Loughborough University
Browse
Thesis-2017-Yousaf.pdf (12.1 MB)

Modelling heat transfer and respiration of occupants in indoor climate

Download (12.1 MB)
thesis
posted on 2017-06-20, 11:45 authored by Rehan Yousaf
Although the terms "Human Thermal Comfort" and "Indoor Air Quality (IAQ)" can be highly subjective, they still dictate the indoor climate design (HVAC design) of a building. In order to evaluate human thermal comfort and IAQ, one of three main tools are used, a) direct questioning the subjects about their thermal and air quality sensation (voting, sampling etc.), b) measuring the human thermal comfort by recording the physical parameters such as relative humidity, air and radiation temperature, air velocities and concentration gradients of pollutants or c) by using numerical simulations either including or excluding detailed thermo-physiological models. The application of the first two approaches can only take place in post commissioning and/or testing phases of the building. Use of numerical techniques can however be employed at any stage of the building design. With the rapid development in computational hard- and software technology, the costs involved in numerical studies has reduced compared to detailed tests. Employing numerical modelling to investigate human thermal comfort and IAQ however demand thorough verification and validation studies. Such studies are used to understand the limitations and application of numerical modelling of human thermal comfort and IAQ in indoor climates. This PhD research is an endeavour to verify, validate and apply, numerical simulation for modelling heat transfer and respiration of occupants in indoor climates. Along with the investigations concerning convective and radiation heat transfer between the occupants and their surroundings, the work focuses on detailed respiration modelling of sedentary human occupants. The objectives of the work have been to: verify the convective and radiation numerical models; validate them for buoyancy-driven flows due to human occupants in indoor climates; and apply these validated models for investigating human thermal comfort and IAQ in a real classroom for which field study data was available. On the basis of the detailed verification, validation and application studies, the findings are summarized as a set of guidelines for simulating human thermal comfort and IAQ in indoor climates. This PhD research involves the use of detailed human body geometries and postures. Modelling radiation and investigating the effect of geometrical posture has shown that the effective radiation area varies significantly with posture. The simulation results have shown that by using an effective radiation area factor of 0.725, estimated previously (Fanger, 1972) for a standing person, can lead to an underestimation of effective radiation area by 13% for the postures considered. Numerical modelling of convective heat transfer and respiration processes for sedentary manikins have shown that the SST turbulence model (Menter, 1994) with appropriate resolution of near wall region can simulate the local air velocity, temperature and heat transfer coefficients to a level of detail required for prediction of thermal comfort and IAQ. The present PhD work has shown that in a convection dominated environment, the detailed seated manikins give rise to an asymmetrical thermal plume as compared to the thermal plumes generated by simplified manikins or point sources. Validated simulation results obtained during the present PhD work have shown that simplified manikins can be used without significant limitations while investigating IAQ of complete indoor spaces. The use of simplified manikins however does not seem appropriate when simulating detailed respiration effects in the immediate vicinity of seated humans because of the underestimation in the amount of re-inhaled CO2 and pollutants from the surroundings. Furthermore, the results have shown that due to the simplification in geometrical form of the nostrils, the CO2 concentration is much higher near the face region (direct jet along the nostrils) as compared to a detailed geometry (sideways jet). Simulating the complete respiration cycle has shown that a pause between exhalation and inhalation has a significant effect on the amount of re-inhaled CO2. Previous results have shown the amount of re-inhaled CO2 to range between 10 - 19%. The present study has shown that by considering the pause, this amount of re-inhaled CO2 falls down to values lower than 1%. A comparison between the simplified and detailed geometry has shown that a simplified geometry can cause an underestimation in the amount of re-inhaled CO2 by more than 37% as compared to a detailed geometry. The major contribution to knowledge delivered by this PhD work is the provision of a validated seated computational thermal manikin. This PhD work follows a structured verification and validation approach for conducting CFD simulations to predict human thermal comfort and indoor air quality. The work demonstrates the application of the validated model to a classroom case with multiple occupancy and compares the measured results with the simulation results. The comparison of CFD results with measured data advocates the use of CFD and visualizes the importance of modelling thermal manikins in indoor HVAC design rather than designing the HVAC by considering empty spaces as the occupancy has a strong influence on the indoor air flow. This PhD work enables the indoor climate researchers and building designers to employ simplified thermal manikin to correctly predict the mean flow characteristics in indoor surroundings. The present work clearly demonstrates the limitation of the PIV measurement technique, the importance of using detailed CFD manikin geometry when investigating the phenomena of respiration in detail and the effect of thermal plume around the seated manikin. This computational thermal manikin used in this work is valid for a seated adult female geometry.

History

School

  • Architecture, Building and Civil Engineering

Publisher

© Rehan Yousaf

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2017

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Language

  • en

Usage metrics

    Architecture, Building and Civil Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC