Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: HUANG, L. ...et al., 2017. Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems. Chemical Engineering Journal, 327, pp. 584-596.

Additional Information:

- This paper was accepted for publication in the journal Chemical Engineering Journal and the definitive published version is available at http://dx.doi.org/10.1016/j.cej.2017.06.149

Metadata Record: https://dspace.lboro.ac.uk/2134/26137

Version: Accepted for publication

Publisher: © Elsevier

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Graphical Abstract

Resistor

Less W
Less Mo
Separation factor: 7.9

More W
More Mo
H₂ production
Separation factor: 8.1

Anode Cathode
Anode Cathode
Anode Cathode
Highlights

→ W and Mo were efficiently deposited in stacked bioelectrochemical systems (BESs);

→ W and Mo were separated from one another in the various units of the stacked BESs;

→ A single BES unit serially matched with three parallel connected units was optimum;

→ The circulation of the catholyte after acidification enhanced W and Mo deposition;

→ Complete separation of W and Mo was achieved after the 7th circulation cycle.
Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems

Liping Huang1,*, Ming Li1, Yuzhen Pan2, Yong Shi1, Xie Quan1, Gianluca Li Puma3,*

1. Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

2. College of Chemistry, Dalian University of Technology, Dalian 116024, China

3. Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

Corresponding authors:

(L. Huang) lipinghuang@dlut.edu.cn

(G. Li Puma) g.lipuma@lboro.ac.uk

The authors declare no competing financial interest.
Abstract

Efficient deposition and separation of W(VI) and Mo(VI) with simultaneous hydrogen production, without external energy input, is achieved in stacked bioelectrochemical systems (BESs) composed of microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The stacked BES-3-1 made of one MEC unit (1#) serially connected with three parallel connected MFC units (2#) outperformed other modules, achieving depositions of 27.6 ± 1.2% (W) and 75.4 ± 2.1% (Mo) with a separation factor of 8.1 ± 0.2 and hydrogen production of 0.34 ± 0.01 m³/m³ d in the 1# unit, compared to 12.3 ± 0.9% (W), 52.6 ± 2.2% (Mo) and 7.9 ± 0.5 (separation factor) in the 2# unit. The control experiments with W(VI) only deposited 6.8 ± 1.3% in 1# and 3.3 ± 0.4% in 2#, compared to 65.1 ± 3.2% in 1# and 45.2 ± 0.9% in 2# with Mo(VI) only. The control experiments with either the 1# or 2# unit and a mixture of W(VI) and Mo(VI) deposited 15.3 ± 1.7% (W) and 60.1 ± 1.6% (Mo) (1# only), and 12.9 ± 1.3% (W) and 56.1 ± 2.0% (Mo) (2# only). Reuse of the catholyte after acidification achieved complete separation of W and Mo from one another. This study demonstrates the feasibility of stacked BESs for W and Mo deposition and separation with simultaneous hydrogen production. The dual benefits of W(VI) and Mo(VI) species, and the favorable impact of the 2# unit on the 1# unit in the stacked BES module were critical to achieve efficient performance.

Keywords: bioelectrochemical system; stackable reactor; tungsten and molybdenum deposition; separation factor; hydrogen production
1 Introduction

Tungsten (W) and molybdenum (Mo) are rare transition metals, which impart high-strength, high hardness, good electrical and thermal conductivity, and good corrosion resistance to strong acids to manufactured materials [1]. These metals are extensively used in the manufacturing of advanced materials in key industries, such as the automotive industry. The 2011-12 annual global production was 73000 t for W and 264000 t for Mo, with over 80% of W and nearly 40% of Mo being produced in China [2-3]. The extraction of W and Mo from natural ores involves a significant consumption of energy (11580 kWh/ton) which greatly impacts the environment in terms of air, water and soil pollution [1-4]. Ore dressing wastewater used during the extraction processes contains a significant amount of W and Mo ranging from 10 mg/L to 1000 mg/L [2]. The recovery and separation of these rare metals is therefore desirable from both an environmental and an economical point of view.

Chemical or electrochemical processes conventionally used for the recovery and separation of W(VI) and Mo(VI) involve the use of reducing agents or external electrical energy, which favors the deposition of Mo(VI) while reduced the extraction of W(VI), thus improving the phase separation [1-2,4-8]. However, more efficient and sustainable processes are still needed to achieve efficient W and Mo deposition and for the recovery of each of the two metals.

Bioelectrochemical systems (BESs) may provide an innovative approach for the recovery of metals from wastes and wastewaters [8-12]. Numerous studies have focused on metallurgical BESs for the recovery of individual metals. However, the
practical application of this technology ultimately requires the recovery and simultaneous separation of the multiple metals from the wastewater. Recent studies have investigated the co-deposition of mixed metals on the cathodes of BESs, such as V(V) and Cr(VI) [13], Cu(II), Pb(II), Cd(II), and Zn(II) [14], Zn(II), Pb(II) and Cu(II) [15], Cu(II) and Ni(II) [16], Cu(II) and Cd(II) [17], and Cr(VI), Cu(II) and Cd(II) [18], by an appropriate manipulation of the applied voltage.

Simultaneously, stacked BESs comprising one microbial fuel cell (MFC) coupled with one microbial electrolysis cell (MEC) have also been conceived for hydrogen production [19], azo dye decolourization [20], recovery of metals of Cr(VI), Cu(II), Cd(II) or tri- and di-valence state cobalt [21-23], and for the separation of mixed metals, including Cu(II), Co(II) and Li(I), and Cr(VI), Cu(II) and Cd(II) [24-27]. The concept of using stacked BESs may provide a sustainable approach to a number of technologies, since stacked BESs are able to be operated without the need of an external energy input (self-powered system). However, currently practical industrial applications may be limited due to the unsatisfactory performance of simply stacked BESs made of two units. In contrast, it is conceivable that multiple BES units appropriately stacked may create a favorable reductive environment on the cathodes, which may yield an efficient recovery and separation of mixed metals from wastewater.

Concerning the recovery and separation of Mo(VI) and W(VI) on the cathodes of BES units, theoretically, Mo(VI) is more spontaneously reduced than W(VI), due to the higher redox potential of the former ((0.53 V against 0.26 V, vs. standard
hydrogen electrode, SHE) using acetate (approximate –0.30 V vs. SHE) as a fuel in
the anodic chamber. However, considering the insufficient power output from an
individual BES unit, appropriately stacked BESs with varying reducing environments
may be conceived, to favor the deposition and separation of W(VI) and Mo(VI) with
simultaneous production of hydrogen. This aspect to the authors’ knowledge, has not
been previously reported.

In contrast to other metals previously explored in stacked BESs, W and Mo own
excellent catalytic activities for hydrogen evolution, and can favorably alter the
substratum electrode properties, such as surface roughness, conductivity and electrical
resistance. Wang et al [28] and Tasić et al. [29] have reported a Ni mesh with W
coating and a Au electrode with MoS, both of which exhibited high electrocatalytic
activities for hydrogen evolution. In addition, Mo(VI) can act as a catalysis for
co-deposition of W(VI) in conventional electrochemical processes [30-31].

In this study, stacked BESs composed of MFCs and MECs in multiple units with
serial and/or parallel connection, have been systematically investigated for the
deposition and separation of W(VI) and Mo(VI) with simultaneous production of
hydrogen. The performance of the stacked BESs was evaluated by linear sweep
voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The reaction
products deposited on the electrodes were analyzed by scanning electronic
microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction
(XRD) and X-ray photoelectron spectroscopy (XPS). The system parameters
including circuital current, W deposition (R_W), Mo deposition (R_{Mo}), separation factor
(ε), hydrogen production, cathodic (CE_{ca}) and anodic (CE_{an}) coulombic efficiencies, and overall system efficiency (η_{sys}) were extensively employed to assess system performance. The mutual effect of W(VI) and Mo(VI) species in solution, and the optimization of the stacked BESs have been investigated. This study provides an innovative approach for efficient deposition and separation of W(VI) and Mo(VI) with simultaneous hydrogen production, without the requirement of external energy input.

2 Materials and Methods

2.1 BES assembly

Identical dual-chamber BESs were used in all experiments, with the chambers separated by a cation exchange membrane (CMI-7000 Membranes International, Glen Rock, NJ). Porous graphite felts (1.0 × 1.0 × 1.0 cm, San ye Co., Beijing, China) were used as anodes, whereas stainless steel sheets (2.0 × 2.0 cm, Qing yuan Co., China) were used as cathodes. The stainless steel sheets were mechanically polished with abrasive papers and cleaned with ethanol and deionized water, before installation [32]. The operating volume of the anodic and cathodic chambers of each BES unit was 14 mL each.

Here Fig. 1

Nine operational BES configurations comprising a minimum of two and a maximum of six BES units were investigated as shown in Fig. 1, where BES-1-1 indicated two units in series, while BES-2-1, BES-3-1 and BES-4-1 represented two, three and four parallel units connected to a single unit in series, respectively. Similarly, the units in parallel were also serially connected with other parallel and single units,
respectively. For convenient expression, the reactor units in these modules were denoted in order as 1#, 2# and 3# (Fig. 1). Derived from the concept of MFCs acting as a power source and MECs requiring externally applied voltage (power input) [33-34], the term of applied voltage was specifically used to illustrate that the 2# unit of BES-3-1 acted as a driving force and a power to input voltage to the 1# unit, similar to the previous description [20,22-25]. Data associated with 2# in the BES-3-1 have been shown as an average for the units connected in parallel since the differences among the units were insignificant and for the sake of clarity. An external resistor of 10 Ω was used to collect the circuitial current and the voltage output. A reference electrode (Ag/AgCl, 195 mV vs. SHE) was installed in the cathodic chamber to measure the cathodic potential, with all potentials reported here vs. SHE. All reactors were wrapped with aluminum foil to ensure darkness, to avoid the growth of algae on the anodes and possible side reactions on the cathodes.

2.2 Inoculation and operation

The anodes of the BES were inoculated with suspended bacteria from acetate-fed anodes which were supplemented by an equivalent volume of anolyte solution, to facilitate the acclimation of the anodic biofilms [21-22]. The composition of the anolyte in deionized water was (g/L) sodium acetate 1.0; KH$_2$PO$_4$, 4.4; K$_2$HPO$_4$, 3.4; NH$_4$Cl, 1.3; KCl, 0.78; MgCl$_2$, 0.2; CaCl$_2$, 0.0146; NaCl, 0.5; trace vitamins and minerals [35]. The anolyte was sparged with ultrapure N$_2$ gas for 15 min to remove residual oxygen, prior to transferring to the anodic chambers, whereas deionized water was used as catholyte for anodic exoelectrogens acclimation [24-25]. The acclimation
process was carried out with an external resistor of 1000 Ω which was suitable for bacterial acclimation and avoided inaccurate assessment for subsequent power production [24-25,36-37]. The acclimation period was completed after eight anolyte refreshment cycles, when the anodic potential stabilized at −0.23 ~ −0.27 V vs. SHE, as shown in Fig. S1A. The reactor units were then stacked as shown in Fig. 1. The catholyte was replaced by a solution of Na₂WO₄ and Na₂MoO₄ (1.0 mM each) in deionized water, although the specific concentrations of these two metals in practical wastewaters may vary over a greater range of 0.05 ~ 10.4 mM [1-4]. The initial pH in the catholyte was set to 2.0 and the solution conductivity to 3.5 mS/cm, to reproduce the characteristics of acidic wastewaters containing W(VI) and Mo(VI) [1-3]. The acclimation of the all stacked BES units was completed after two further fed-batch cycle refreshments, which yielded reproducible electrode potentials in all BESs (every operation cycle lasted 4 h). Unless otherwise stated, the stainless steel cathodes were always cleaned in 1.0 M NaOH before each batch cycle operation.

The stability of the cells and the effect of pre-deposited W and Mo on the rate of hydrogen evolution were evaluated using the stacked BES-3-1 configuration, and considering a total of 20 fed-batch operation cycles, avoiding the cleaning of the cathodes. The bare electrodes, and the cathodes of 1# and 2# units in BES-3-1 after the 10th and the 20th operational cycle were analyzed by EIS. The catholyte effluent in the stacked BES-3-1 configuration was totally reused after pH adjustment to 2.5 and at constant solution conductivity (3.5 mS/cm), in order to achieve a higher W and Mo deposition and separation.
Control experiments using catholyte containing either W(VI) or Mo(VI) were performed to evaluate the impact of using a mixture of these two metals on the system performance. Further control experiments under open circuit conditions (OCCs) reflected the effect of circuital current on the metals deposition. Other control experiments using just the 1# unit or just the 2# unit of the BES-3-1 were performed to illustrate the roles that each of these reactor units played on deposition of W and Mo. All stacked reactors were operated in fed-batch mode at room temperature (25 ± 3 °C) and all experiments were conducted in duplicate. The inoculation and solution replacements were performed in an anaerobic glove box (YQX-II, Xinmiao, Shanghai).

2.3 Measurements and analyses

W(VI) and Mo(VI) in the catholyte and chemical oxygen demand (COD) in the anolyte were measured using standard methods [38]. The pH was measured by a calibrated pH meter (PHS-3C, Leici, Shanghai) and solution conductivity was measured using a conductivity meter (DDS-307, Leici, Shanghai). A glass tube with an inner diameter of 8 mm was glued to the top of the cathodic chambers to create a total headspace of 12 mL [32,39]. Hydrogen in the headspace of the cathodic chambers was sampled using microsyringes (200 μL, Agilent) and analyzed by a gas chromatograph (GC7900, Tianmei, Shanghai) which was equipped with a thermal conductivity detector and a molecular sieve column (TDX-01, 60 – 80, 4 mm × 2 m). The column operating temperature was 110 °C and the injector and detector temperatures were both 120 °C. Argon was used as the carrier gas at a constant
pressure of 0.13 MPa [32,39]. Hydrogen production (m^3/m^3 d) was calculated from the hydrogen concentration (m^3/m^3) obtained with the GC, multiplied by the gaseous phase volume (m^3) and divided by the working volume (m^3) and operational time (d).

The morphologies of the electrodes after W and Mo deposition were examined using a scanning electronic microscope (SEM) (QUANTA450, FEI company, USA) equipped with an energy dispersive spectrometer (EDS) (X-MAX 20 mm^2/5- mm^2, Oxford Instruments, UK). X-ray diffraction (XRD-6000, Shimadzu LabX, Japan) and X-ray photoelectron spectroscopy (XPS, Kratos AXIS Ultra DLD) were used to examine the nature and the elemental composition of the crystal products deposited on the cathodes.

The cathode and anode potentials were monitored by an automatic data acquisition system (PISO-813, Hongge Co, Taiwan). Polarization and power density data were obtained with a potentiostat (CHI 760C, Chenhua, Shanghai) using linear sweep voltammetry (LSV). Cyclic voltammetry (CV) (CHI 760C, Chenhua, Shanghai) was carried out with a three-electrode configuration comprising a working electrode (i.e., cathode), a platinum plate counter electrode, and a Ag/AgCl reference electrode. CVs were conducted in solutions with either W(VI) or Mo(VI) species or with a mixture of them, to reflect the reductive peak potentials and reductive peak currents of W(VI) and Mo(VI) under the experimental condition. Both CV and LSV were conducted at a scan rate of 1.0 mV/s. EIS was conducted using the same potentiostat with a three electrode system comprising a working electrode (i.e., cathode), a Ag/AgCl reference electrode (195 mV vs. SHE) located 1 cm away from the cathode.
in the cathodic chamber, and a Pt foil (2 × 4 cm) counter electrode placed in the anodic chamber. Impedance analysis was conducted at cathode potentials under OCCs with either the bare electrodes, or the electrodes deposited with W and Mo (obtained after multiple batch cycle operations) in catholyte to determine the impact of the W and Mo deposits on the subsequent W(VI) and Mo(VI) reduction in the stacked BES-3-1. For assessment of effect of W and Mo deposits on subsequent hydrogen evolution, however, impedance analysis was carried out at cathode potentials under CCCs with the same electrodes mentioned above but using catholyte in the absence of W(VI) and Mo(VI). EIS frequency ranged from 100 kHz to 10 mHz, with a sinusoidal perturbation of 10 mV amplitude. The equivalent circuits and detailed values of different resistances were obtained through Zsimpwin software and normalized to the projected area of the cathodes [40-41].

The statistical significance of the experimental data was assessed using a statistical package (SPSS v.19.0) (t-test, p = 0.05).

2.4 Calculation

W deposition (R_W, %) and Mo deposition (R_Mo, %) were calculated from Eqs. 1 – 2. The power density was normalized to the projected surface area of the separator, allowing the comparison of the results to literature studies based on power per unit area [18,24,42]. The CE_{an}, CE_{ca}, and η_{sys} were calculated from Eqs. 3 – 8 [21] whereas the ε was directly related with R_W and R_Mo, and calculated from Eq. 9 [1,8]:

\[
R_W = \frac{W(VI)_b - W(VI)_l}{W(VI)_b} \times 100\% \quad (1)
\]
\[R_{Mo} = \frac{M_{o} \text{VI}_{t} - M_{o} \text{VI}_{0}}{M_{o} \text{VI}_{0}} \times 100\% \]

(2)

\[Y_{W} = \frac{(W(\text{VI}_{t}) - W(\text{VI}_{0})) \times V_{ca} \times 32}{(\text{COD}_{t} - \text{COD}_{0}) \times V_{an}} \]

(3)

\[Y_{Mo} = \frac{(M_{o} \text{VI}_{t} - M_{o} \text{VI}_{0}) \times V_{ca} \times 32}{(\text{COD}_{t} - \text{COD}_{0}) \times V_{an}} \]

(4)

\[Y_{H_2} = \frac{\eta_{H_2} \times V_{H_2} \times 32}{(\text{COD}_{t} - \text{COD}_{0}) \times V_{an}} \]

(5)

\[CE_{an} = \int_{0}^{t} \frac{I dt}{96485 \times 4 \times (\text{COD}_{t} - \text{COD}_{0}) \times V_{an}} \times 100\% \]

(6)

\[CE_{ca} = \int_{0}^{t} I dt \times \frac{b_{1} \times (W(\text{VI}_{t}) - W(\text{VI}_{0})) \times V_{ca} + b_{2} \times (M_{o} \text{VI}_{t} - M_{o} \text{VI}_{0}) \times V_{ca} + b_{3} \times \eta_{H_2} \times V_{ca} \times 96485}{32} \times 100\% \]

(7)

\[\eta_{sys} = \frac{b_{1} \times (W(\text{VI}_{t}) - W(\text{VI}_{0})) \times V_{ca} + b_{2} \times (M_{o} \text{VI}_{t} - M_{o} \text{VI}_{0}) \times V_{ca} + b_{3} \times \eta_{H_2} \times V_{ca}}{(\text{COD}_{t} - \text{COD}_{0}) \times V_{an}} \times 4 \times 100\% \]

(8)

\[\varepsilon = \frac{M_{o} \text{VI}_{t} - M_{o} \text{VI}_{0}}{M_{o} \text{VI}_{0}} \times \frac{W(\text{VI}_{t})}{W(\text{VI}_{t}) - W(\text{VI}_{0})} \]

\[= \frac{1 - R_{W}}{R_{W}} \times \frac{R_{Mo}}{1 - R_{Mo}} \]

(9)

where \(W(\text{VI})_{0}, M_{o}(\text{VI})_{0} \) and \(\text{COD}_{0} \) are the initial concentrations (mol/L) of W(VI) and Mo(VI) in the catholyte, and of COD in the anolyte of each unit, respectively, and the subscript \(t \) refers to the concentration after an operational time of \(t \) (h). \(\eta_{sys} \) is the hydrogen concentration (mol/L) at \(t \) hours; \(V_{ca} \) and \(V_{an} \) are the volumes of liquid (L) in the cathodic and anodic chambers, respectively; \(I \) is the corresponding circuital current (A); 96485 is the Faraday constant (C/mol e\(^{-}\)); 4 is the molar number of electrons required for oxygen reduction (mol/mol); 32 is the atomic weights of O\(_{2}\).
(g/mol); b_1, b_2 and b_3 are the molar numbers of electrons required for W(VI) and Mo(VI) reduction, and for hydrogen evolution (mol/mol).

3 Results and discussion

3.1 Performance of stacked BES-3-1 configuration

W and Mo were deposited more efficiently in the stacked BES-3-1 configuration, achieving $27.6 \pm 1.2\%$ for W with a yield of 0.09 ± 0.01 mol/mol COD (Fig. 2A and Table 1) and $75.4 \pm 2.1\%$ for Mo with 0.26 ± 0.02 mol/mol COD (Fig. 2B and Table 1) in the 1# unit, and $12.3 \pm 0.9\%$ with 0.08 ± 0.01 mol/mol COD (W) (Fig. 2A and Table 1) and $52.6 \pm 2.2\%$ with 0.23 ± 0.01 mol/mol COD (Mo) (Fig. 2B and Table 1) in the 2# unit. Accordingly, higher CE an of $52 \pm 1\%$ in the 1# unit than $42 \pm 3\%$ in the 2# unit ($p = 0.013$), and similar CE ca of $70 \pm 5\%$ (1#) and CE ca of $67 \pm 1\%$ (2#) ($p = 0.15$) (Table 1) were observed. These results reflect the higher reductive environment in the 1# unit due to the lower cathode potential (average values in Fig. 2C; as a function of time in Fig. S1B), the higher circuital current (average values in Fig. 2D; as a function of time in Fig. S1B), and the impact of the voltage output from the 2# unit (MFC) which was applied to the 1# unit (MEC) (Fig. 2E).

While the CE an were somewhat lower than values reported for single BES units, particularly those utilizing high efficient Pt-cathodes [33,37], the overall system efficiencies (η_{sys}) were equivalent, and in some cases even higher, to MFC-MEC utilizing graphite granule anodes and cathodes, using $K_3Fe(CN)_6$ and methyl orange as cathodic electron acceptor, respectively [20]. The η_{sys} was slightly lower than in
MFC-MEC with carbon paper anodes and Pt catalyzed cathodes using oxygen and H\(^+\) as cathodic electron acceptor, respectively [19]. The different CE\(_{an}\) observed in the 1# and 2# units reflect the existence of different microbial communities, consistent with the corresponding different circuital currents (Fig. 2D). In fact, circuital current is well known to influence microbial community in BESs [33]. Various strategies could be adopted to further increase the CE\(_{an}\), such as through dosing of chemical methane inhibitors (e.g. 2-bromo-ethanesulfonate) [43] or by decreasing the anodic cycle time/hydraulic retention time, to inhibit methane production [44], which subsequently could enhance the amount of cathodic electrons used for the deposition of W and Mo in the stacked BESs.

Under the experimental condition, W(VI) and Mo(VI) reductions occurred at potentials more positive than -0.042 V (Fig. S2), which were more positive than the potentials of the cathodes in the 1# and 2# units (Fig. 2C and S1B), confirming the presence of favorable reductive environments in both units of the stacked BES-3-1. The co-existence of W(VI) and Mo(VI) in solution yielded higher reductive peak currents in comparison to the cases with individual metal salts (Fig. S2), illustrating the dual benefits of W(VI) and Mo(VI) for the occurrence of reduction reactions.

In the control experiments with either the 1# or 2# unit, the amount of W and Mo deposition was 15.3 ± 1.7% (\(p = 0.000\)) and 60.1 ± 1.6% (\(p = 0.000\)) (1#), and 12.9 ± 1.3% (\(p = 0.864\)) (W) and 56.1 ± 2.0% (\(p = 0.134\)) (Mo) (2#), respectively (Fig. S3), reflecting that the 2# unit positively affected the performance of 1# unit, whereas the 1# unit negligibly influenced the performance of 2# unit in the stacked BESs.
control experiments using catholytes with either W(VI) or Mo(VI), the deposition of W was 6.8 ± 1.3% (1#, \(p = 0.000 \)) and 3.3 ± 0.4% (2#, \(p = 0.000 \)) (Fig. 2A) and the deposition of Mo was 65.1 ± 3.2% (1#, \(p = 0.013 \)) and 45.2 ± 0.9% (2#, \(p = 0.014 \)) (Fig. 2B), consistent with the results in Fig. S2, reflecting again the dual benefits of W(VI) and Mo(VI) for efficient co-deposition in the stacked BESs. This effect has also been observed in conventional electrochemical processes [30-31]. Note that under OCCs, only 2.9% of W and Mo was deposited, with the single metals and with a mixture of the two metals. A control experiment with only anolyte in the absence of the electrode and exoelectrogens was specifically performed to evaluate the rate of diffusion of W(VI) and/or Mo(VI) from the cathodic to the anodic chambers under OCCs. In parallel, the morphology of the deposits on the cathode electrode was analyzed with SEM-EDS to ascertain the presence of W and/or Mo. The results showed that after a fed batch cycle, the concentrations of W and/or Mo in the anolyte were undetectable, excluding the possibility of W and/or Mo diffusion from the cathode to the anode, although the retention of W and/or Mo on the ion exchange membrane could not be precluded. The detection of W and Mo on the cathode electrode (Fig. S4) confirmed the occurrence of adsorption of W and Mo on the cathode.

Simultaneous with the W(VI) and Mo(VI) co-deposition process, the production of hydrogen in the 1# unit was 0.34 ± 0.01 m³/m³ d with a yield of 0.87 ± 0.03 mol/mol COD, compared to the rates obtained with the single metals in the control experiments (0.29 ± 0.00 m³/m³ d with Mo(VI) alone \(p = 0.193 \)) and 0.15 ± 0.01
The rate of hydrogen production in the 1# unit of the stacked BES-3-1 was higher than literature results using titanium sheet platinum-coated cathodes in MECs operated at a pH of 6.0 and temperature of 55 ºC (0.2 – 0.3 m³/m³ d) [45-46], and was comparable to the rates obtained with the same platinum sheet metal cathodes of MECs at a high applied voltage of 0.9 V but neutral pH (0.68 m³/m³ d) [47]. The production of hydrogen in BESs is significantly affected by solution pHs [48]. Taken together with the requirements of H⁺ for W(VI) and Mo(VI) reduction as well as hydrogen evolution in the stacked BESs (Eqs. S1-S5), a cathodic pH maintained at 2.0 should favor the highest rate of hydrogen production [48]. As an example, the electron distribution in the stacked BES-3-1 after one batch cycle operation is shown schematically in Fig. S5.

The metal separation factors in the 1# and 2# units were similar (8.1 ± 0.2 and 7.9 ± 0.5, respectively, $p = 0.465$) (Table 1), which were higher than the value (7.0) reported with a macroporous resin or using manganese dioxide as adsorbent [6,8]. They were also equivalent to the separation factor obtained with MnSO₄ as a precipitation reagent [1-2] at the same W(VI) and Mo(VI) concentrations. However, the metal separation factors were lower than those reported with commercial TEVA or macroporous resins (from 14 to 28) at a ratio of W(VI) and Mo(VI) of 1 : 20, and the separation factor of 105, reported using solvent extraction with H₂O₂ as a chelating agent [2,6-7].

Here Fig. 3
The polarization curves with the W(VI) and Mo(VI) mixture (Fig. 3A) were similar to those observed in the control experiments with Mo(VI) alone (Fig. 3C), with maximum power higher than with W(VI) alone (Fig. 3E). These results clearly demonstrate the greater importance of Mo(VI) than W(VI) for delivering maximum power production. Accordingly, the power production in the control experiments with either the 1# or 2# unit (Fig. 3A) reflected more favorably the 2# unit rather than the 1# unit, elucidating that the 2# unit acted as MFCs and that the 1# unit acted as MECs, in the stacked BESs.

The cathodic potentials varied more significantly than the anodic potentials over the current density range (Fig. 3B). Similarly, an increase in current density in the control experiments with either the 1# or 2# unit resulted in more rapid gradients in the cathodic rather than in the anodic potentials (Fig. 3B). These results imply that the performance of the stacked BESs, as well as, each of the 1# and 2# units was augmented by changes in the cathode properties. These results are supported by the increasing consensus that BES performance may be constrained by poor reaction kinetics at the cathode, which results from the complex catholyte composition used and the subsequent multiple competitive reactions that may be generated, the accumulation of OH and other products near to the cathode surface and the cathode overpotential [9,49]. The cathode potentials as a function of current density in the controls with Mo(VI) alone (Fig. 3D), decreased more significantly than those obtained with W(VI) alone (Fig. 3F), stressing the greater importance of Mo(VI) rather than W(VI) for determining the cathode potential, consistent with the results in
3.2 Electrode morphology and product analysis

Products with a smaller area of blue color (Fig. 4A) and with more club-shaped agglomerates (Fig. 4E) were observed in the layer deposited on the cathode of the 1# unit, compared to those observed on the 2# unit (Fig. 4B and F) or on the bare electrode (Fig. S6). The observation of a blue color implies a small amount of reduced Mo and W on the cathodes [1]. The exposure of the deposits to air led to substantial changes in the color (Fig. 4C and D) and microscopic morphology (Fig. 4G and H) in both the 1# (Fig. 4C and G) and 2# units (Fig. 4D and H), implying the sensitivity of the deposits to oxygen. Although the size and shape of the particles deposited on the cathodes were not tightly controlled, the variety of the morphologies observed on these cathodes implies that the different units in the stacked BES-3-1 produced products with different morphologies.

EDS analysis of the agglomerates in the deposits of the 1# unit reported higher W (at binding energies of 1.60, 1.78, 8.40 and 9.70 keV) and Mo (at 2.28 keV) signals (Fig. 4I), compared to those observed in the 2# unit (Fig. 4J), confirming the higher efficiency of the 1# unit for metal deposition (Fig. 2A and B). The W content in the products was 2.68% (1#) and 0.67% (2#), well below the 5 – 6% range usually leading to the formation of cracked W and Mo surface [30,50], consistent with the SEM observation in Fig. 4E and F. Exposure to air led to a decrease of the W and Mo signals in both the 1# (Fig. 4K) and 2# units (Fig. 4L), mainly ascribed to the fast oxidation of these reduced products [2,5,30]. The observation of Fe, Cr, Mn, Ni, C
and O on all the cathodes was associated with the composition of the stainless steel substratum. The XRD patterns closely matched Mo$_{8.8}$W$_{1.2}$O$_{29}$ (−404) at 24.4° and (302) at 29.7°, and MoO$_2$ (010) at 63.4° and (102) at 68.7° in the 1# unit (Fig. 4M and Table S1), compared to Mo$_{9.35}$W$_{1.65}$O$_{32}$ (−203) at 21.8°, (301) at 25.7° and (−501) at 25.9°, and MoO$_2$ (404) at 60.9° and (110) at 68.9° in the 2# unit (Fig. 4N and Table S1).

Exposure to air completely changed the forms of the crystals in both the 1# (Fig. 4O) and 2# units (Fig. 4P). In concert, the results observed support a significant dependence of the product crystals on the variety of units in the stacked BES-3-1 and that the products were highly sensitive to oxidation.

Here Fig. 5

XPS images displayed the presence of peaks at 35.9 and 38.1 eV for W on all the electrodes (Fig. 5A, C, E and G), which were assigned to W(VI) at W(4f7/2) and W(4f5/2) levels, respectively. However, this could not preclude the oxidation of the highly unstable W(V) as a reduced product during the sample preparation [2,5,30]. In fact, electrodes sampled at the end of one operational cycle, in the absence of N$_2$ protection, instantly changed in color, implying the weak oxidative character of anionic polymerized W(VI). Accordingly, higher peaks at 234.8 eV and 231.8 eV associated with Mo(V) than those at 231.0 eV and 234.0 eV assigned to Mo(IV) were observed in the 1# unit, both of which were higher than those in the 2# unit (Fig. 5B and Table S2), consistent with the results in Fig. 2B. The reduction of Mo(VI) to Mo(V) was therefore more likely than the reduction towards Mo(IV).

3.3 BESs stacked in different configurations

Here Fig. 6
Among the various configurations of stacked BESs, BES-4-1 comprising a single unit (1#) serially connected with four parallel units (2#) (Fig. 1) exhibited the similar highest deposition of metals to BES-3-1 in the same 1# unit: 28.7 ± 0.7% (W) ($p = 0.528$) (Fig. 6A) and 69.1 ± 1.3% (Mo) ($p = 0.15$) (Fig. 6B). In the 2# unit, however, Mo deposition of 39.3 ± 1.7% in BES-4-1 (Fig. 6B) was lower than 52.6 ± 2.2% in BES-3-1 ($p = 0.042$) (Fig. 2B), compared to the similar W deposition (13.2 ± 1.6% in BES-4-1, 12.3 ± 0.9% in BES-3-1, $p = 0.684$). As a consequence, separation factor of 4.3 ± 0.1 in the 2# unit of BES-4-1 was significantly lower than 7.9 ± 0.5 in BES-3-1 based on Eq. 9 (Table 1). While hydrogen production of 0.83 ± 0.20 m3/m3 d in BES-4-1 was higher than 0.34 ± 0.10 m3/m3 d in BES-3-1 (Table 1), the yield of hydrogen in BES-4-1 (0.56 ± 0.01 mol/mol COD) was lower than in BES-3-1 (0.87 ± 0.03 mol/mol COD), explained by the higher rate of COD consumption in the BES-4-1 anode, according to Eq. 5. Taken together, BES-4-1 had an advantage of more hydrogen production over BES-3-1 whereas the latter favored for more Mo deposition and the subsequent more efficient W and Mo separation. Considering the merit of favor for more metal deposition and separation in BES-3-1, this stacked BES-3-1 module was thus selected to evaluate the effect of multiple cycles operation, and the effect of effluent reuse from the 1# and 2# units, for complete separation of W from Mo.

It should be noted that each of these reactor units could independently generate current prior connection in stacked BESs. BES-2-1, BES-3-1 and BES-4-1 modules were made of MECs (1#) and MFCs (2#, associated two, three or four units in a
These stacked systems operated spontaneously at voltage outputs higher than that from coupled single units (1#), since the internal resistance, in the parallel connected units, progressively decreased as the number of parallel connected units increased. Therefore, at a fixed external resistance (e.g. 1#), the stacked BESs would spontaneously evolve hydrogen, as long as the voltage output from the units connected in parallel (e.g. 2#) could produce a more negative cathodic potentials in the 1# unit, sufficient for H+ reduction (theoretically –0.135 V at the present initial pH of 2.0) [34]. The hydrogen production rate, however, dynamically depended on the circuital current of the BESs [34]. Thus, hydrogen was thermodynamically evolved in the 1# unit rather than the 2# unit, evolving a higher hydrogen production rate in BES-4-1 rather than in BES-3-1 (Fig. 2C and 6C, Table 1). However, the inadequate cathodic potential and circuital currents in the 1# unit of BES-2-1 resulted in negligible evolution of hydrogen (Table 1 and Fig. 6C and 6D). In BES-3-2-1, the three units connected in parallel acted as MFCs, while the two units in parallel serially stacked with a single unit, served as MECs. The hydrogen production in BES-3-2-1 was reasonably lower than the 1# unit of BES-3-1 due to the more number of units being driven in the former (Table 1). The BESs with equal number of serial and/or parallel connected units including BES-1-1, BES-2-2, BES-3-3, BES-1-1-1 and BES-2-2-2, produced similar voltage outputs and net electricity was always produced, excluding the possibility of hydrogen evolution in these systems.

3.4 BES long-term stability

The deposition of W in both the 1# and 2# units of the BES-3-1 exhibited a
decreasing trend with operational time, from 27.6 ± 1.2 % (1#) and 12.3 ± 0.9 % (2#) in the first cycle to 10.1 ± 1.3% (1#) and 8.4 ± 0.8% (2#) after the 20th cycle (Fig. 7A). Conversely, Mo deposition in the 2# unit gradually increased, from the initial 52.6 ± 2.2% (1st cycle) to 61.6 ± 2.2% (20th cycle) (Fig. 7B). The insignificant change in the deposition of Mo in the 1# unit (71.7 – 75.4%) was accompanied with an increase in hydrogen production (Table S3), reflecting the beneficial catalytic effect of the Mo deposit on hydrogen evolution [29]. Specifically, it has been shown that MoS\textsubscript{2} particles coated carbon cloth performs better than bare stainless steel and even surpasses platinum-based electrodes for hydrogen evolution [51].

The separation factor in BES-3-1 increased from 8.1 ± 1.4 (1#) and 7.9 ± 0.0 (2#) (1st cycle) to 22.8 ± 1.9 (1#) and 17.7 ± 0.8 (2#) (20th cycle) (Fig. 7C), suggesting a beneficial effect of the operational time on the separation of the metals.

Cathode potentials (Fig. 7D), circuital current (Fig. 7E), applied voltage (Fig. 7F) and hydrogen production (Table S3) increased progressively up to a maximum at the 10th cycle, which were consistent with the polarization curves (Fig. S8) and with the appreciable deposition of W and Mo on the electrodes (Fig. 7A and B). Such results are further supported by the positive effect of tungsten and molybdenum oxide impregnated electrodes in MFCs for power production and V(V) or O\textsubscript{2} reduction [52-54]. Further deposition of the metals from the 11th to 20th cycle, resulted in a decrease in the circuital current (Fig. 7E) and negligible changes in the cathode potential (Fig. 7D), which ultimately led to a decrease of the hydrogen production with operational time (Table S3). This last effect could be attributed to an excessive
accumulation of metals on the electrodes, which was further proved as follows. The EIS spectra were fitted to equivalent circuits (Fig. S9) to identify the components determining the internal resistances in the BES-3-1 after the 10th and 20th cycle, for assessing W(VI) and Mo(VI) reduction, and hydrogen evolution (Fig. S10 and Table S4) in comparison with the bare electrodes. The diffusional resistance (R_d) for W(VI) and Mo(VI) reduction was significantly higher than the polarization (R_p) and the ohmic (R_o) resistances (Fig. S10A and Table S4) due to the mass transfer limitation of the formed macromolecules of W and Mo heteropolyacid [1-2]. Compared to the bare electrode, the R_d, R_p and R_o resistances after the 10th cycle substantially decreased to 4252.3 Ω, 43.2 Ω and 14.8 Ω (1#) and 2076.7 Ω, 25.4 Ω and 14.2 Ω (2#), respectively, which were consistent with the enhanced system performance due to the presence of W and Mo deposits (Fig. 7). However, at the 20th cycle, R_d and R_p increased, while R_o negligibly changed, which was attributed to the excessive W and Mo layer formed.

With respect to the bare electrode having R_p of 89.4 Ω, R_d of 4897.2 Ω and R_o of 18.2 Ω for hydrogen evolution (Fig. S10B and Table S4), the rate of hydrogen production increased after a prolonged operation (10th cycle) (Table S3) due to the decrease of the resistance, R_p (22.7 Ω), R_d (503.5 Ω) and R_o (7.3 Ω). However, further use (20th cycle) led to an increase in the resistances, R_p (43.4 Ω), R_d (1123.4 Ω) and R_o (10.5 Ω) (Table S4) and, in consequence, to a decrease in the rate of hydrogen production (Table S3), consistent with the EIS results for W(VI) and Mo(VI) reduction (Fig. S10A and Table S4). These results, in concert, clearly demonstrated...
that the decreased rate of hydrogen production at the 20th cycle resulted from the excessive layer of W and Mo built on the cathodes of 1# in the stacked BESs.

3.5 Catholyte effluent reuse

The catholyte effluent after acidic adjustment was fully reused in the BES-3-1 to increase the amount of metal deposited, which reached 36.0 ± 0.3% (W) and 99.4 ± 0.5% (Mo) in the 1# unit, and 26.9 ± 0.2% (W) and 96.2 ± 0.6% (Mo) in the 2# unit at the 7th circulation (Fig. S11A and B). Accordingly, a significantly higher separation factor equal to 467 ± 22 was reached in the 1# unit, compared to 70 ± 3 in the 2# unit (Fig. S11C). This separation factor achieved in the 1# unit was higher than that observed with ion exchange resins, solvent extraction, or MnO2 and MnSO4 adsorbents (range 7 – 105) [2,6-8]. A decrease of the concentration of W(VI) and Mo(VI) in the catholyte with reuse led to a decrease of the circuital current (Fig. S11D), the cathode potential (Fig. S11E), and the applied voltage to the 1# unit (Fig. S11F) as expected, due to the progressive reduction of W(VI) and Mo(VI) electron acceptors in the catholyte. This result was consistent with the reports using other multiple metals as electron acceptors in BESs [17-18,55-56]. The pH of the catholyte after each reuse always increased in both the 1# (Fig. S11G) and the 2# unit (Fig. S11H), and required a pre-acidification step to promote efficient W and Mo deposition and separation.

On the basis of the operating costs alone, the net value of W and Mo products recovered from the system (7.22 $ per m³ mixed W(VI) and Mo(VI)) was significantly higher than the cost required for acidification of the catholyte (0.03 $/m³),
demonstrating the economical feasibility of this technology.

With regard to the practical application of stacked BESs for W and Mo recovery, the two-chamber BESs have merits over the one-chamber systems, since these avoid the toxicity of W and Mo to the anodic exoelectrogens while permitting the simultaneous treatment of two different wastewaters [9-10]. Considering that the materials costs are steadily decreasing, particularly the costs of the ion exchange membrane [27,42,55,57], cost-effective two-chamber stacked BESs are promising systems for sustainable recovery and separation of W and Mo at industrial scale, with simultaneous production of hydrogen. However, the practical implementation of this technology for industrial wastewater treatment requires further pilot and full-scale investigations, to evaluate the long-term operation and stability of the system over feeds with fluctuating characteristics [57]. In addition, in this study we have adjusted the pH to the acidic value of 2.0 only at the beginning of the experiment, although a recent study suggests that a pH control during the entire operational period to acidic values may lead to enhanced performance [48]. This aspect should be investigated in further studies. The separation of the W and Mo layer deposited on the electrodes may also represent a further challenge for the practical application of this technology. However, the in-situ utilization of these deposits for photocatalytic processes may become an attractive strategy for reuse, since W and Mo oxides exhibits excellent photocatalytic properties [58]. It is expected that further optimization of pH control, and ratio of W(VI) and Mo(VI) would result in an improved performance of the stacked BESs presented in this study.
4 Conclusions

This study demonstrated a novel method for the deposition and separation of W and Mo metals in stacked BESs with simultaneous hydrogen production, without the need of external energy input. The optimized stacked module was the BES-3-1, where the dual benefits of the W(VI) and Mo(VI) species, and the favorable impact of the 2# unit on the 1# unit were observed, with simultaneous hydrogen production. This system also displayed a favorable configuration in which the 2# MFC unit assisted the 1# MEC unit. Further reuse of the catholyte after acidification led to complete separation of W and Mo from one another. Since W(VI) and Mo(VI) are extensively present in ore dressing wastewater, this study may provide a sustainable and environmentally benign approach to this industry for efficient recovery and separation of W and Mo with simultaneous hydrogen production.

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 51578104), and the Programme of Introducing Talents of Discipline to University (B13012).

References

S. Sun, T. Bairachna, E.J. Podlaha, Induced codeposition behavior of G. S. X. Chen, P. Liang, X. Zhang, X. Huang, Bioelectrochemical systems M. D. J. L. Y. V. D. Jovi

Different cathode materials for Co(II) reduction with simultaneous hydride substrate by electrodeposition from molten salt in air atmosphere, Appl. Surf. Sci.

Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system, Environ. Technol. 38 (2017) 615-628.

Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system, Environ. Technol. 38 (2017) 615-628.

M. Li, Y. Pan, L. Huang, Y. Zhang, J. Yang, Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system, Environ. Technol. 38 (2017) 615-628.

[38] State Environment Protection Administration, the Water and Wastewater Monitoring Methods, fourth ed., China Environmental Science Press, Beijing, 2002.

[41] D. Wu, L. Huang, X. Quan, G Li Puma, Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells, J. Power Sources 307 (2016) 705-714.

Q. Wang, L. Huang, Y. Pan, X. Quan, G. Li Puma, Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials, J. Hazard. Mater. 321 (2016) 896-906.

Table 1 Separation factor, product yield, and operational efficiencies in various stacked BESs.

Fig. 1 Types of stacked BESs in this study

Fig. 2 W (A) and Mo (B) deposition, cathode potentials (C) and circuitual current (D)
in the stacked BES-3-1. Applied voltage (E) and hydrogen production (F) in the 1#
unit of the BES-3-1.

Fig. 3 Voltage output and power density (A, C and E), and anode and cathode
potentials (B, D and F) in the stacked BES-3-1, and controls of the single 1# or 2#
units with the components of W(VI) and Mo(VI) (A and B), individual Mo(VI) (C
and D), and single W(VI) (E and F).

Fig. 4 Naked eye (A, B, C and D) and SEM (E, F, G and H) observation, EDS
analysis (I, J, K and L) and XED determination (M, N, O and P) on the cathodes of
the 1# (A, E, I, M, C, G, K and O) and 2# units (B, F, J, N, D, H, L and P) before
(A, E, I, M, B, F, J and N) and after (C, G, K, O, D, H, L and P) exposed to air for
24 h (2 cycle operation).

Fig. 5 XPS analysis for W (A, C, E and G) and Mo (B, D, F and H) elements on the
cathodes of the 1# (A, B, E, and F) and 2# units (C, D, G and H) before (A, B, C
and D) and after (E, F, G and H) exposed to air for 24 h.

Fig. 6 W (A) and (B) Mo deposition in the different units of the stacked BESs and the
associated cathode potential (C) and circuital current (D).

Fig. 7 W (A) and Mo (B) deposition, separation factor (C), cathode potential (D), and
circuital current (E) in the 1# and 2# units of BES-3-1, as well as applied voltage as
a function of the operational cycle.
Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems

Liping Huang1,*, Ming Li1, Yuzhen Pan2, Yong Shi1, Xie Quan1, Gianluca Li Puma3,*

1. Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

2. College of Chemistry, Dalian University of Technology, Dalian 116024, China

3. Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

Corresponding authors:

(L. Huang) lipinghuang@dlut.edu.cn

(G. Li Puma) g.lipuma@lboro.ac.uk

The authors declare no competing financial interest.
Abstract

Efficient deposition and separation of W(VI) and Mo(VI) with simultaneous hydrogen production, without external energy input, is achieved in stacked bioelectrochemical systems (BESs) composed of microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The stacked BES-3-1 made of one MEC unit (1#) serially connected with three parallel connected MFC units (2#) outperformed other modules, achieving depositions of $27.6 \pm 1.2\%$ (W) and $75.4 \pm 2.1\%$ (Mo) with a separation factor of 8.1 ± 0.2 and hydrogen production of $0.34 \pm 0.01 \text{m}^3/\text{m}^3\text{d}$ in the 1# unit, compared to $12.3 \pm 0.9\%$ (W), $52.6 \pm 2.2\%$ (Mo) and 7.9 ± 0.5 (separation factor) in the 2# unit. The control experiments with W(VI) only deposited $6.8 \pm 1.3\%$ in 1# and $3.3 \pm 0.4\%$ in 2#, compared to $65.1 \pm 3.2\%$ in 1# and $45.2 \pm 0.9\%$ in 2# with Mo(VI) only. The control experiments with either the 1# or 2# unit and a mixture of W(VI) and Mo(VI) deposited $15.3 \pm 1.7\%$ (W) and $60.1 \pm 1.6\%$ (Mo) (1# only), and $12.9 \pm 1.3\%$ (W) and $56.1 \pm 2.0\%$ (Mo) (2# only). Reuse of the catholyte after acidification achieved complete separation of W and Mo from one another. This study demonstrates the feasibility of stacked BESs for W and Mo deposition and separation with simultaneous hydrogen production. The dual benefits of W(VI) and Mo(VI) species, and the favorable impact of the 2# unit on the 1# unit in the stacked BES module were critical to achieve efficient performance.

Keywords: bioelectrochemical system; stackable reactor; tungsten and molybdenum deposition; separation factor; hydrogen production
1 Introduction

Tungsten (W) and molybdenum (Mo) are rare transition metals, which impart high-strength, high hardness, good electrical and thermal conductivity, and good corrosion resistance to strong acids to manufactured materials [1]. These metals are extensively used in the manufacturing of advanced materials in key industries, such as the automotive industry. The 2011-12 annual global production was 73000 t for W and 264000 t for Mo, with over 80% of W and nearly 40% of Mo being produced in China [2-3]. The extraction of W and Mo from natural ores involves a significant consumption of energy (11580 kWh/ton) which greatly impacts the environment in terms of air, water and soil pollution [1-4]. Ore dressing wastewater used during the extraction processes contains a significant amount of W and Mo ranging from 10 mg/L to 1000 mg/L [2]. The recovery and separation of these rare metals is therefore desirable from both an environmental and an economical point of view.

Chemical or electrochemical processes conventionally used for the recovery and separation of W(VI) and Mo(VI) involve the use of reducing agents or external electrical energy, which favors the deposition of Mo(VI) while reduced the extraction of W(VI), thus improving the phase separation [1-2,4-8]. However, more efficient and sustainable processes are still needed to achieve efficient W and Mo deposition and for the recovery of each of the two metals.

Bioelectrochemical systems (BESs) may provide an innovative approach for the recovery of metals from wastes and wastewaters [8-12]. Numerous studies have focused on metallurgical BESs for the recovery of individual metals. However, the
practical application of this technology ultimately requires the recovery and simultaneous separation of the multiple metals from the wastewater. Recent studies have investigated the co-deposition of mixed metals on the cathodes of BESs, such as V(V) and Cr(VI) [13], Cu(II), Pb(II), Cd(II), and Zn(II) [14], Zn(II), Pb(II) and Cu(II) [15], Cu(II) and Ni(II) [16], Cu(II) and Cd(II) [17], and Cr(VI), Cu(II) and Cd(II) [18], by an appropriate manipulation of the external applied voltage.

Simultaneously, stacked BESs comprising one microbial fuel cell (MFC) coupled with one microbial electrolysis cell (MEC) have also been conceived for hydrogen production [19], azo dye decolourization [20], recovery of metals of Cr(VI), Cu(II), Cd(II) or tri- and di-valence state cobalt [21-23], and for the separation of mixed metals, including Cu(II), Co(II) and Li(I), and Cr(VI), Cu(II) and Cd(II) [24-27]. The concept of using stacked BESs may provide a sustainable approach to a number of technologies, since stacked BESs are able to be operated without the need of an external energy input (self-powered system). However, currently practical industrial applications may be limited due to the unsatisfactory performance of simply stacked BESs made of two units. In contrast, it is conceivable that multiple BES units appropriately stacked may create a favorable reductive environment on the cathodes, which may yield an efficient recovery and separation of mixed metals from wastewater.

Concerning the recovery and separation of Mo(VI) and W(VI) on the cathodes of BES units, theoretically, Mo(VI) is more spontaneously reduced than W(VI), due to the higher redox potential of the former ((0.53 V against 0.26 V, vs. standard
using acetate (approximate −0.30 V vs. SHE) as a fuel in the anodic chamber). However, considering the insufficient power output from an individual BES unit, appropriately stacked BESs with varying reducing environments may be conceived, to favor the deposition and separation of W(VI) and Mo(VI) with simultaneous production of hydrogen. This aspect to the authors’ knowledge, has not been previously reported.

In contrast to other metals previously explored in stacked BESs, W and Mo own excellent catalytic activities for hydrogen evolution, and can favorably alter the substratum electrode properties, such as surface roughness, conductivity and electrical resistance. Wang et al [28] and Tasić et al. [29] have reported a Ni mesh with W coating and a Au electrode with MoS, both of which exhibited high electrocatalytic activities for hydrogen evolution. In addition, Mo(VI) can act as a catalysis for co-deposition of W(VI) in conventional electrochemical processes [30-31].

In this study, stacked BESs composed of MFCs and MECs in multiple units with serial and/or parallel connection, have been systematically investigated for the deposition and separation of W(VI) and Mo(VI) with simultaneous production of hydrogen. The performance of the stacked BESs was evaluated by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The reaction products deposited on the electrodes were analyzed by scanning electronic microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The system parameters including circuital current, W deposition (R_W), Mo deposition (R_{Mo}), separation factor
(ε), hydrogen production, cathodic (CE\textsubscript{ca}) and anodic (CE\textsubscript{an}) coulombic efficiencies, and overall system efficiency (\(\eta\)\textsubscript{sys}) were extensively employed to assess system performance. The mutual effect of W(VI) and Mo(VI) species in solution, and the optimization of the stacked BESs have been investigated. This study provides an innovative approach for efficient deposition and separation of W(VI) and Mo(VI) with simultaneous hydrogen production, without the requirement of external energy input.

2 Materials and Methods

2.1 BES assembly

Identical dual-chamber BESs were used in all experiments, with the chambers separated by a cation exchange membrane (CMI-7000 Membranes International, Glen Rock, NJ). Porous graphite felts (1.0 × 1.0 × 1.0 cm, San ye Co., Beijing, China) were used as anodes, whereas stainless steel sheets (2.0 × 2.0 cm, Qing yuan Co., China) were used as cathodes. The stainless steel sheets were mechanically polished with abrasive papers and cleaned with ethanol and deionized water, before installation [32]. The operating volume of the anodic and cathodic chambers of each BES unit was 14 mL each.

Here Fig. 1

Nine operational BES configurations comprising a minimum of two and a maximum of six BES units were investigated as shown in Fig. 1, where BES-1-1 indicated two units in series, while BES-2-1, BES-3-1 and BES-4-1 represented two, three and four parallel units connected to a single unit in series, respectively. Similarly, the units in parallel were also serially connected with other parallel and single units,
respectively. For convenient expression, the reactor units in these modules were denoted in order as 1#, 2# and 3# (Fig. 1). Derived from the concept of MFCs acting as a power source and MECs requiring externally applied voltage (power input) [33-34], the term of applied voltage was specifically used to illustrate that the 2# unit of BES-3-1 acted as a driving force and a power to input voltage to the 1# unit, similar to the previous description [20,22-25]. Data associated with 2# in the BES-3-1 have been shown as an average for the units connected in parallel since the differences among the units were insignificant and for the sake of clarity. An external resistor of 10 Ω was used to collect the circuital current and the voltage output. A reference electrode (Ag/AgCl, 195 mV vs. SHE) was installed in the cathodic chamber to measure the cathodic potential, with all potentials reported here vs. SHE. All reactors were wrapped with aluminum foil to ensure darkness, to avoid the growth of algae on the anodes and possible side reactions on the cathodes.

2.2 Inoculation and operation

The anodes of the BES were inoculated with suspended bacteria from acetate-fed anodes which were supplemented by an equivalent volume of anolyte solution, to facilitate the acclimation of the anodic biofilms [21-22]. The composition of the anolyte in deionized water was (g/L) sodium acetate 1.0; KH$_2$PO$_4$, 4.4; K$_2$HPO$_4$, 3.4; NH$_4$Cl, 1.3; KCl, 0.78; MgCl$_2$, 0.2; CaCl$_2$, 0.0146; NaCl, 0.5; trace vitamins and minerals [35]. The anolyte was sparged with ultrapure N$_2$ gas for 15 min to remove residual oxygen, prior to transferring to the anodic chambers, whereas deionized water was used as catholyte for anodic exoelectrogens acclimation [24-25]. The acclimation
process was carried out with an external resistor of 1000 Ω which was suitable for bacterial acclimation and avoided inaccurate assessment for subsequent power production [24-25,36-37]. The acclimation period was completed after eight anolyte refreshment cycles, when the anodic potential stabilized at –0.23 ~ –0.27 V vs. SHE, as shown in Fig.S1A. The reactor units were then stacked as shown in Fig. 1. The catholyte was replaced by a solution of Na₂WO₄ and Na₂MoO₄ (1.0 mM each) in deionized water, although the specific concentrations of these two metals in practical wastewaters may vary over a greater range of 0.05 ~ 10.4 mM [1-4]. The initial pH in the catholyte was set to 2.0 and the solution conductivity to 3.5 mS/cm, to reproduce the characteristics of acidic wastewaters containing W(VI) and Mo(VI) [1-3]. The acclimation of the all stacked BES units was completed after two further fed-batch cycle refreshments, which yielded reproducible electrode potentials in all BESs (every operation cycle lasted 4 h). Unless otherwise stated, the stainless steel cathodes were always cleaned in 1.0 M NaOH before each batch cycle operation.

The stability of the cells and the effect of pre-deposited W and Mo on the rate of hydrogen evolution were evaluated using the stacked BES-3-1 configuration, and considering a total of 20 fed-batch operation cycles, avoiding the cleaning of the cathodes. The bare electrodes, and the cathodes of 1# and 2# units in BES-3-1 after the 10th and the 20th operational cycle were analyzed by EIS. The catholyte effluent in the stacked BES-3-1 configuration was totally reused after pH adjustment to 2.5 and at constant solution conductivity (3.5 mS/cm), in order to achieve a higher W and Mo deposition and separation.
Control experiments using catholyte containing either W(VI) or Mo(VI) were performed to evaluate the impact of using a mixture of these two metals on the system performance. Further control experiments under open circuit conditions (OCCs) reflected the effect of circuital current on the metals deposition. Other control experiments using just the 1# unit or just the 2# unit of the BES-3-1 were performed to illustrate the roles that each of these reactor units played on deposition of W and Mo. All stacked reactors were operated in fed-batch mode at room temperature (25 ± 3 °C) and all experiments were conducted in duplicate. The inoculation and solution replacements were performed in an anaerobic glove box (YQX-II, Xinmiao, Shanghai).

2.3 Measurements and analyses

W(VI) and Mo(VI) in the catholyte and chemical oxygen demand (COD) in the anolyte were measured using standard methods [38]. The pH was measured by a calibrated pH meter (PHS-3C, Leici, Shanghai) and solution conductivity was measured using a conductivity meter (DDS-307, Leici, Shanghai). A glass tube with an inner diameter of 8 mm was glued to the top of the cathodic chambers to create a total headspace of 12 mL [32,39]. Hydrogen in the headspace of the cathodic chambers was sampled using microsyringes (200 μL, Agilent) and analyzed by a gas chromatograph (GC7900, Tianmei, Shanghai) which was equipped with a thermal conductivity detector and a molecular sieve column (TDX-01, 60 – 80, 4 mm × 2 m). The column operating temperature was 110 °C and the injector and detector temperatures were both 120 °C. Argon was used as the carrier gas at a constant
pressure of 0.13 MPa [32,39]. Hydrogen production (m3/m3 d) was calculated from the hydrogen concentration (m3/m3) obtained with the GC, multiplied by the gaseous phase volume (m3) and divided by the working volume (m3) and operational time (d).

The morphologies of the electrodes after W and Mo deposition were examined using a scanning electronic microscope (SEM) (QUANTA450, FEI company, USA) equipped with an energy dispersive spectrometer (EDS) (X-MAX 20 mm2/5- mm2, Oxford Instruments, UK). X-ray diffraction (XRD-6000, Shimadzu LabX, Japan) and X-ray photoelectron spectroscopy (XPS, Kratos AXIS Ultra DLD) were used to examine the nature and the elemental composition of the crystal products deposited on the cathodes.

The cathode and anode potentials were monitored by an automatic data acquisition system (PISO-813, Hongge Co, Taiwan). Polarization and power density data were obtained with a potentiostat (CHI 760C, Chenhua, Shanghai) using linear sweep voltammetry (LSV). Cyclic voltammetry (CV) (CHI 760C, Chenhua, Shanghai) was carried out with a three-electrode configuration comprising a working electrode (i.e., cathode), a platinum plate counter electrode, and a Ag/AgCl reference electrode. CVs were conducted in solutions with either W(VI) or Mo(VI) species or with a mixture of them, to reflect the reductive peak potentials and reductive peak currents of W(VI) and Mo(VI) under the experimental condition. Both CV and LSV were conducted at a scan rate of 1.0 mV/s. EIS was conducted using the same potentiostat with a three electrode system comprising a working electrode (i.e., cathode), a Ag/AgCl reference electrode (195 mV vs. SHE) located 1 cm away from the cathode.
in the cathodic chamber, and a Pt foil (2 × 4 cm) counter electrode placed in the anodic chamber. Impedance analysis was conducted at cathode potentials under OCCs with either the bare electrodes, or the electrodes deposited with W and Mo (obtained after multiple batch cycle operations) in catholyte to determine the impact of the W and Mo deposits on the subsequent W(VI) and Mo(VI) reduction in the stacked BES-3-1. For assessment of effect of W and Mo deposits on subsequent hydrogen evolution, however, impedance analysis was carried out at cathode potentials under CCCs with the same electrodes mentioned above but using catholyte in the absence of W(VI) and Mo(VI). EIS frequency ranged from 100 kHz to 10 mHz, with a sinusoidal perturbation of 10 mV amplitude. The equivalent circuits and detailed values of different resistances were obtained through Zsimpwin software and normalized to the projected area of the cathodes [40-41].

The statistical significance of the experimental data was assessed using a statistical package (SPSS v.19.0) (t-test, \(p = 0.05 \)).

2.4 Calculation

W deposition (\(R_W \), %) and Mo deposition (\(R_{Mo} \), %) were calculated from Eqs. 1 – 2. The power density was normalized to the projected surface area of the separator, allowing the comparison of the results to literature studies based on power per unit area [18,24,42]. The \(CE_{an} \), \(CE_{ca} \), and \(\eta_{sys} \) were calculated from Eqs. 3 – 8 [21] whereas the \(\varepsilon \) was directly related with \(R_W \) and \(R_{Mo} \) and calculated from Eq. 9 [1,8]:

\[
R_W = \left(\frac{W(VI)_b - W(VI)}{W(VI)_b} \right) \times 100\% \quad (1)
\]
\[R_{Mo} = \frac{M\alpha_{VI} I_t - M\alpha_{VI} I_0}{M\alpha_{VI} I_0} \times 100\% \]

(2)

\[Y_W = \frac{(W(VI) I_0 - W(VI) I_t) \times V_{ca} \times 32}{(COD_0 - COD_t) \times V_{an}} \]

(3)

\[Y_{Mo} = \frac{(M\alpha(VI) I_0 - M\alpha(VI) I_t) \times V_{ca} \times 32}{(COD_0 - COD_t) \times V_{an}} \]

(4)

\[Y_{H_2} = \frac{\eta_{H_2} \times V_{H_2} \times 32}{(COD_0 - COD_t) \times V_{an}} \]

(5)

\[CE_{an} = \frac{\int_0^t I dt \times (W(VI) I_0 - W(VI) I_t) \times V_{ca} + b_2 \times (M\alpha(VI) I_0 - M\alpha(VI) I_t) \times V_{ca} + b_3 \times \eta_{H_2} \times V_{ca} I \times 96485}{4 \times (COD_0 - COD_t) \times V_{an}} \times 100\% \]

(6)

\[CE_{ca} = \frac{\int_0^t I dt}{96485 \times 4 \times (COD_0 - COD_t) \times V_{an}} \times 100\% \]

(7)

\[\eta_{sys} = \frac{\frac{b_1 \times (W(VI) I_0 - W(VI) I_t) \times V_{ca} + b_2 \times (M\alpha(VI) I_0 - M\alpha(VI) I_t) \times V_{ca} + b_3 \times \eta_{H_2} \times V_{ca} I \times 96485}{4 \times (COD_0 - COD_t) \times V_{an}}}{32} \times 100\% \]

(8)

\[\varepsilon = \frac{M\alpha(VI) I_0 - M\alpha(VI) I_t}{M\alpha(VI) I_0} \times \frac{W(VI) I_0}{W(VI) I_0 - W(VI) I_t} \times \frac{1 - R_{Mo}}{R_W} \]

(9)

where \(W(VI)_0, M\alpha(VI)_0\) and \(COD_0\) are the initial concentrations (mol/L) of W(VI) and Mo(VI) in the catholyte, and of COD in the anolyte of each unit, respectively, and the subscript \(t\) refers to the concentration after an operational time of \(t\) (h). \(\eta_{H_2}\) is the hydrogen concentration (mol/L) at \(t\) hours; \(V_{ca}\) and \(V_{an}\) are the volumes of liquid (L) in the cathodic and anodic chambers, respectively; \(I\) is the corresponding circuitual current (A); 96485 is the Faraday constant (C/mol \(\varepsilon\)); 4 is the molar number of electrons required for oxygen reduction (mol/mol); 32 is the atomic weights of \(O_2\)
(g/mol); b_1, b_2 and b_3 are the molar numbers of electrons required for W(VI) and Mo(VI) reduction, and for hydrogen evolution (mol/mol).

3 Results and discussion

3.1 Performance of stacked BES-3-1 configuration

W and Mo were deposited more efficiently in the stacked BES-3-1 configuration, achieving 27.6 ± 1.2% for W with a yield of 0.09 ± 0.01 mol/mol COD (Fig. 2A and Table 1) and 75.4 ± 2.1% for Mo with 0.26 ± 0.02 mol/mol COD (Fig. 2B and Table 1) in the 1# unit, and 12.3 ± 0.9% with 0.08 ± 0.01 mol/mol COD (W) (Fig. 2A and Table 1) and 52.6 ± 2.2% with 0.23 ± 0.01 mol/mol COD (Mo) (Fig. 2B and Table 1) in the 2# unit. Accordingly, higher CE\textsubscript{an} of 52 ± 1% in the 1# unit than 42 ± 3% in the 2# unit ($p = 0.013$), and similar CE\textsubscript{ca} of 70 ± 5% (1#) and CE\textsubscript{ca} of 67 ± 1% (2#) ($p = 0.15$) (Table 1) were observed. These results reflect the higher reductive environment in the 1# unit due to the lower cathode potential (average values in Fig. 2C; as a function of time in Fig. S1B), the higher circuitual current (average values in Fig. 2D; as a function of time in Fig. S1B), and the impact of the voltage output from the 2# unit (MFC) which was applied to the 1# unit (MEC) (Fig. 2E).

While the CE\textsubscript{an} were somewhat lower than values reported for single BES units, particularly those utilizing high efficient Pt-cathodes [33,37], the overall system efficiencies (η_{sys}) were equivalent, and in some cases even higher, to MFC-MEC utilizing graphite granule anodes and cathodes, using K$_3$Fe(CN)$_6$ and methyl orange as cathodic electron acceptor, respectively [20]. The η_{sys} was slightly lower than in
MFC-MEC with carbon paper anodes and Pt catalyzed cathodes using oxygen and H^+ as cathodic electron acceptor, respectively [19]. The different CE_{an} observed in the 1# and 2# units reflect the existence of different microbial communities, consistent with the corresponding different circuital currents (Fig. 2D). In fact, circuital current is well known to influence microbial community in BESs [33]. Various strategies could be adopted to further increase the CE_{an}, such as through dosing of chemical methane inhibitors (e.g. 2-bromo-ethanesulfonate) [43] or by decreasing the anodic cycle time/hydraulic retention time, to inhibit methane production [44], which subsequently could enhance the amount of cathodic electrons used for the deposition of W and Mo in the stacked BESs.

Under the experimental condition, W(VI) and Mo(VI) reductions occurred at potentials more positive than -0.042 V (Fig. S2), which were more positive than the potentials of the cathodes in the 1# and 2# units (Fig. 2C and S1B), confirming the presence of favorable reductive environments in both units of the stacked BES-3-1. The co-existence of W(VI) and Mo(VI) in solution yielded higher reductive peak currents in comparison to the cases with individual metal salts (Fig. S2), illustrating the dual benefits of W(VI) and Mo(VI) for the occurrence of reduction reactions.

In the control experiments with either the 1# or 2# unit, the amount of W and Mo deposition was 15.3 ± 1.7% ($p = 0.000$) and 60.1 ± 1.6% ($p = 0.000$) (1#), and 12.9 ± 1.3% ($p = 0.864$) (W) and 56.1 ± 2.0% ($p = 0.134$) (Mo) (2#), respectively (Fig. S3), reflecting that the 2# unit positively affected the performance of 1# unit, whereas the 1# unit negligibly influenced the performance of 2# unit in the stacked BESs. In the
control experiments using catholytes with either W(VI) or Mo(VI), the deposition of W was 6.8 ± 1.3% (1#, \(p = 0.000\)) and 3.3 ± 0.4% (2#, \(p = 0.000\)) (Fig. 2A) and the deposition of Mo was 65.1 ± 3.2% (1#, \(p = 0.013\)) and 45.2 ± 0.9% (2#, \(p = 0.014\)) (Fig. 2B), consistent with the results in Fig. S2, reflecting again the dual benefits of W(VI) and Mo(VI) for efficient co-deposition in the stacked BESs. This effect has also been observed in conventional electrochemical processes [30-31]. Note that under OCCs, only 2.9% of W and Mo was deposited, with the single metals and with a mixture of the two metals. A control experiment with only anolyte in the absence of the electrode and exoelectrogens was specifically performed to evaluate the rate of diffusion of W(VI) and/or Mo(VI) from the cathodic to the anodic chambers under OCCs. In parallel, the morphology of the deposits on the cathode electrode was analyzed with SEM-EDS to ascertain the presence of W and/or Mo. The results showed that after a fed batch cycle, the concentrations of W and/or Mo in the anolyte were undetectable, excluding the possibility of W and/or Mo diffusion from the cathode to the anode, although the retention of W and/or Mo on the ion exchange membrane could not be precluded. The detection of W and Mo on the cathode electrode (Fig. S4) confirmed the occurrence of adsorption of W and Mo on the cathode.

Simultaneous with the W(VI) and Mo(VI) co-deposition process, the production of hydrogen in the 1# unit was 0.34 ± 0.01 m³/m³ d with a yield of 0.87 ± 0.03 mol/mol COD, compared to the rates obtained with the single metals in the control experiments (0.29 ± 0.00 m³/m³ d with Mo(VI) alone (\(p = 0.193\)) and 0.15 ± 0.01
The rate of hydrogen production in the 1# unit of the stacked BES-3-1 was higher than literature results using titanium sheet platinum-coated cathodes in MECs operated at a pH of 6.0 and temperature of 55 °C (0.2 – 0.3 m³/m³ d) [45-46], and was comparable to the rates obtained with the same platinum sheet metal cathodes of MECs at a high applied voltage of 0.9 V but neutral pH (0.68 m³/m³ d) [47]. The production of hydrogen in BESs is significantly affected by solution pHs [48]. Taken together with the requirements of H⁺ for W(VI) and Mo(VI) reduction as well as hydrogen evolution in the stacked BESs (Eqs. S1-S5), a cathodic pH maintained at 2.0 should favor the highest rate of hydrogen production [48]. As an example, the electron distribution in the stacked BES-3-1 after one batch cycle operation is shown schematically in Fig. S5.

The metal separation factors in the 1# and 2# units were similar (8.1 ± 0.2 and 7.9 ± 0.5, respectively, p = 0.465) (Table 1), which were higher than the value (7.0) reported with a macroporous resin or using manganese dioxide as adsorbent [6,8]. They were also equivalent to the separation factor obtained with MnSO₄ as a precipitation reagent [1-2] at the same W(VI) and Mo(VI) concentrations. However, the metal separation factors were lower than those reported with commercial TEVA or macroporous resins (from 14 to 28) at a ratio of W(VI) and Mo(VI) of 1 : 20, and the separation factor of 105, reported using solvent extraction with H₂O₂ as a chelating agent [2,6-7].

Here Fig. 3
The polarization curves with the W(VI) and Mo(VI) mixture (Fig. 3A) were similar to those observed in the control experiments with Mo(VI) alone (Fig. 3C), with maximum power higher than with W(VI) alone (Fig. 3E). These results clearly demonstrate the greater importance of Mo(VI) than W(VI) for delivering maximum power production. Accordingly, the power production in the control experiments with either the 1# or 2# unit (Fig. 3A) reflected more favorably the 2# unit rather than the 1# unit, elucidating that the 2# unit acted as MFCs and that the 1# unit acted as MECs, in the stacked BESs.

The cathodic potentials varied more significantly than the anodic potentials over the current density range (Fig. 3B). Similarly, an increase in current density in the control experiments with either the 1# or 2# unit resulted in more rapid gradients in the cathodic rather than in the anodic potentials (Fig. 3B). These results imply that the performance of the stacked BESs, as well as, each of the 1# and 2# units was augmented by changes in the cathode properties. These results are supported by the increasing consensus that BES performance may be constrained by poor reaction kinetics at the cathode, which results from the complex catholyte composition used and the subsequent multiple competitive reactions that may be generated, the accumulation of OH\(^-\) and other products near to the cathode surface and the cathode overpotential [9,49]. The cathode potentials as a function of current density in the controls with Mo(VI) alone (Fig. 3D), decreased more significantly than those obtained with W(VI) alone (Fig. 3F), stressing the greater importance of Mo(VI) rather than W(VI) for determining the cathode potential, consistent with the results in
Fig. 2A and B.

3.2 Electrode morphology and product analysis

Products with a smaller area of blue color (Fig. 4A) and with more club-shaped agglomerates (Fig. 4E) were observed in the layer deposited on the cathode of the 1# unit, compared to those observed on the 2# unit (Fig. 4B and F) or on the bare electrode (Fig. S6). The observation of a blue color implies a small amount of reduced Mo and W on the cathodes [1]. The exposure of the deposits to air led to substantial changes in the color (Fig. 4C and D) and microscopic morphology (Fig. 4G and H) in both the 1# (Fig. 4C and G) and 2# units (Fig. 4D and H), implying the sensitivity of the deposits to oxygen. Although the size and shape of the particles deposited on the cathodes were not tightly controlled, the variety of the morphologies observed on these cathodes implies that the different units in the stacked BES-3-1 produced products with different morphologies.

EDS analysis of the agglomerates in the deposits of the 1# unit reported higher W (at binding energies of 1.60, 1.78, 8.40 and 9.70 keV) and Mo (at 2.28 keV) signals (Fig. 4I), compared to those observed in the 2# unit (Fig. 4J), confirming the higher efficiency of the 1# unit for metal deposition (Fig. 2A and B). The W content in the products was 2.68% (1#) and 0.67% (2#), well below the 5 – 6% range usually leading to the formation of cracked W and Mo surface [30,50], consistent with the SEM observation in Fig. 4E and F. Exposure to air led to a decrease of the W and Mo signals in both the 1# (Fig. 4K) and 2# units (Fig. 4L), mainly ascribed to the fast oxidation of these reduced products [2,5,30]. The observation of Fe, Cr, Mn, Ni, C
and O on all the cathodes was associated with the composition of the stainless steel substratum. The XRD patterns closely matched Mo$_{8.8}$W$_{1.2}$O$_{29}$ (404) at 24.4° and (302) at 29.7°, and MoO$_2$ (010) at 63.4° and (102) at 68.7° in the 1# unit (Fig. 4M and Table S1), compared to Mo$_{9.35}$W$_{1.65}$O$_{32}$ (203) at 21.8°, (301) at 25.7° and (501) at 25.9°, and MoO$_2$ (404) at 60.9° and (110) at 68.9° in the 2# unit (Fig. 4N and Table S1). Exposure to air completely changed the forms of the crystals in both the 1# (Fig. 4O) and 2# units (Fig. 4P). In concert, the results observed support a significant dependence of the product crystals on the variety of units in the stacked BES-3-1 and that the products were highly sensitive to oxidation.

Here Fig. 5

XPS images displayed the presence of peaks at 35.9 and 38.1 eV for W on all the electrodes (Fig. 5A, C, E and G), which were assigned to W(VI) at W(4f7/2) and W(4f5/2) levels, respectively. However, this could not preclude the oxidation of the highly unstable W(V) as a reduced product during the sample preparation [2,5,30]. In fact, electrodes sampled at the end of one operational cycle, in the absence of N$_2$ protection, instantly changed in color, implying the weak oxidative character of anionic polymerized W(VI). Accordingly, higher peaks at 234.8 eV and 231.8 eV associated with Mo(V) than those at 231.0 eV and 234.0 eV assigned to Mo(IV) were observed in the 1# unit, both of which were higher than those in the 2# unit (Fig. 5B and Table S2), consistent with the results in Fig. 2B. The reduction of Mo(VI) to Mo(V) was therefore more likely than the reduction towards Mo(IV).

3.3 BESs stacked in different configurations

Here Fig. 6
Among the various configurations of stacked BESs, BES-4-1 comprising a single unit (1#) serially connected with four parallel units (2#) (Fig. 1) exhibited the similar highest deposition of metals to BES-3-1 in the same 1# unit: 28.7 ± 0.7% (W) \((p = 0.528)\) (Fig. 6A) and 69.1 ± 1.3% (Mo) \((p = 0.15)\) (Fig. 6B). In the 2# unit, however, Mo deposition of 39.3 ± 1.7% in BES-4-1 (Fig. 6B) was lower than 52.6 ± 2.2% in BES-3-1 \((p = 0.042)\) (Fig. 2B), compared to the similar W deposition (13.2 ± 1.6% in BES-4-1, 12.3 ± 0.9% in BES-3-1, \(p = 0.684\)). As a consequence, separation factor of 4.3 ± 0.1 in the 2# unit of BES-4-1 was significantly lower than 7.9 ± 0.5 in BES-3-1 based on Eq. 9 (Table 1). While hydrogen production of 0.83 ± 0.20 m\(^3\)/m\(^3\) d in BES-4-1 was higher than 0.34 ± 0.10 m\(^3\)/m\(^3\) d in BES-3-1 (Table 1), the yield of hydrogen in BES-4-1 (0.56 ± 0.01 mol/mol COD) was lower than in BES-3-1 (0.87 ± 0.03 mol/mol COD), explained by the higher rate of COD consumption in the BES-4-1 anode, according to Eq. 5. Taken together, BES-4-1 had an advantage of more hydrogen production over BES-3-1 whereas the latter favored for more Mo deposition and the subsequent more efficient W and Mo separation. Considering the merit of favor for more metal deposition and separation in BES-3-1, this stacked BES-3-1 module was thus selected to evaluate the effect of multiple cycles operation, and the effect of effluent reuse from the 1# and 2# units, for complete separation of W from Mo.

It should be noted that each of these reactor units could independently generate current prior connection in stacked BESs. BES-2-1, BES-3-1 and BES-4-1 modules were made of MECs (1#) and MFCs (2#, associated two, three or four units in a
These stacked systems operated spontaneously at voltage outputs higher than that from coupled single units (1#), since the internal resistance, in the parallel connected units, progressively decreased as the number of parallel connected units increased. Therefore, at a fixed external resistance (e.g. 1#), the stacked BESs would spontaneously evolve hydrogen, as long as the voltage output from the units connected in parallel (e.g. 2#) could produce a more negative cathodic potentials in the 1# unit, sufficient for H⁺ reduction (theoretically −0.135 V at the present initial pH of 2.0) [34]. The hydrogen production rate, however, dynamically depended on the circuital current of the BESs [34]. Thus, hydrogen was thermodynamically evolved in the 1# unit rather than the 2# unit, evolving a higher hydrogen production rate in BES-4-1 rather than in BES-3-1 (Fig. 2C and 6C, Table 1). However, the inadequate cathodic potential and circuital currents in the 1# unit of BES-2-1 resulted in negligible evolution of hydrogen (Table 1 and Fig. 6C and 6D). In BES-3-2-1, the three units connected in parallel acted as MFCs, while the two units in parallel serially stacked with a single unit, served as MECs. The hydrogen production in BES-3-2-1 was reasonably lower than the 1# unit of BES-3-1 due to the more number of units being driven in the former (Table 1). The BESs with equal number of serial and/or parallel connected units including BES-1-1, BES-2-2, BES-3-3, BES-1-1-1 and BES-2-2-2, produced similar voltage outputs and net electricity was always produced, excluding the possibility of hydrogen evolution in these systems.

3.4 BES long-term stability

Here Fig. 7

The deposition of W in both the 1# and 2# units of the BES-3-1 exhibited a
decreasing trend with operational time, from 27.6 ± 1.2 % (1#) and 12.3 ± 0.9 % (2#) in the first cycle to 10.1 ± 1.3% (1#) and 8.4 ± 0.8% (2#) after the 20th cycle (Fig. 7A).

Conversely, Mo deposition in the 2# unit gradually increased, from the initial 52.6 ± 2.2% (1st cycle) to 61.6 ± 2.2% (20th cycle) (Fig. 7B). The insignificant change in the deposition of Mo in the 1# unit (71.7 – 75.4%) was accompanied with an increase in hydrogen production (Table S3), reflecting the beneficial catalytic effect of the Mo deposit on hydrogen evolution [29]. Specifically, it has been shown that MoS₂ particles coated carbon cloth performs better than bare stainless steel and even surpasses platinum-based electrodes for hydrogen evolution [51].

The separation factor in BES-3-1 increased from 8.1 ± 1.4 (1#) and 7.9 ± 0.0 (2#) (1st cycle) to 22.8 ± 1.9 (1#) and 17.7 ± 0.8 (2#) (20th cycle) (Fig. 7C), suggesting a beneficial effect of the operational time on the separation of the metals.

Cathode potentials (Fig. 7D), circuital current (Fig. 7E), applied voltage (Fig. 7F) and hydrogen production (Table S3) increased progressively up to a maximum at the 10th cycle, which were consistent with the polarization curves (Fig. S8) and with the appreciable deposition of W and Mo on the electrodes (Fig. 7A and B). Such results are further supported by the positive effect of tungsten and molybdenum oxide impregnated electrodes in MFCs for power production and V(V) or O₂ reduction [52-54]. Further deposition of the metals from the 11th to 20th cycle, resulted in a decrease in the circuital current (Fig. 7E) and negligible changes in the cathode potential (Fig. 7D), which ultimately led to a decrease of the hydrogen production with operational time (Table S3). This last effect could be attributed to an excessive...
accumulation of metals on the electrodes, which was further proved as follows. The EIS spectra were fitted to equivalent circuits (Fig. S9) to identify the components determining the internal resistances in the BES-3-1 after the 10th and 20th cycle, for assessing W(VI) and Mo(VI) reduction, and hydrogen evolution (Fig. S10 and Table S4) in comparison with the bare electrodes. The diffusional resistance (R_d) for W(VI) and Mo(VI) reduction was significantly higher than the polarization (R_p) and the ohmic (R_o) resistances (Fig. S10A and Table S4) due to the mass transfer limitation of the formed macromolecules of W and Mo heteropolyacid [1-2]. Compared to the bare electrode, the R_d, R_p and R_o resistances after the 10th cycle substantially decreased to 4252.3 Ω, 43.2 Ω and 14.8 Ω (1#) and 2076.7 Ω, 25.4 Ω and 14.2 Ω (2#), respectively, which were consistent with the enhanced system performance due to the presence of W and Mo deposits (Fig. 7). However, at the 20th cycle, R_d and R_p increased, while R_o negligibly changed, which was attributed to the excessive W and Mo layer formed. With respect to the bare electrode having R_p of 89.4 Ω, R_d of 4897.2 Ω and R_o of 18.2 Ω for hydrogen evolution (Fig. S10B and Table S4), the rate of hydrogen production increased after a prolonged operation (10th cycle) (Table S3) due to the decrease of the resistance, R_p (22.7 Ω), R_d (503.5 Ω) and R_o (7.3 Ω). However, further use (20th cycle) led to an increase in the resistances, R_p (43.4 Ω), R_d (1123.4 Ω) and R_o (10.5 Ω) (Table S4) and, in consequence, to a decrease in the rate of hydrogen production (Table S3), consistent with the EIS results for W(VI) and Mo(VI) reduction (Fig. S10A and Table S4). These results, in concert, clearly demonstrated
that the decreased rate of hydrogen production at the 20th cycle resulted from the excessive layer of W and Mo built on the cathodes of 1# in the stacked BESs.

3.5 Catholyte effluent reuse

The catholyte effluent after acidic adjustment was fully reused in the BES-3-1 to increase the amount of metal deposited, which reached 36.0 ± 0.3\% (W) and 99.4 ± 0.5\% (Mo) in the 1# unit, and 26.9 ± 0.2\% (W) and 96.2 ± 0.6\% (Mo) in the 2# unit at the 7th circulation (Fig. S11A and B). Accordingly, a significantly higher separation factor equal to 467 ± 22 was reached in the 1# unit, compared to 70 ± 3 in the 2# unit (Fig. S11C). This separation factor achieved in the 1# unit was higher than that observed with ion exchange resins, solvent extraction, or MnO\textsubscript{2} and MnSO\textsubscript{4} adsorbents (range 7 – 105) [2,6-8]. A decrease of the concentration of W(VI) and Mo(VI) in the catholyte with reuse led to a decrease of the circuital current (Fig. S11D), the cathode potential (Fig. S11E), and the applied voltage to the 1# unit (Fig. S11F) as expected, due to the progressive reduction of W(VI) and Mo(VI) electron acceptors in the catholyte. This result was consistent with the reports using other multiple metals as electron acceptors in BESs [17-18,55-56]. The pH of the catholyte after each reuse always increased in both the 1# (Fig. S11G) and the 2# unit (Fig. S11H), and required a pre-acidification step to promote efficient W and Mo deposition and separation.

On the basis of the operating costs alone, the net value of W and Mo products recovered from the system (7.22 $ per m3 mixed W(VI) and Mo(VI)) was significantly higher than the cost required for acidification of the catholyte (0.03 $/m3).
demonstrating the economical feasibility of this technology.

With regard to the practical application of stacked BESs for W and Mo recovery, the two-chamber BESs have merits over the one-chamber systems, since these avoid the toxicity of W and Mo to the anodic exoelectrogens while permitting the simultaneous treatment of two different wastewaters [9-10]. Considering that the materials costs are steadily decreasing, particularly the costs of the ion exchange membrane [27,42,55,57], cost-effective two-chamber stacked BESs are promising systems for sustainable recovery and separation of W and Mo at industrial scale, with simultaneous production of hydrogen. However, the practical implementation of this technology for industrial wastewater treatment requires further pilot and full-scale investigations, to evaluate the long-term operation and stability of the system over feeds with fluctuating characteristics [57]. In addition, in this study we have adjusted the pH to the acidic value of 2.0 only at the beginning of the experiment, although a recent study suggests that a pH control during the entire operational period to acidic values may lead to enhanced performance [48]. This aspect should be investigated in further studies. The separation of the W and Mo layer deposited on the electrodes may also represent a further challenge for the practical application of this technology. However, the in-situ utilization of these deposits for photocatalytic processes may become an attractive strategy for reuse, since W and Mo oxides exhibits excellent photocatalytic properties [58]. It is expected that further optimization of pH control, and ratio of W(VI) and Mo(VI) would result in an improved performance of the stacked BESs presented in this study.
This study demonstrated a novel method for the deposition and separation of W and Mo metals in stacked BESs with simultaneous hydrogen production, without the need of external energy input. The optimized stacked module was the BES-3-1, where the dual benefits of the W(VI) and Mo(VI) species, and the favorable impact of the 2# unit on the 1# unit were observed, with simultaneous hydrogen production. This system also displayed a favorable configuration in which the 2# MFC unit assisted the 1# MEC unit. Further reuse of the catholyte after acidification led to complete separation of W and Mo from one another. Since W(VI) and Mo(VI) are extensively present in ore dressing wastewater, this study may provide a sustainable and environmentally benign approach to this industry for efficient recovery and separation of W and Mo with simultaneous hydrogen production.

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 51578104), and the Programme of Introducing Talents of Discipline to University (B13012).

References

29

[38] State Environment Protection Administration, the Water and Wastewater Monitoring Methods, fourth ed., China Environmental Science Press, Beijing, 2002.

[41] D. Wu, L. Huang, X. Quan, G Li Puma, Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells, J. Power Sources 307 (2016) 705-714.

Q. Wang, L. Huang, Y. Pan, X. Quan, G. Li Puma, Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials, J. Hazard. Mater. 321 (2016) 896-906.

Table 1 Separation factor, product yield, and operational efficiencies in various stacked BESs.

Fig. 1 Types of stacked BESs in this study

Fig. 2 W (A) and Mo (B) deposition, cathode potentials (C) and circuitual current (D)
in the stacked BES-3-1. Applied voltage (E) and hydrogen production (F) in the 1# unit of the BES-3-1.

Fig. 3 Voltage output and power density (A, C and E), and anode and cathode potentials (B, D and F) in the stacked BES-3-1, and controls of the single 1# or 2# units with the components of W(VI) and Mo(VI) (A and B), individual Mo(VI) (C and D), and single W(VI) (E and F).

Fig. 4 Naked eye (A, B, C and D) and SEM (E, F, G and H) observation, EDS analysis (I, J, K and L) and XED determination (M, N, O and P) on the cathodes of the 1# (A, E, I, M, C, G, K and O) and 2# units (B, F, J, N, D, H, L and P) before (A, E, I, M, B, F, J and N) and after (C, G, K, O, D, H, L and P) exposed to air for 24 h (2 cycle operation).

Fig. 5 XPS analysis for W (A, C, E and G) and Mo (B, D, F and H) elements on the cathodes of the 1# (A, B, E, and F) and 2# units (C, D, G and H) before (A, B, C and D) and after (E, F, G and H) exposed to air for 24 h.

Fig. 6 W (A) and (B) Mo deposition in the different units of the stacked BESs and the associated cathode potential (C) and circuitual current (D).

Fig. 7 W (A) and Mo (B) deposition, separation factor (C), cathode potential (D), and circuitual current (E) in the 1# and 2# units of BES-3-1, as well as applied voltage as a function of the operational cycle.
Table 1 Separation factor, product yield, and operational efficiencies in various stacked BESs.

<table>
<thead>
<tr>
<th>Stacked BESs</th>
<th>BES-1-1</th>
<th>BES-2-1</th>
<th>BES-3-1</th>
<th>BES-2-2</th>
<th>BES-3-2</th>
<th>BES-4-1</th>
<th>BES-1-1</th>
<th>BES-3-2-1</th>
<th>BES-2-2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation factor</td>
<td>1#</td>
<td>6.3 ± 1.1</td>
<td>8.8 ± 0.2</td>
<td>8.1 ± 0.2</td>
<td>4.7 ± 0.7</td>
<td>4.1 ± 1.1</td>
<td>8.1 ± 0.6</td>
<td>7.5 ± 1.2</td>
<td>4.2 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>2#</td>
<td>5.7 ± 0.8</td>
<td>6.4 ± 0.6</td>
<td>7.9 ± 0.5</td>
<td>4.7 ± 1.2</td>
<td>3.8 ± 0.9</td>
<td>4.3 ± 0.1</td>
<td>6.5 ± 0.9</td>
<td>3.9 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>3#</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>6.9 ± 1.1</td>
<td>3.7 ± 0.9</td>
</tr>
<tr>
<td>Hydrogen production (m³/m³ d)</td>
<td>1#</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.34 ± 0.10</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.83 ± 0.20</td>
<td>0.00 ± 0.00</td>
<td>0.82 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>2#</td>
<td>0.00 ± 0.00</td>
<td>0.33 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>3#</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Product yield (mol/mol COD)</td>
<td>1#</td>
<td>W 0.08 ± 0.02</td>
<td>0.11 ± 0.03</td>
<td>0.09 ± 0.01</td>
<td>0.13 ± 0.01</td>
<td>0.14 ± 0.02</td>
<td>0.08 ± 0.01</td>
<td>0.12 ± 0.02</td>
<td>0.13 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Mo 0.23 ± 0.03</td>
<td>0.25 ± 0.04</td>
<td>0.26 ± 0.02</td>
<td>0.21 ± 0.03</td>
<td>0.20 ± 0.01</td>
<td>0.26 ± 0.02</td>
<td>0.25 ± 0.01</td>
<td>0.26 ± 0.02</td>
<td>0.25 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>H₂ 0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.87 ± 0.03</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
<td>0.56 ± 0.01</td>
<td>0.00 ± 0.00</td>
<td>0.65 ± 0.02</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>W 0.09 ± 0.01</td>
<td>0.11 ± 0.02</td>
<td>0.08 ± 0.01</td>
<td>0.12 ± 0.02</td>
<td>0.11 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td>0.09 ± 0.01</td>
<td>0.10 ± 0.02</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Mo 0.24 ± 0.01</td>
<td>0.26 ± 0.02</td>
<td>0.23 ± 0.01</td>
<td>0.25 ± 0.02</td>
<td>0.23 ± 0.01</td>
<td>0.20 ± 0.01</td>
<td>0.26 ± 0.02</td>
<td>0.25 ± 0.02</td>
<td>0.23 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>H₂ 0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td></td>
<td>W ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.11 ± 0.01</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>Mo ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.19 ± 0.02</td>
<td>0.21 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>H₂ ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>CEₘᵣ (%)</td>
<td>1#</td>
<td>55 ± 3</td>
<td>56 ± 4</td>
<td>52 ± 1</td>
<td>43 ± 2</td>
<td>39 ± 2</td>
<td>49 ± 5</td>
<td>50 ± 3</td>
<td>49 ± 7</td>
</tr>
<tr>
<td></td>
<td>2#</td>
<td>47 ± 2</td>
<td>39 ± 4</td>
<td>42 ± 3</td>
<td>45 ± 5</td>
<td>44 ± 3</td>
<td>38 ± 3</td>
<td>49 ± 6</td>
<td>51 ± 2</td>
</tr>
<tr>
<td></td>
<td>3#</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>39 ± 2</td>
<td>47 ± 1</td>
</tr>
<tr>
<td>CEₘᵣ (%)</td>
<td>1#</td>
<td>75 ± 7</td>
<td>73 ± 7</td>
<td>70 ± 5</td>
<td>83 ± 5</td>
<td>65 ± 6</td>
<td>67 ± 8</td>
<td>76 ± 7</td>
<td>77 ± 1</td>
</tr>
<tr>
<td></td>
<td>2#</td>
<td>65 ± 7</td>
<td>81 ± 6</td>
<td>67 ± 1</td>
<td>78 ± 5</td>
<td>71 ± 7</td>
<td>83 ± 4</td>
<td>82 ± 3</td>
<td>69 ± 5</td>
</tr>
<tr>
<td></td>
<td>3#</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>81 ± 7</td>
<td>79 ± 4</td>
</tr>
<tr>
<td>η sys (%)</td>
<td>1#</td>
<td>19 ± 1</td>
<td>23 ± 4</td>
<td>21 ± 0</td>
<td>17 ± 1</td>
<td>25 ± 1</td>
<td>15 ± 0</td>
<td>19 ± 1</td>
<td>22 ± 1</td>
</tr>
</tbody>
</table>