)^3}{(1 + \gamma^3)c_\beta - (1 + \gamma)^3} \quad \text{and} \quad c_\beta(\gamma) = \frac{(1 + c_\theta)(1 + \gamma)^3}{(1 + \gamma^3)c_\theta + (1 + \gamma)^3}$$

How to determine these correction factors?

- They represent the contributions of the intact beam’s curvature to beam 1 and 2’s curvature at the crack tip.
- For a symmetric beam ($\gamma = 1$), it is reasonable to expect that the corrected curvatures are the average of the intact beam’s and two separated beams’ curvatures, i.e. $c_\theta(1) = 1$. This then gives $c_\beta(1) = 1.6$.
Now consider the limit where $\gamma \to \infty$ or $\gamma \to 0$.

$c_\beta (\gamma)$ tends to a constant, $\overline{c}_\beta = 1$, in both limits.

$c_\theta (\gamma)$ also tends a constant, \overline{c}_θ, in both limits, however the equation for $c_\theta (\gamma)$ gives $0/0$ so cannot help here.

Instead consider gradients of $c_\beta (\gamma)$, as follows:

$$\lim_{\gamma \to \infty} \left\{ \frac{dc_\beta (\gamma)}{d\gamma} \right\} = 0 \quad \text{and} \quad \lim_{\gamma \to 0} \left\{ \frac{dc_\beta (\gamma)}{d\gamma} \right\} = \frac{3\overline{c}_\theta}{1 + \overline{c}_\theta}$$
Calculating θ_{1-2D}

From the figure, the following approximate assumption can be made:

$$\lim_{\gamma \to 0} \left\{ \frac{dc_\beta(\gamma)}{d\gamma} \right\} \approx \frac{c_\beta(1)}{1} \quad \Rightarrow \quad \frac{3c_\theta}{1 + c_\theta} \approx 1.6$$

This gives $\overline{c}_\theta \approx \frac{8}{7}$. Later we will see that $\overline{c}_\theta \approx \frac{6}{5}$ is even more accurate.
Calculating θ_{1-2D}

- $c_\theta (1) = 1$
- $c_\theta (\infty) \approx 6/5$
- $c_\theta (0) \approx 6/5$

Variation of $c_\theta (\gamma)$ can be expressed as

$$c_\theta (\gamma) = \overline{c_\theta \left[2-\hat{c}_\beta^{1/2}(\gamma)\right]}$$

$$\hat{c}_\beta (\gamma) = (1 + \gamma)^3 / (1 + \gamma^3)$$

where $\hat{c}_\beta (\gamma)$ is the $c_\beta (\gamma)$ correction factor which recovers the Timoshenko-based pure modes.
Calculating θ_{1-2D}

- $c_\theta (1) = 1$
- $c_\theta (\infty) \approx 6/5$
- $c_\theta (0) \approx 6/5$

Variation of $c_\theta (\gamma)$ can be expressed as

$$c_\theta (\gamma) = \frac{1}{\hat{c}_\beta (\gamma)^{1/2}}$$

$$\hat{c}_\beta (\gamma) = (1 + \gamma)^3 / (1 + \gamma^3)$$

where $\hat{c}_\beta (\gamma)$ is the $c_\beta (\gamma)$ correction factor which recovers the Timoshenko-based pure modes.

As explained: Pure modes are given by:

$$\theta_{1-2D} = -\gamma^2 \left[(1 + \gamma)^2 + c_\theta \right] / \left[(1 + \gamma)^2 + c_\theta \gamma^2 \right]$$

and the orthogonality conditions.
Calculating θ_{1-2D}

- $c_\theta (1) = 1$
- $c_\theta (\infty) \approx 6/5$
- $c_\theta (0) \approx 6/5$

- Variation of $c_\theta (\gamma)$ can be expressed as

$$c_\theta (\gamma) = \frac{2 - \hat{c}_\beta^{1/2} (\gamma)}{c_\theta}$$

$$\hat{c}_\beta (\gamma) = (1 + \gamma)^3 / (1 + \gamma^3)$$

where $\hat{c}_\beta (\gamma)$ is the $c_\beta (\gamma)$ correction factor which recovers the Timoshenko-based pure modes.

- **As explained:** Pure modes are given by:

$$\theta_{1-2D} = -\gamma^2 \left[(1 + \gamma)^2 + c_\theta \right] / \left[(1 + \gamma)^2 + c_\theta \gamma^2 \right]$$

and the orthogonality conditions.

- And the ERR partition is given by

$$G_{I-2D} = c_I \left(M_{1B} - \frac{M_{2B}}{\beta_{1-2D}} - \frac{N_{1Be}}{\beta_{2-2D}} \right)^2$$

$$G_{II-2D} = c_{II} \left(M_{1B} - \frac{M_{2B}}{\theta_{1-2D}} - \frac{N_{1Be}}{\theta_{2-2D}} \right)^2$$

Performance of novel methodology

\[M_{1B} = 1, \; M_{2B} = 0 \; \text{and} \; N_{1Be} = 0 \]

\[\log_{10}(1/\gamma) \]

Partition \(G_i/G \)

- Suo and Hutchinson’s theory\(^1\)
- Present theory with \(\bar{c}_\theta = 8/7 \)
- Present theory with \(\bar{c}_\theta = 6/5 \)
- Luo and Tong’s theory\(^3\)

Performance of novel methodology

Present theory with $\bar{c}_\theta = 8/7$

Present theory with $\bar{c}_\theta = 6/5$

Luo and Tong’s theory

$L_1 B$ and $L_2 B$ only with $N_{1Be} = 0$

Magnitude of G_1/G error relative to Suo and Hutchinson’s theory

Performance of novel methodology

Present theory with $\bar{c}_\theta = 8/7$

Luo and Tong’s theory3

M_{1B} and N_{1B} only
with $M_{2B} = N_{2B} = 0$

Magnitude of G_I/G error relative
to Suo and Hutchinson’s theory1

Part 1: Background to mixed-mode fracture partitions

Part 2: Laminated UD composite beams
 - Development of 2D-elasticity-based partition theory
 - Comparisons with exact 2D-elasticity-based partition theory

Part 3: Bimaterial beams
 - Extension of methodology to bimaterial beams
 - Finite element method (FEM) calculation of fracture mode partitions
 - Comparisons of analytical and FEM results
Extension to bimaterial beams

Material ratio

\[\eta = \frac{E_2}{E_1} \]

as well as

\[\gamma = \frac{h_2}{h_1}. \]

Harvey and Wang4 have defined all the composite-beam-theory-based conditions. Repeat methodology.

3 components to the \(c_\theta (\gamma, \eta) \) correction factor:

Extension to bimaterial beams

Material ratio
\[\eta = \frac{E_2}{E_1} \] as well as
\[\gamma = \frac{h_2}{h_1}. \]

Harvey and Wang have defined all the composite-beam-theory-based conditions. Repeat methodology.

3 components to the \(c_\theta (\gamma, \eta) \) correction factor:

- \(\eta = 1 \) with variable \(\gamma \), \(c_\theta (\gamma, 1) = \bar{c}_{\theta \gamma} \left[2 - \hat{c}^{1/2}_\beta (\gamma, 1) \right] \) with \(\bar{c}_{\theta \gamma} \approx \frac{6}{5} \)

Extension to bimaterial beams

Material ratio
\[\eta = \frac{E_2}{E_1} \]
as well as
\[\gamma = \frac{h_2}{h_1}. \]

Harvey and Wang4 have defined all the composite-beam-theory-based conditions. **Repeat methodology.**

3 components to the \(c_\theta (\gamma, \eta) \) correction factor:

- \(\eta = 1 \) with variable \(\gamma \),
 \[c_\theta (\gamma, 1) = \overline{c}_{\theta \gamma} \left[2 - \hat{c}_\beta^{1/2}(\gamma, 1) \right] \]
 with \(\overline{c}_{\theta \gamma} \approx \frac{6}{5} \)

- \(\gamma = 1 \) with variable \(\eta \),
 \[c_\theta (1, \eta) = \overline{c}_{\theta \eta} \left[2 - \hat{c}_\beta^{1/2}(1, \eta) \right] \]
 with \(\overline{c}_{\theta \eta} \approx \frac{2}{13} \)

Extension to bimaterial beams

Material ratio
\[\eta = \frac{E_2}{E_1} \]
as well as
\[\gamma = \frac{h_2}{h_1}. \]

- Harvey and Wang\(^4\) have defined all the composite-beam-theory-based conditions. Repeat methodology.

3 components to the \(c_\theta(\gamma, \eta)\) correction factor:

- \(\eta = 1\) with variable \(\gamma\), \(c_\theta(\gamma, 1) = \tilde{c}_{\theta\gamma} \left[2 - \hat{c}_{\beta}^{1/2}(\gamma, 1) \right]\) with \(\tilde{c}_{\theta\gamma} \approx \frac{6}{5}\)

- \(\gamma = 1\) with variable \(\eta\), \(c_\theta(1, \eta) = \tilde{c}_{\theta\eta} \left[2 - \hat{c}_{\beta}^{1/2}(1, \eta) \right]\) with \(\tilde{c}_{\theta\eta} \approx \frac{2}{13}\)

- Length scale term, \(f(\gamma, \eta, L)\)

Extension to bimaterial beams

Material ratio

\[\eta = \frac{E_2}{E_1} \]
as well as
\[\gamma = \frac{h_2}{h_1}. \]

Harvey and Wang\(^4\) have defined all the composite-beam-theory-based conditions. **Repeat methodology.**

3 components to the \(c_\theta (\gamma, \eta) \) correction factor:

- \(\eta = 1 \) with variable \(\gamma \), \(c_\theta (\gamma, 1) = \bar{c}_{\theta\gamma} \left[2 - \hat{c}_{\beta}^{1/2}(\gamma, 1) \right] \) with \(\bar{c}_{\theta\gamma} \approx \frac{6}{5} \)

- \(\gamma = 1 \) with variable \(\eta \), \(c_\theta (1, \eta) = \bar{c}_{\theta\eta} \left[2 - \hat{c}_{\beta}^{1/2}(1, \eta) \right] \) with \(\bar{c}_{\theta\eta} \approx \frac{2}{13} \)

- Length scale term, \(f (\gamma, \eta, L) \)

\[c_\theta (\gamma, \eta) = c_\theta (\gamma, 1) \times c_\theta (1, \eta) \times f (\gamma, \eta, L) \]

- Very fine mesh at crack tip: $\delta a \to 0$, $r = 1.1$
- High-stiffness normal and shear interface springs
- Virtual crack closure technique (VCCT)

$$G_I = Z_d \left(w_{c1} - w_{c2} \right) / (2b \delta a) \quad G_{II} = X_d \left(u_{c1} - u_{c2} \right) / (2b \delta a)$$
Length scale dependence

Global (Euler) partition

Local partition

\(h_1 = 1 \quad \overline{E}_1 = 10^3 \)

\(h_2 = 2 \quad \overline{E}_2 = 10^3 \)

\(M_1 = 1 \quad \gamma = 2 \quad \eta = 1 \)

\(\log_{10}(\text{length scale, } L) \)

Partition \(G_I / G \)
Length scale dependence

\[h_2 = 10 \]
\[E_2 = 10^4 \]

\[h_1 = 1 \]
\[E_1 = 10^3 \]

\[M_1 = 1 \]
\[\gamma = 10 \]
\[\eta = 10 \]

\[\log_{10}(\delta a) \]

Global (Euler) partition

\[\frac{G_I}{G} \]
Pure mode convergence

Equations:

- \(h_2 = 10 \)
- \(E_2 = 10^4 \)
- \(M_2 = \text{variable} \)
- \(M_1 = 1 \)
- \(
\gamma = 10 \\
\eta = 10
\)

Graph:

- First pure mode, \(G_I/G = 1 \)
- Second pure mode, \(G_I/G = 1 \)

Legend:

- Green line: First pure mode, \(G_I/G = 1 \)
- Red line: Second pure mode, \(G_I/G = 1 \)

Axes:

- Y-axis: Bending moment ratio \(M_{2B}/M_{1B} \)
- X-axis: \(\log_{10}(\delta a) \)

Graph Annotation:

- Pure modes coincide here.
Conclusions

- Methodology developed for partition of mixed-mode rigid interface fractures in laminated UD DCBs
 - Takes 2D elasticity into consideration in a novel way
 - Agrees very well with Suo and Hutchinson’s partition theory\(^1\)
 - More easily extendable to more complex problems

- Extension to fractures on bimaterial interfaces is in progress
 - Local partitions of ERR do not exist
 - ERR partitions are length-scale dependent
 - Euler theory gives correct ERR partition for large damage region
 - Analytical method for interfacial fracture in bimaterials is expected to work well
