The pseudocapacitive nature of CoFe2O4 thin films

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is an open access article published by Elsevier and made available under the terms of the Creative Commons Attribution Licence (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/. Supplementary data for this article is available in the Loughborough Data Repository at doi: 10.17028/rd.lboro.5568028

Metadata Record: https://dspace.lboro.ac.uk/2134/25575

Version: Published

Publisher: Elsevier © The authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Please cite the published version.
The Pseudocapacitive Nature of CoFe$_2$O$_4$ Thin Films

Jagdeep S. Sagua, K.G.U. Wijayanthaa,*, Asif A. Tahirb

a Energy Research Laboratory (ERL), Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
b Environment and Sustainability Institute (ESI), University of Exeter Penryn, Cornwall TR10 9FE, UK

ARTICLE INFO

* Article history:
 - Received 19 April 2017
 - Received in revised form 19 June 2017
 - Accepted 19 June 2017
 - Available online 20 June 2017

ABSTRACT

Nanostructured Cobalt ferrite (CoFe$_2$O$_4$) thin films are fabricated by aerosol-assisted chemical vapour deposition (AACVD) and studied for application in supercapacitors. XRD and Raman spectroscopic analysis confirms the formation of single phase CoFe$_2$O$_4$. SEM analysis shows that the thin film morphology consists of nanoparticles less than 100 nm in size that are sintered together to form larger dendrites raised from the substrate. The larger dendrites range from 0.5–1 μm in diameter and are uniformly distributed over the FTO substrate, providing a highly porous structure which is desired for supercapacitor electrodes. Three-electrode electrochemical measurements reveal that CoFe$_2$O$_4$ is pseudocapacitive and is highly conducting. Studies of CoFe$_2$O$_4$ thin films in two-electrode symmetric supercapacitor configuration show a capacitance of 540 mFcm$^{-2}$ and a relaxation time constant of 174 ms. Around 80% of the capacitance is retained after 7000 charge-discharge cycles when a maximum charging voltage of 1 V was used, indicating that the pseudocapacitive processes in CoFe$_2$O$_4$ are highly reversible and that it exhibits excellent chemical stability in 1 M NaOH alkaline electrolyte solution. The results show that CoFe$_2$O$_4$ is a cheap and promising alternative pseudocapacitive material to replace the expensive pseudocapacitive materials.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Supercapacitors are energy storage devices which offer high power densities, excellent cycling stabilities (>10000 cycles) and fast charging rates. In certain applications in which the energy demand is sufficiently low and power demand is high, supercapacitors have already started to replace batteries, for example, they have been used in electric power tools, phone chargers and portable vacuum cleaners. Their main advantages are that they can be fully charged in minutes rather than hours, as with batteries, and they have high power density. Unfortunately, the major limiting factor for the application of supercapacitors in place of batteries is their lower energy densities by comparison. As the energy stored in a supercapacitor is proportional to the square of the operating voltage, a significant effort has gone into designing new electrolytes with large electrochemical stability windows, e.g. ionic liquids. Another strategy has been to try and increase the overall capacitance of the electrode material.

Generally, there are two mechanisms of energy storage in a supercapacitor: through the electrochemical double-layer or by faradaic charge transfer across the electrode-electrolyte interface, termed pseudocapacitance. The majority of commercially available supercapacitors use carbon-based high surface area electrodes, where 95–99% of the overall charge storage stems from the double layer. By contrast, pseudocapacitors can store up to hundred times more charge per unit surface area than that of double layer capacitance, due to the nature of charge storage mechanism [1]. However, generally, pseudocapacitor materials tend to have shorter cycling lifetimes due to the redox reactions not being completely reversible or disintegration of the crystal structure due to repeated igration/egression of counter ions, causing loss of electrical contact and therefore reduced charge storage; although this can be reduced by combining the pseudocapactive material with a conductive support [2]. Thus, pseudocapactive electrode materials that also possess good chemical stability have currently received significant attention. Metal oxides, such as MnO$_2$ [3], IrO$_2$ [4], V$_2$O$_5$ [5] and RuO$_2$ [6] have previously been studied for use in pseudocapacitors as they all have multiple oxidation states to facilitate faradaic charge transfer. Among them, only oxides of precious metals such as IrO$_2$ and RuO$_2$ have shown good chemical stability, but they are...
very expensive. MnO₂ is an alternative to IrO₂ and RuO₂ because it is much lower in cost, less toxic and has high theoretical capacitances ranging from 1100 to 1300 F/g [7–11]. The main limiting factor for the use of MnO₂ as a pseudocapacitor material is its poor cycling stability [8]. Other materials have not yet shown the potential to withstand the sufficient stability challenge in order to use them in commercially viable devices. Hence, the search for alternative low-cost materials with promising pseudocapacitive properties is a hot topic in the area of supercapacitor development today.

Spinel ferrites can be potential candidate materials as they are stable, abundant, inexpensive and are environmentally friendly. Spinel ferrite thin films, with the general structure MFe₂O₄ (where M = Ni²⁺, Co²⁺, Zn²⁺ and Cu²⁺ etc.) have been attracting great interest for wide range of electronic applications such as magnetic tunnel junctions (MTJs), magnetic random access memories (MRAMs), spin valves, resistive random access memories (RRAMs), microwave devices and sensors [12–18], as well as catalysts [19]. This is due to their unique properties such as high coercivity, moderate saturation magnetization, high magnetocrystalline anisotropy, mechanical and excellent chemical stability [20]. For these reasons, there have been more studies on the use of spinel ferrite materials for applications in supercapacitors recently. MnFe₂O₄ [21–25], NiFe₂O₄ [24], ZnFe₂O₄ [25,26], CuFe₂O₄ [27] and CoFe₂O₄ [28–31] are amongst the materials already investigated. CoFe₂O₄ has demonstrated gravimetric capacitances ranging from 142 Fg⁻¹ to 768 Fg⁻¹ and has shown capacitance retention of 79.2% after 5000 charge-discharge cycles [28,29,31]. Also, cobalt ferrite (CoFe₂O₄) has been recently studied as an oxygen evolution reaction (OER) catalyst and it was found to be very stable in alkaline solutions [32]. Due to the excellent electrochemical stability demonstrated by CoFe₂O₄, it warrants further research to determine its potential as a supercapacitor electrode material if highly porous electrodes can be prepared by a suitable low-cost route (to increase the double layer capacitance) and stable surface redox groups are present (to incorporate pseudocapacitance properties).

New materials which possess true pseudocapacitance (i.e. exhibit pseudo-rectangular cyclic voltammograms) are rare. There has been some controversy in the literature regarding the use of the term ‘pseudocapacitance’ for many transition metal oxides and hydroxides such as NiO or Ni(OH)₂ and CoO₄ or Co(OH)₂ as well as the calculations used to determine their capacitance. Nickel and cobalt oxides/hydroxides have been reported to have very high specific capacitances of over 1000 Fg⁻¹. However, these materials exhibit peak shaped cyclic voltammograms, which have led to over estimations of their capacitances as well as confusion between capacitive and non-capacitive processes [33]. Herein, we report the pseudocapacitive nature of CoFe₂O₄ thin films and present an in-depth study of the electrochemical characteristics of the thin film electrodes in order to demonstrate the suitability of CoFe₂O₄ as an active electrode material in supercapacitors. Three-electrode electrochemical measurements revealed that CoFe₂O₄ is truly pseudocapacitive, exhibiting pseudo-rectangular cyclic voltammograms. CoFe₂O₄ tested in a two-electrode symmetric supercapacitor configuration showed a capacitance of 540 μFcm⁻² and a relaxation time constant of 174 ms. The supercapacitor showed remarkable stability with only 20% loss in capacitance after 7000 cycles indicating that the pseudocapacitive processes in CoFe₂O₄ are highly reversible and exhibit excellent electrochemical stability in alkaline electrolyte (1 M NaOH). We attribute the origin of pseudocapacitance to both FeOOH and CoOOH surface groups which are known to be redox active.

2. Experimental

2.1. Preparation of AACVD precursor solution and deposition of CoFe₂O₄ thin film electrodes by AACVD

A precursor solution containing iron (III) acetylacetone (0.1 M) and cobalt (II) acetate (0.05 M) was made up in methanol and stirred for 30 min. Thin film electrodes of CoFe₂O₄ were deposited by AACVD onto fluorine-doped SnO₂ (FTO) conducting glass substrates (TEC 8 NSG, 8Ω/□). Prior to the deposition, the FTO glass substrates were cut to a 1 cm x 2 cm size and were ultrasonically cleaned with distilled water, acetone, isopropanol and then were stored in ethanol. The substrates were dried in air prior to the deposition and placed on a hot plate. The glass substrates were heated for at least 10 min to allow the substrate temperature to be equilibrated with that of the surface of the hotplate. A flask containing the precursor solution was placed above the piezoelectric modulator of an ultrasonic humidifier to generate aerosol droplets of precursor. Air at the rate of 175 ml min⁻¹ was used as the carrier gas to transfer the aerosol to the deposition chamber through a second flask, where the large droplets were filtered from the aerosol stream at a flow rate of 2340 ml min⁻¹, allowing only the fine aerosol droplets to be transferred to the deposition chamber. In order to study the effect of deposition temperature on electrode performance, the deposits were carried out at temperatures of 450, 500 and 550 °C for 20 mins and prepared series of electrodes. After each deposition was completed, the coated FTO substrates were removed from the deposition chamber and allowed to cool to room temperature. The background theory, deposition mechanism and extensive experimental details of the AACVD process for the fabrication of thin films are described in more detail elsewhere [34,35].

2.2. Material Characterization

The phase and crystallinity of the films were characterized using a Bruker AXS Advance X-ray diffractometer with primary monochromatic high intensity Cu Kα (λ = 1.541 Å) radiation. Raman spectra were recorded using a HORIBA Jobin Yvon LabRAMHR Raman spectrophotometer (with 632.8 nm He–Ne laser). The surface morphology of the thin films were investigated using a field emission gun scanning electron microscopy (FEG-SEM, Leo 1530 VP) at an accelerating voltage of 5 kV and working distance of 5 cm. XPS measurements were conducted using a Thermo Scientific (model K-Alpha) spectrometer.

2.3. Electrochemical Characterization

All electrochemical measurements were carried out using an Autolab PGSTAT12 potentiostat. Three-electrode measurements were conducted in 1 M NaOH using a Pt gauze counter electrode and Ag/AgCl reference electrode in a sealed vessel after purging the electrolyte solution with argon for 20 min prior to any electrochemical measurement. The reference potential of the Ag/AgCl electrode was checked before and after electrochemical measurements to ensure a stable reference potential. The potential of the Ag/AgCl reference electrode was indeed stable over the course of the measurements. Prior to construction of two-electrode supercapacitors, two CoFe₂O₄ electrodes and a filter paper (which was used as the separator) were soaked in 1 M aqueous NaOH electrolyte in order to wet them completely. The separator was sandwiched between the two CoFe₂O₄ electrodes and was clamped together with clips. For all cyclic voltammetry experiments, three scans were obtained, only the third scan is presented in the data. For stability measurements, the cell was sealed using PTFE tape to prevent evaporation of the solvent. Cyclic voltammetry
measurements were carried out at various scan rates between the voltage window of 0 and 1 V. Scan rates were maintained between 0.1 and 15 V/s. Galvanostatic charge-discharge measurements were carried out at various charging currents (40–120 μA) between 0 and 1 V. The capacitance was determined from the slope of the discharge curve, after the initial potential drop due to internal resistance [36]. The maximum energy stored, \(E \), and power delivered, \(P \), was determined from Eqs. (1) and (2):

\[
E = \frac{1}{2}CV^2
\]

\[
P = \frac{V^2}{4R}\]

where \(V \) is the maximum cell voltage (taken to be 1 V), \(C \) is the capacitance and \(R \) is the equivalent series resistance (ESR). Stability – lifetime measurements were carried out for 7000 charge-discharge at a maximum charging voltage of 0.8 V and 1 V.

Electrochemical impedance spectroscopy (EIS) of the supercapacitor was carried out at 0 V in the frequency range 0.01 Hz to 10 kHz with 10 mV amplitude. Three-electrode mode EIS measurements were conducted at open-circuit potential.

3. Results and Discussion

AACVD of a methanolic precursor solution containing iron (III) acetylacetonate and cobalt (II) acetate resulted in brown/black colored films when depositions were conducted at 450, 500 and 550 °C (see the inset of Fig. 3a to c). The phase and crystallinity of the deposited films were characterized by XRD, as shown in Fig. 1a. The color of all three CoFe2O4 films was visually similar, and the film prepared at 450 °C only showed reflections which corresponded to the F:SnO2 substrate. The peaks at 26.8°, 34.0°, 38.0°, 51.7°, 54.7°, 61.7° and 65.7° correspond to the (110), (101), (111), (211), (220), (310) and (301) reflections of SnO2, respectively (ICDD 00-041-1445). This indicates that the film prepared at 450 °C was amorphous. When AACVD was carried out at higher temperatures (500 and 550 °C), the film XRD patterns showed the presence of a CoFe2O4 phase with a cubic crystal structure (ICDD 00-022-1086). The peaks at 18.3°, 30.2°, 35.5°, 43.2°, 57.1°, and 62.7° correspond to the (111), (220), (311), (400), (511), and (440) reflections of CoFe2O4. The films generally showed a preferred orientation in the (311) direction, as is the case for many other reports of thin film CoFe2O4 [37–39]. The XRD reflections match very well with literature reported values for CoFe2O4 [40,41]. The Raman spectra of all three films are shown in Fig. 1b. Raman peaks are seen at 296, 465, 600 and 660 cm⁻¹, which are all characteristic of CoFe2O4 [42]. No XRD or Raman evidence was observed for common impurity phases such as Co3O4 and α-Fe2O3, which indicated that a phase pure material had been fabricated in the bulk.

In order to gain an insight of the surface composition of CoFe2O4 thin films, they were subjected to EDX analysis; the EDX spectra are shown in Fig. S1 of the supporting information. The expected stoichiometric ratio of Co:Fe on the surface of CoFe2O4 is 0.5, however the observed Co:Fe ratio on the film surface varied with the deposition temperature. The observed ratio for the 450 °C deposited film was 0.46 which was closest to the expected stoichiometric ratio of 0.5. This increased to 0.62 and then to 0.85 at 500 and 550 °C, respectively, indicating that higher deposition temperatures resulted in a Co rich surface. An XPS spectrum (Fig. 1c) of the CoFe2O4 thin film prepared at 550 °C was measured to determine the oxidation state of the Co species on the Co rich surface. The Co2p spectrum showed two peaks at 780.08 and 795.88 eV, with two satellite peaks at 786.38 and 802.78 eV. Pure Co2+ can be distinguished from a mixed Co2+/Co3+ or pure Co3+ oxidation state by the binding energy and intensity of the satellite peaks. The binding energy and intensity of the satellite peaks in this sample are characteristic of pure Co2+, which has distinct satellite peaks at 786.38 and 802.78 eV [43,44]. Pure Co3+ usually only shows a weak satellite peak at around 791 eV, whereas a plateau is observed in the region between 791 and 785 eV if both oxidation states are present [43,44]. Therefore, the XPS spectrum

![Fig. 1](image-url)

Fig. 1. XRD patterns (a) and Raman spectra (b) of CoFe2O4 thin films deposited on FTO glass substrates at 450, 500 and 550 °C by AACVD. (c) XPS spectrum of a CoFe2O4 prepared at 550 °C (Co rich surface).
confirms the presence of Co$^{2+}$ on the surface which suggests that the excess Co on the surface could be in the form of CoIII/FeIII/O$_4$ (as expected) or CoO.

The surface topographical SEM images for the CoFe$_2$O$_4$ thin films fabricated at 450, 500 and 550 °C are shown in Fig. 2 for a deposition time of 20 min. Generally, the thin film morphology consisted of nanoparticles less than 100 nm in size that are sintered together to form larger dendrites raised from the FTO substrate. The larger dendrites ranged from 0.5–1 μm in diameter and are uniformly distributed over the substrate, providing a highly porous structure which is desirable for supercapacitor electrodes. Electrodes with such a highly porous dendrite structure have been already reported for other materials such as α-Fe$_2$O$_3$ and ZnFe$_2$O$_4$ by the AACVD technique [45,46]. Cross-sectional SEM images can be seen in Fig. S3 in the supporting information.

The electrochemical response of the CoFe$_2$O$_4$ electrodes prepared at all three different temperatures (450, 500 and 550 °C) are shown in Fig. 3a, b and c, respectively. A photograph of the corresponding film is included in the inset of each figure.
showing the color appearance of each film. The CoFe$_2$O$_4$ thin films prepared at 450°C contained cracks, as shown in the inset of Fig. 3a, indicating weak adherence of the CoFe$_2$O$_4$ layer onto the FTO substrate. This film was not only loosely adhered to the substrate but was also mechanically very weak. This could be due to the differences in the AACVD growth mechanism at lower temperatures i.e. the homogeneous or heterogeneous reaction pathway [47,48]. The films deposited at temperatures of 500 and 550°C have shown excellent adherence by withstanding the ‘scotch tape test’ indicating a very strong bond between the CoFe$_2$O$_4$ layer and the substrate. The anodic tail seen at the highest positive potential for each CV (at 0.6 V vs Ag/AgCl) is due to the oxygen evolution reaction [32]. The CVs of all three electrodes contain redox features demonstrating the pseudocapacitive nature of the CoFe$_2$O$_4$. The EDX spectra of the CoFe$_2$O$_4$ thin films confirmed the presence of Fe and Co on the surface for films prepared at all three temperatures (450, 500 and 550°C). The anodic peak observed at ~0.02 V for all three CoFe$_2$O$_4$ electrodes could be due to the oxidation of Fe(II) in the spinel structure to Fe (III), most likely in the form of FeOOH surface species as described by others [31,49,50]. The corresponding cathodic peak for this process is not clearly distinguishable, but appears to exist around ~0.3 V (this cathodic peak can be easily identifiable by plotting the first derivative of current versus voltage, which was not shown). The electrodes deposited at 450°C and 500°C do not show any other redox features. However, the CV of the CoFe$_2$O$_4$ thin film prepared at 550°C shows another clear anodic peak at 0.5 V (Fig. 3c), with a corresponding reduction peak distinguishable at 0.45 V on the reverse scan. From the EDX data (Fig. S1), it was observed that the films prepared at 550°C had an excess of Co on the surface (~Co:Fe ratio of 0.85), which is most likely due to the presence of Co$_2$O$_3$ species on the surface. Therefore, the anodic peak at 0.5 V could be attributed to the oxidation of Co$_2$O$_3$ to CoOOH with the corresponding cathodic peak at 0.45 V presumably due to the reduction of CoOOH back to Co$_2$O$_3$ [31,51]. The observed Co (II)/(III) redox peaks occur at more positive potentials to those reported in the literature for Co$_2$O$_3$—this positive shift can be caused by the influence of Fe in the structure [52]. The redox peaks for the Co$_2$O$_3$ surface species were only observed for the film prepared at 550°C. As discussed earlier, the CoFe$_2$O$_4$ film prepared at 450°C showed a Co:Fe ratio of 0.46, which was the closest to the ideal Co:Fe ratio of 0.5 on the surface in our study. Unfortunately, due to poor film adherence and cracks, this electrode could not be used for further electrochemical analysis. The electrochemical response of the film prepared at 500°C was similar to that of the film prepared at 450°C. It did not show any electrochemical evidence for the presence of surface Co$_2$O$_3$ species although excessive Co was determined on the surface from the EDX measurements (Co:Fe ratio was estimated to be 0.62). For this reason, the CoFe$_3$O$_4$ thin films prepared at 500°C were used for further electrochemical analysis in a two-electrode configuration. The CVs of the CoFe$_2$O$_4$ thin films prepared at 450°C and 500°C were pseudo-rectangular within a potential window of 1 V (~0.5 V to +0.5 V vs. Ag/AgCl), therefore, the CoFe$_2$O$_4$ thin films can be considered pseudocapacitive.

As the XRD patterns of CoFe$_2$O$_4$ thin films prepared at all three temperatures showed reflections from the substrate (FTO), the electrochemical response of the bare substrate was compared with a typical CoFe$_2$O$_4$ thin film to ensure the electrochemical responses observed in Fig. 3 were purely from the CoFe$_2$O$_4$ thin film and not from the substrate. Fig. 3E shows that the electrochemical response of the FTO substrate is negligible compared to the typical CoFe$_2$O$_4$ film; therefore, it can be assumed that the electrochemical responses of electrodes in Fig. 3 are purely from CoFe$_2$O$_4$.

In order to gain further insight into the CoFe$_2$O$_4$ film porosity and conductivity, Nyquist plots were recorded in 3-electrode mode showing the color appearance of each film. The CoFe$_2$O$_4$ thin films prepared at 450°C contained cracks, as shown in the inset of Fig. 3a, indicating weak adherence of the CoFe$_2$O$_4$ layer onto the FTO substrate. This film was not only loosely adhered to the substrate but was also mechanically very weak. This could be due to the differences in the AACVD growth mechanism at lower temperatures i.e. the homogeneous or heterogeneous reaction pathway [47,48]. The films deposited at temperatures of 500 and 550°C have shown excellent adherence by withstanding the ‘scotch tape test’ indicating a very strong bond between the CoFe$_2$O$_4$ layer and the substrate. The anodic tail seen at the highest positive potential for each CV (at 0.6 V vs Ag/AgCl) is due to the oxygen evolution reaction [32]. The CVs of all three electrodes contain redox features demonstrating the pseudocapacitive nature of the CoFe$_2$O$_4$. The EDX spectra of the CoFe$_2$O$_4$ thin films confirmed the presence of Fe and Co on the surface for films prepared at all three temperatures (450, 500 and 550°C). The anodic peak observed at ~0.02 V for all three CoFe$_2$O$_4$ electrodes could be due to the oxidation of Fe(II) in the spinel structure to Fe (III), most likely in the form of FeOOH surface species as described by others [31,49,50]. The corresponding cathodic peak for this process is not clearly distinguishable, but appears to exist around ~0.3 V (this cathodic peak can be easily identifiable by plotting the first derivative of current versus voltage, which was not shown). The electrodes deposited at 450°C and 500°C do not show any other redox features. However, the CV of the CoFe$_2$O$_4$ thin film prepared at 550°C shows another clear anodic peak at 0.5 V (Fig. 3c), with a corresponding reduction peak distinguishable at 0.45 V on the reverse scan. From the EDX data (Fig. S1), it was observed that the films prepared at 550°C had an excess of Co on the surface (~Co:Fe ratio of 0.85), which is most likely due to the presence of Co$_2$O$_3$ species on the surface. Therefore, the anodic peak at 0.5 V could be attributed to the oxidation of Co$_2$O$_3$ to CoOOH with the corresponding cathodic peak at 0.45 V presumably due to the reduction of CoOOH back to Co$_2$O$_3$ [31,51]. The observed Co (II)/(III) redox peaks occur at more positive potentials to those reported in the literature for Co$_2$O$_3$—this positive shift can be caused by the influence of Fe in the structure [52]. The redox peaks for the Co$_2$O$_3$ surface species were only observed for the film prepared at 550°C. As discussed earlier, the CoFe$_2$O$_4$ film prepared at 450°C showed a Co:Fe ratio of 0.46, which was the closest to the ideal Co:Fe ratio of 0.5 on the surface in our study. Unfortunately, due to poor film adherence and cracks, this electrode could not be used for further electrochemical analysis. The electrochemical response of the film prepared at 500°C was similar to that of the film prepared at 450°C. It did not show any electrochemical evidence for the presence of surface Co$_2$O$_3$ species although excessive Co was determined on the surface from the EDX measurements (Co:Fe ratio was estimated to be 0.62). For this reason, the CoFe$_3$O$_4$ thin films prepared at 500°C were used for further electrochemical analysis in a two-electrode configuration. The CVs of the CoFe$_2$O$_4$ thin films prepared at 450°C and 500°C were pseudo-rectangular within a potential window of 1 V (~0.5 V to +0.5 V vs. Ag/AgCl), therefore, the CoFe$_2$O$_4$ thin films can be considered pseudocapacitive.

As the XRD patterns of CoFe$_2$O$_4$ thin films prepared at all three temperatures showed reflections from the substrate (FTO), the electrochemical response of the bare substrate was compared with a typical CoFe$_2$O$_4$ thin film to ensure the electrochemical responses observed in Fig. 3 were purely from the CoFe$_2$O$_4$ thin film and not from the substrate. Fig. 3E shows that the electrochemical response of the FTO substrate is negligible compared to the typical CoFe$_2$O$_4$ film; therefore, it can be assumed that the electrochemical responses of electrodes in Fig. 3 are purely from CoFe$_2$O$_4$.

In order to gain further insight into the CoFe$_2$O$_4$ film porosity and conductivity, Nyquist plots were recorded in 3-electrode mode
for a bare FTO substrate and a CoFe₂O₄ film deposited at 500 °C on an identical FTO substrate (Fig. 4). The real axis intercept at high frequency is termed the solution resistance (resistance between the electrode-electrolyte interface), Rₛ. The value of Rₛ depends on the conductivity of the electrolyte as well as the electrode material. The Rₛ was estimated to be about 15.0 Ω for the CoFe₂O₄ film deposited on FTO substrate. Given that the estimated Rₛ of a bare FTO substrate was 11.8 Ω, the contribution of the CoFe₂O₄ film to the overall Rₛ was estimated to be about 3.2 Ω. The CoFe₂O₄ thin film exhibited Warburg behavior at high frequency, indicating diffusion resistance through the porous nanostructure within these timescales.

To assess the supercapacitor properties of the CoFe₂O₄ films, symmetrical cells with a two-electrode configuration were constructed as described in the experimental section to simulate supercapacitor device behaviour, using an aqueous 1 M NaOH electrolyte. The performance of the device was analysed by cyclic voltammetry up to a maximum voltage window of 1 V, between scan rates of 0.1 and 15 V/s; the CVs are shown in Fig. 5. The CVs showed quasi-rectangular behaviour up to 5 V/s, which demonstrated the high rate capability of the CoFe₂O₄ electrodes. At scan rates above the 5 V/s, the plot of discharge current density vs. scan rate starts to show deviation from linearity indicating inefficient charging of the electrodes beyond that scan rate. This is a direct consequence of the porous nature of the CoFe₂O₄ electrode. If the films were thicker and more porous, the deviation from linearity would occur at slower scan rates, indicating a slower rate capability. The CVs at faster scan rates of 5, 10 and 15 V/s can be seen in Fig. S5 in the supporting information.

As shown in Fig. 6a, the galvanostatic charge-discharge measurements show linear behavior up to a maximum voltage of 1 V, which demonstrates the characteristic behavior of an ideal capacitor. Galvanostatic charge-discharge measurements were also carried out at different charging currents ranging from 40–120 μA cm⁻², they are shown in Fig. 6b. The areal capacitance, determined from the slope of the discharge curve after the initial potential drop due to resistance, is shown in Fig. 6c for the same range of charging currents. An areal capacitance of 540 μF cm⁻² is observed at a charging current of 40 μA cm⁻², but this slightly decreases to 500 μF cm⁻² when 120 μA cm⁻² is used. The fact that the capacitance drops only by 7.5% when the charging current density is increased from 40 to 120 μA cm⁻² indicates that the supercapacitor has a good rate capability. The capacitance could not be expressed gravimetrically as the mass loading of the thin films could not be measured on a 4 decimal place balance. The coulombic efficiency (η) of the supercapacitor can be determined from the galvanostatic charge-discharge measurements using the
equation $\eta = \Delta t_d/\Delta t_c$, where t_d and t_c is the time taken to fully discharge and charge the capacitor, respectively. Fig. 6d shows the coulombic efficiency of the CoFe$_2$O$_4$ based supercapacitor at different charging currents. When the supercapacitor is charged to 1 V, the coulombic efficiency was 69% at a charging current of 40 μA cm$^{-2}$; however, the coulombic efficiency is increased to 79% as the charging current was increased to 120 μA cm$^{-2}$. CoFe$_2$O$_4$ is also an efficient OER catalyst [32], and the fairly low coulombic efficiency of CoFe$_2$O$_4$ stems from the fact that whilst it is working as a supercapacitor electrode, it also catalyzes the OER reaction in the 1 M NaOH electrolyte used in this work. Hence, a proportion of the charging current is going towards the OER reaction. The increase in the coulombic efficiency when the supercapacitor was charged at higher current densities could be due to the sluggish kinetics of OER [53]. Therefore, it is beneficial that the supercapacitor has a high rate capability as faster charging using higher current densities will reduce the OER side reaction. It was initially thought that the poor coulombic efficiencies of CoFe$_2$O$_4$ when charged to 1 V may limit its application in real devices, therefore charge-discharge measurements were also conducted at a lower voltage window of 0.8 V to see the difference in coulombic efficiency. When charged to 0.8 V, a higher coulombic efficiency of 83% was observed at a charging current of 40 μA cm$^{-2}$; this was further increased to 88% as the charging current was increased to 120 μA cm$^{-2}$.

The stability data of the 2-electrode cell at maximum charging voltages of 0.8 V and 1 V are shown in Fig. 7 at a charging current of 120 μA cm$^{-2}$. From this it can be seen that the capacitance drops by around 20% after 7000 cycles for both maximum charging potentials (0.8 V and 1 V). As this supercapacitor was completely sealed to prevent evaporation of the solvent, the decrease in capacitance is most likely to be due to the electrolyte decomposition by the OER. As the capacitance loss for the 0.8 V and 1 V supercapacitors was very similar (20% over 7000 cycles), this shows that a maximum charging voltage of 1 V is suitable for a symmetric CoFe$_2$O$_4$ supercapacitor. Also, the remarkable stability of CoFe$_2$O$_4$ over 7000 cycles demonstrates the good reversibility of the redox processes in CoFe$_2$O$_4$. This cycling stability is similar to other materials in the ferrite class of materials, for example CuFe$_2$O$_4$ and ZnFe$_2$O$_4$ [25,54].

The CoFe$_2$O$_4$ based supercapacitor was evaluated by EIS, and the Nyquist plot is shown in Fig. 8a. The Nyquist plot shows a near vertical linear line with a 45° line which intersects the real axis (Warburg element) which is typically observed for porous electrodes. The equivalent series resistance (ESR), determined from the high frequency real axis intercept, was 35 Ω. The ESR of 35 Ω agrees well with the three-electrode EIS measurements which showed that the R_s for a single CoFe$_2$O$_4$ electrode was 15.0 Ω. This indicates that approximately 30 Ω stems from the resistances of the two electrodes, and the remaining 5 Ω could stem from the separator. A plot of phase angle as a function of the frequency is shown in Fig. 8b. The closer the phase angle approaches to 90°, the more the device behaves like an ideal capacitor. In this case, a phase angle of 80° at 0.1 Hz was observed, which is very close to the ideal behaviour.
As the Nyquist plot showed vertical line capacitive behaviour, a series–RC circuit model was used to simulate the capacitive and resistive elements of the supercapacitor. In this model, the resistance is the real part of the impedance spectrum, and the capacitance is determined using the equation \(C = \frac{1}{\omega R F} \), where \(\omega \) is the frequency in Hz, and \(R F \) is the imaginary part of the impedance spectrum [55]. A plot of the areal capacitance as a function of the frequency is shown in Fig. 8c, in which the capacitance increases from 10 \(\mu \)F cm\(^{-2}\) at 10 kHz to 415 \(\mu \)F cm\(^{-2}\) at 0.01 Hz. The imaginary component of the capacitance was separated from the real component and both were plotted as a function of frequency, as shown in Fig. 8d. The maximum of the imaginary component of the capacitance can be used to determine the relaxation time constant, \(\tau _0 \), which is the minimum time required to discharge all the energy from the device with an efficiency of greater than 50% of its maximum value: \(\tau _0 \approx \frac{1}{3} R F \). The \(\tau _0 \) of the CoFe\(_2\)O\(_4\) based supercapacitor was found to be 174 ms.

This small \(\tau _0 \) is another indication for the fast and efficient ion diffusion through the CoFe\(_2\)O\(_4\) film. The areal energy and power densities of the CoFe\(_2\)O\(_4\) supercapacitor were calculated to be 2.70 \(\times \) 10\(^{-1}\) J cm\(^{-2}\) and 7.14 \(\times \) 10\(^{-3}\) W cm\(^{-2}\), respectively.

4. Conclusions

High surface area nanostructured CoFe\(_2\)O\(_4\) thin films were prepared by AACVD and were studied for application in supercapacitors. The CoFe\(_2\)O\(_4\) was phase pure, and SEM analysis showed that the thin film morphology consisted of CoFe\(_2\)O\(_4\) nanoparticles less than 100 nm in size that were sintered together to form larger dendrites ranging from 0.5–1 \(\mu \)m in diameter. Three-electrode electrochemical measurements revealed that CoFe\(_2\)O\(_4\) is pseudo-capacitive. CoFe\(_2\)O\(_4\) electrodes were also tested in a two-electrode symmetric supercapacitor configuration and showed a capacitance of 540 \(\mu \)F cm\(^{-2}\) and a time constant as small as 174 ms. The supercapacitor showed a capacitance retention of 80% after 7000 cycles indicating that the pseudocapacitive processes in CoFe\(_2\)O\(_4\) are highly reversible and that it exhibits excellent electrochemical stability in 1 M NaOH alkaline electrolyte solution. We attribute the origin of pseudocapacitance to FeOOH and CoOOH surface groups. Our findings provide a much needed cheaper alternative pseudo-capacitive material to replace expensive materials such as IrO\(_2\) and RuO\(_2\).

Acknowledgements

All authors acknowledge the support given by the members of ERL to successfully conduct this research. JS and KGUW acknowledge the support from UK EPSRC (EP/L017709/1). AAT contributed to the initial work of this investigation in 2011 when he was a member of the ERL team and working under the project funded by EPSRC EP/F057342/1. The authors acknowledge use of facilities within the Loughborough Materials Characterisation Centre (LMCC). We would also like to thank Patricia Cropper for her assistance in obtaining XPS measurements.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.electacta.2017.06.110.

References

